auditsc.c 64 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433
  1. /* auditsc.c -- System-call auditing support
  2. * Handles all system-call specific auditing features.
  3. *
  4. * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
  5. * Copyright 2005 Hewlett-Packard Development Company, L.P.
  6. * Copyright (C) 2005, 2006 IBM Corporation
  7. * All Rights Reserved.
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; either version 2 of the License, or
  12. * (at your option) any later version.
  13. *
  14. * This program is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. * GNU General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program; if not, write to the Free Software
  21. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  22. *
  23. * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  24. *
  25. * Many of the ideas implemented here are from Stephen C. Tweedie,
  26. * especially the idea of avoiding a copy by using getname.
  27. *
  28. * The method for actual interception of syscall entry and exit (not in
  29. * this file -- see entry.S) is based on a GPL'd patch written by
  30. * okir@suse.de and Copyright 2003 SuSE Linux AG.
  31. *
  32. * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
  33. * 2006.
  34. *
  35. * The support of additional filter rules compares (>, <, >=, <=) was
  36. * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
  37. *
  38. * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
  39. * filesystem information.
  40. *
  41. * Subject and object context labeling support added by <danjones@us.ibm.com>
  42. * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
  43. */
  44. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  45. #include <linux/init.h>
  46. #include <asm/types.h>
  47. #include <linux/atomic.h>
  48. #include <linux/fs.h>
  49. #include <linux/namei.h>
  50. #include <linux/mm.h>
  51. #include <linux/export.h>
  52. #include <linux/slab.h>
  53. #include <linux/mount.h>
  54. #include <linux/socket.h>
  55. #include <linux/mqueue.h>
  56. #include <linux/audit.h>
  57. #include <linux/personality.h>
  58. #include <linux/time.h>
  59. #include <linux/netlink.h>
  60. #include <linux/compiler.h>
  61. #include <asm/unistd.h>
  62. #include <linux/security.h>
  63. #include <linux/list.h>
  64. #include <linux/binfmts.h>
  65. #include <linux/highmem.h>
  66. #include <linux/syscalls.h>
  67. #include <asm/syscall.h>
  68. #include <linux/capability.h>
  69. #include <linux/fs_struct.h>
  70. #include <linux/compat.h>
  71. #include <linux/ctype.h>
  72. #include <linux/string.h>
  73. #include <linux/uaccess.h>
  74. #include <uapi/linux/limits.h>
  75. #include "audit.h"
  76. /* flags stating the success for a syscall */
  77. #define AUDITSC_INVALID 0
  78. #define AUDITSC_SUCCESS 1
  79. #define AUDITSC_FAILURE 2
  80. /* no execve audit message should be longer than this (userspace limits),
  81. * see the note near the top of audit_log_execve_info() about this value */
  82. #define MAX_EXECVE_AUDIT_LEN 7500
  83. /* max length to print of cmdline/proctitle value during audit */
  84. #define MAX_PROCTITLE_AUDIT_LEN 128
  85. /* number of audit rules */
  86. int audit_n_rules;
  87. /* determines whether we collect data for signals sent */
  88. int audit_signals;
  89. struct audit_aux_data {
  90. struct audit_aux_data *next;
  91. int type;
  92. };
  93. #define AUDIT_AUX_IPCPERM 0
  94. /* Number of target pids per aux struct. */
  95. #define AUDIT_AUX_PIDS 16
  96. struct audit_aux_data_pids {
  97. struct audit_aux_data d;
  98. pid_t target_pid[AUDIT_AUX_PIDS];
  99. kuid_t target_auid[AUDIT_AUX_PIDS];
  100. kuid_t target_uid[AUDIT_AUX_PIDS];
  101. unsigned int target_sessionid[AUDIT_AUX_PIDS];
  102. u32 target_sid[AUDIT_AUX_PIDS];
  103. char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
  104. int pid_count;
  105. };
  106. struct audit_aux_data_bprm_fcaps {
  107. struct audit_aux_data d;
  108. struct audit_cap_data fcap;
  109. unsigned int fcap_ver;
  110. struct audit_cap_data old_pcap;
  111. struct audit_cap_data new_pcap;
  112. };
  113. struct audit_tree_refs {
  114. struct audit_tree_refs *next;
  115. struct audit_chunk *c[31];
  116. };
  117. static int audit_match_perm(struct audit_context *ctx, int mask)
  118. {
  119. unsigned n;
  120. if (unlikely(!ctx))
  121. return 0;
  122. n = ctx->major;
  123. switch (audit_classify_syscall(ctx->arch, n)) {
  124. case 0: /* native */
  125. if ((mask & AUDIT_PERM_WRITE) &&
  126. audit_match_class(AUDIT_CLASS_WRITE, n))
  127. return 1;
  128. if ((mask & AUDIT_PERM_READ) &&
  129. audit_match_class(AUDIT_CLASS_READ, n))
  130. return 1;
  131. if ((mask & AUDIT_PERM_ATTR) &&
  132. audit_match_class(AUDIT_CLASS_CHATTR, n))
  133. return 1;
  134. return 0;
  135. case 1: /* 32bit on biarch */
  136. if ((mask & AUDIT_PERM_WRITE) &&
  137. audit_match_class(AUDIT_CLASS_WRITE_32, n))
  138. return 1;
  139. if ((mask & AUDIT_PERM_READ) &&
  140. audit_match_class(AUDIT_CLASS_READ_32, n))
  141. return 1;
  142. if ((mask & AUDIT_PERM_ATTR) &&
  143. audit_match_class(AUDIT_CLASS_CHATTR_32, n))
  144. return 1;
  145. return 0;
  146. case 2: /* open */
  147. return mask & ACC_MODE(ctx->argv[1]);
  148. case 3: /* openat */
  149. return mask & ACC_MODE(ctx->argv[2]);
  150. case 4: /* socketcall */
  151. return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
  152. case 5: /* execve */
  153. return mask & AUDIT_PERM_EXEC;
  154. default:
  155. return 0;
  156. }
  157. }
  158. static int audit_match_filetype(struct audit_context *ctx, int val)
  159. {
  160. struct audit_names *n;
  161. umode_t mode = (umode_t)val;
  162. if (unlikely(!ctx))
  163. return 0;
  164. list_for_each_entry(n, &ctx->names_list, list) {
  165. if ((n->ino != AUDIT_INO_UNSET) &&
  166. ((n->mode & S_IFMT) == mode))
  167. return 1;
  168. }
  169. return 0;
  170. }
  171. /*
  172. * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
  173. * ->first_trees points to its beginning, ->trees - to the current end of data.
  174. * ->tree_count is the number of free entries in array pointed to by ->trees.
  175. * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
  176. * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
  177. * it's going to remain 1-element for almost any setup) until we free context itself.
  178. * References in it _are_ dropped - at the same time we free/drop aux stuff.
  179. */
  180. #ifdef CONFIG_AUDIT_TREE
  181. static void audit_set_auditable(struct audit_context *ctx)
  182. {
  183. if (!ctx->prio) {
  184. ctx->prio = 1;
  185. ctx->current_state = AUDIT_RECORD_CONTEXT;
  186. }
  187. }
  188. static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
  189. {
  190. struct audit_tree_refs *p = ctx->trees;
  191. int left = ctx->tree_count;
  192. if (likely(left)) {
  193. p->c[--left] = chunk;
  194. ctx->tree_count = left;
  195. return 1;
  196. }
  197. if (!p)
  198. return 0;
  199. p = p->next;
  200. if (p) {
  201. p->c[30] = chunk;
  202. ctx->trees = p;
  203. ctx->tree_count = 30;
  204. return 1;
  205. }
  206. return 0;
  207. }
  208. static int grow_tree_refs(struct audit_context *ctx)
  209. {
  210. struct audit_tree_refs *p = ctx->trees;
  211. ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
  212. if (!ctx->trees) {
  213. ctx->trees = p;
  214. return 0;
  215. }
  216. if (p)
  217. p->next = ctx->trees;
  218. else
  219. ctx->first_trees = ctx->trees;
  220. ctx->tree_count = 31;
  221. return 1;
  222. }
  223. #endif
  224. static void unroll_tree_refs(struct audit_context *ctx,
  225. struct audit_tree_refs *p, int count)
  226. {
  227. #ifdef CONFIG_AUDIT_TREE
  228. struct audit_tree_refs *q;
  229. int n;
  230. if (!p) {
  231. /* we started with empty chain */
  232. p = ctx->first_trees;
  233. count = 31;
  234. /* if the very first allocation has failed, nothing to do */
  235. if (!p)
  236. return;
  237. }
  238. n = count;
  239. for (q = p; q != ctx->trees; q = q->next, n = 31) {
  240. while (n--) {
  241. audit_put_chunk(q->c[n]);
  242. q->c[n] = NULL;
  243. }
  244. }
  245. while (n-- > ctx->tree_count) {
  246. audit_put_chunk(q->c[n]);
  247. q->c[n] = NULL;
  248. }
  249. ctx->trees = p;
  250. ctx->tree_count = count;
  251. #endif
  252. }
  253. static void free_tree_refs(struct audit_context *ctx)
  254. {
  255. struct audit_tree_refs *p, *q;
  256. for (p = ctx->first_trees; p; p = q) {
  257. q = p->next;
  258. kfree(p);
  259. }
  260. }
  261. static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
  262. {
  263. #ifdef CONFIG_AUDIT_TREE
  264. struct audit_tree_refs *p;
  265. int n;
  266. if (!tree)
  267. return 0;
  268. /* full ones */
  269. for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
  270. for (n = 0; n < 31; n++)
  271. if (audit_tree_match(p->c[n], tree))
  272. return 1;
  273. }
  274. /* partial */
  275. if (p) {
  276. for (n = ctx->tree_count; n < 31; n++)
  277. if (audit_tree_match(p->c[n], tree))
  278. return 1;
  279. }
  280. #endif
  281. return 0;
  282. }
  283. static int audit_compare_uid(kuid_t uid,
  284. struct audit_names *name,
  285. struct audit_field *f,
  286. struct audit_context *ctx)
  287. {
  288. struct audit_names *n;
  289. int rc;
  290. if (name) {
  291. rc = audit_uid_comparator(uid, f->op, name->uid);
  292. if (rc)
  293. return rc;
  294. }
  295. if (ctx) {
  296. list_for_each_entry(n, &ctx->names_list, list) {
  297. rc = audit_uid_comparator(uid, f->op, n->uid);
  298. if (rc)
  299. return rc;
  300. }
  301. }
  302. return 0;
  303. }
  304. static int audit_compare_gid(kgid_t gid,
  305. struct audit_names *name,
  306. struct audit_field *f,
  307. struct audit_context *ctx)
  308. {
  309. struct audit_names *n;
  310. int rc;
  311. if (name) {
  312. rc = audit_gid_comparator(gid, f->op, name->gid);
  313. if (rc)
  314. return rc;
  315. }
  316. if (ctx) {
  317. list_for_each_entry(n, &ctx->names_list, list) {
  318. rc = audit_gid_comparator(gid, f->op, n->gid);
  319. if (rc)
  320. return rc;
  321. }
  322. }
  323. return 0;
  324. }
  325. static int audit_field_compare(struct task_struct *tsk,
  326. const struct cred *cred,
  327. struct audit_field *f,
  328. struct audit_context *ctx,
  329. struct audit_names *name)
  330. {
  331. switch (f->val) {
  332. /* process to file object comparisons */
  333. case AUDIT_COMPARE_UID_TO_OBJ_UID:
  334. return audit_compare_uid(cred->uid, name, f, ctx);
  335. case AUDIT_COMPARE_GID_TO_OBJ_GID:
  336. return audit_compare_gid(cred->gid, name, f, ctx);
  337. case AUDIT_COMPARE_EUID_TO_OBJ_UID:
  338. return audit_compare_uid(cred->euid, name, f, ctx);
  339. case AUDIT_COMPARE_EGID_TO_OBJ_GID:
  340. return audit_compare_gid(cred->egid, name, f, ctx);
  341. case AUDIT_COMPARE_AUID_TO_OBJ_UID:
  342. return audit_compare_uid(tsk->loginuid, name, f, ctx);
  343. case AUDIT_COMPARE_SUID_TO_OBJ_UID:
  344. return audit_compare_uid(cred->suid, name, f, ctx);
  345. case AUDIT_COMPARE_SGID_TO_OBJ_GID:
  346. return audit_compare_gid(cred->sgid, name, f, ctx);
  347. case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
  348. return audit_compare_uid(cred->fsuid, name, f, ctx);
  349. case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
  350. return audit_compare_gid(cred->fsgid, name, f, ctx);
  351. /* uid comparisons */
  352. case AUDIT_COMPARE_UID_TO_AUID:
  353. return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
  354. case AUDIT_COMPARE_UID_TO_EUID:
  355. return audit_uid_comparator(cred->uid, f->op, cred->euid);
  356. case AUDIT_COMPARE_UID_TO_SUID:
  357. return audit_uid_comparator(cred->uid, f->op, cred->suid);
  358. case AUDIT_COMPARE_UID_TO_FSUID:
  359. return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
  360. /* auid comparisons */
  361. case AUDIT_COMPARE_AUID_TO_EUID:
  362. return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
  363. case AUDIT_COMPARE_AUID_TO_SUID:
  364. return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
  365. case AUDIT_COMPARE_AUID_TO_FSUID:
  366. return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
  367. /* euid comparisons */
  368. case AUDIT_COMPARE_EUID_TO_SUID:
  369. return audit_uid_comparator(cred->euid, f->op, cred->suid);
  370. case AUDIT_COMPARE_EUID_TO_FSUID:
  371. return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
  372. /* suid comparisons */
  373. case AUDIT_COMPARE_SUID_TO_FSUID:
  374. return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
  375. /* gid comparisons */
  376. case AUDIT_COMPARE_GID_TO_EGID:
  377. return audit_gid_comparator(cred->gid, f->op, cred->egid);
  378. case AUDIT_COMPARE_GID_TO_SGID:
  379. return audit_gid_comparator(cred->gid, f->op, cred->sgid);
  380. case AUDIT_COMPARE_GID_TO_FSGID:
  381. return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
  382. /* egid comparisons */
  383. case AUDIT_COMPARE_EGID_TO_SGID:
  384. return audit_gid_comparator(cred->egid, f->op, cred->sgid);
  385. case AUDIT_COMPARE_EGID_TO_FSGID:
  386. return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
  387. /* sgid comparison */
  388. case AUDIT_COMPARE_SGID_TO_FSGID:
  389. return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
  390. default:
  391. WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
  392. return 0;
  393. }
  394. return 0;
  395. }
  396. /* Determine if any context name data matches a rule's watch data */
  397. /* Compare a task_struct with an audit_rule. Return 1 on match, 0
  398. * otherwise.
  399. *
  400. * If task_creation is true, this is an explicit indication that we are
  401. * filtering a task rule at task creation time. This and tsk == current are
  402. * the only situations where tsk->cred may be accessed without an rcu read lock.
  403. */
  404. static int audit_filter_rules(struct task_struct *tsk,
  405. struct audit_krule *rule,
  406. struct audit_context *ctx,
  407. struct audit_names *name,
  408. enum audit_state *state,
  409. bool task_creation)
  410. {
  411. const struct cred *cred;
  412. int i, need_sid = 1;
  413. u32 sid;
  414. cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
  415. for (i = 0; i < rule->field_count; i++) {
  416. struct audit_field *f = &rule->fields[i];
  417. struct audit_names *n;
  418. int result = 0;
  419. pid_t pid;
  420. switch (f->type) {
  421. case AUDIT_PID:
  422. pid = task_tgid_nr(tsk);
  423. result = audit_comparator(pid, f->op, f->val);
  424. break;
  425. case AUDIT_PPID:
  426. if (ctx) {
  427. if (!ctx->ppid)
  428. ctx->ppid = task_ppid_nr(tsk);
  429. result = audit_comparator(ctx->ppid, f->op, f->val);
  430. }
  431. break;
  432. case AUDIT_EXE:
  433. result = audit_exe_compare(tsk, rule->exe);
  434. if (f->op == Audit_not_equal)
  435. result = !result;
  436. break;
  437. case AUDIT_UID:
  438. result = audit_uid_comparator(cred->uid, f->op, f->uid);
  439. break;
  440. case AUDIT_EUID:
  441. result = audit_uid_comparator(cred->euid, f->op, f->uid);
  442. break;
  443. case AUDIT_SUID:
  444. result = audit_uid_comparator(cred->suid, f->op, f->uid);
  445. break;
  446. case AUDIT_FSUID:
  447. result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
  448. break;
  449. case AUDIT_GID:
  450. result = audit_gid_comparator(cred->gid, f->op, f->gid);
  451. if (f->op == Audit_equal) {
  452. if (!result)
  453. result = in_group_p(f->gid);
  454. } else if (f->op == Audit_not_equal) {
  455. if (result)
  456. result = !in_group_p(f->gid);
  457. }
  458. break;
  459. case AUDIT_EGID:
  460. result = audit_gid_comparator(cred->egid, f->op, f->gid);
  461. if (f->op == Audit_equal) {
  462. if (!result)
  463. result = in_egroup_p(f->gid);
  464. } else if (f->op == Audit_not_equal) {
  465. if (result)
  466. result = !in_egroup_p(f->gid);
  467. }
  468. break;
  469. case AUDIT_SGID:
  470. result = audit_gid_comparator(cred->sgid, f->op, f->gid);
  471. break;
  472. case AUDIT_FSGID:
  473. result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
  474. break;
  475. case AUDIT_PERS:
  476. result = audit_comparator(tsk->personality, f->op, f->val);
  477. break;
  478. case AUDIT_ARCH:
  479. if (ctx)
  480. result = audit_comparator(ctx->arch, f->op, f->val);
  481. break;
  482. case AUDIT_EXIT:
  483. if (ctx && ctx->return_valid)
  484. result = audit_comparator(ctx->return_code, f->op, f->val);
  485. break;
  486. case AUDIT_SUCCESS:
  487. if (ctx && ctx->return_valid) {
  488. if (f->val)
  489. result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
  490. else
  491. result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
  492. }
  493. break;
  494. case AUDIT_DEVMAJOR:
  495. if (name) {
  496. if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
  497. audit_comparator(MAJOR(name->rdev), f->op, f->val))
  498. ++result;
  499. } else if (ctx) {
  500. list_for_each_entry(n, &ctx->names_list, list) {
  501. if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
  502. audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
  503. ++result;
  504. break;
  505. }
  506. }
  507. }
  508. break;
  509. case AUDIT_DEVMINOR:
  510. if (name) {
  511. if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
  512. audit_comparator(MINOR(name->rdev), f->op, f->val))
  513. ++result;
  514. } else if (ctx) {
  515. list_for_each_entry(n, &ctx->names_list, list) {
  516. if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
  517. audit_comparator(MINOR(n->rdev), f->op, f->val)) {
  518. ++result;
  519. break;
  520. }
  521. }
  522. }
  523. break;
  524. case AUDIT_INODE:
  525. if (name)
  526. result = audit_comparator(name->ino, f->op, f->val);
  527. else if (ctx) {
  528. list_for_each_entry(n, &ctx->names_list, list) {
  529. if (audit_comparator(n->ino, f->op, f->val)) {
  530. ++result;
  531. break;
  532. }
  533. }
  534. }
  535. break;
  536. case AUDIT_OBJ_UID:
  537. if (name) {
  538. result = audit_uid_comparator(name->uid, f->op, f->uid);
  539. } else if (ctx) {
  540. list_for_each_entry(n, &ctx->names_list, list) {
  541. if (audit_uid_comparator(n->uid, f->op, f->uid)) {
  542. ++result;
  543. break;
  544. }
  545. }
  546. }
  547. break;
  548. case AUDIT_OBJ_GID:
  549. if (name) {
  550. result = audit_gid_comparator(name->gid, f->op, f->gid);
  551. } else if (ctx) {
  552. list_for_each_entry(n, &ctx->names_list, list) {
  553. if (audit_gid_comparator(n->gid, f->op, f->gid)) {
  554. ++result;
  555. break;
  556. }
  557. }
  558. }
  559. break;
  560. case AUDIT_WATCH:
  561. if (name)
  562. result = audit_watch_compare(rule->watch, name->ino, name->dev);
  563. break;
  564. case AUDIT_DIR:
  565. if (ctx)
  566. result = match_tree_refs(ctx, rule->tree);
  567. break;
  568. case AUDIT_LOGINUID:
  569. result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
  570. break;
  571. case AUDIT_LOGINUID_SET:
  572. result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
  573. break;
  574. case AUDIT_SUBJ_USER:
  575. case AUDIT_SUBJ_ROLE:
  576. case AUDIT_SUBJ_TYPE:
  577. case AUDIT_SUBJ_SEN:
  578. case AUDIT_SUBJ_CLR:
  579. /* NOTE: this may return negative values indicating
  580. a temporary error. We simply treat this as a
  581. match for now to avoid losing information that
  582. may be wanted. An error message will also be
  583. logged upon error */
  584. if (f->lsm_rule) {
  585. if (need_sid) {
  586. security_task_getsecid(tsk, &sid);
  587. need_sid = 0;
  588. }
  589. result = security_audit_rule_match(sid, f->type,
  590. f->op,
  591. f->lsm_rule,
  592. ctx);
  593. }
  594. break;
  595. case AUDIT_OBJ_USER:
  596. case AUDIT_OBJ_ROLE:
  597. case AUDIT_OBJ_TYPE:
  598. case AUDIT_OBJ_LEV_LOW:
  599. case AUDIT_OBJ_LEV_HIGH:
  600. /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
  601. also applies here */
  602. if (f->lsm_rule) {
  603. /* Find files that match */
  604. if (name) {
  605. result = security_audit_rule_match(
  606. name->osid, f->type, f->op,
  607. f->lsm_rule, ctx);
  608. } else if (ctx) {
  609. list_for_each_entry(n, &ctx->names_list, list) {
  610. if (security_audit_rule_match(n->osid, f->type,
  611. f->op, f->lsm_rule,
  612. ctx)) {
  613. ++result;
  614. break;
  615. }
  616. }
  617. }
  618. /* Find ipc objects that match */
  619. if (!ctx || ctx->type != AUDIT_IPC)
  620. break;
  621. if (security_audit_rule_match(ctx->ipc.osid,
  622. f->type, f->op,
  623. f->lsm_rule, ctx))
  624. ++result;
  625. }
  626. break;
  627. case AUDIT_ARG0:
  628. case AUDIT_ARG1:
  629. case AUDIT_ARG2:
  630. case AUDIT_ARG3:
  631. if (ctx)
  632. result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
  633. break;
  634. case AUDIT_FILTERKEY:
  635. /* ignore this field for filtering */
  636. result = 1;
  637. break;
  638. case AUDIT_PERM:
  639. result = audit_match_perm(ctx, f->val);
  640. break;
  641. case AUDIT_FILETYPE:
  642. result = audit_match_filetype(ctx, f->val);
  643. break;
  644. case AUDIT_FIELD_COMPARE:
  645. result = audit_field_compare(tsk, cred, f, ctx, name);
  646. break;
  647. }
  648. if (!result)
  649. return 0;
  650. }
  651. if (ctx) {
  652. if (rule->prio <= ctx->prio)
  653. return 0;
  654. if (rule->filterkey) {
  655. kfree(ctx->filterkey);
  656. ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
  657. }
  658. ctx->prio = rule->prio;
  659. }
  660. switch (rule->action) {
  661. case AUDIT_NEVER:
  662. *state = AUDIT_DISABLED;
  663. break;
  664. case AUDIT_ALWAYS:
  665. *state = AUDIT_RECORD_CONTEXT;
  666. break;
  667. }
  668. return 1;
  669. }
  670. /* At process creation time, we can determine if system-call auditing is
  671. * completely disabled for this task. Since we only have the task
  672. * structure at this point, we can only check uid and gid.
  673. */
  674. static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
  675. {
  676. struct audit_entry *e;
  677. enum audit_state state;
  678. rcu_read_lock();
  679. list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
  680. if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
  681. &state, true)) {
  682. if (state == AUDIT_RECORD_CONTEXT)
  683. *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
  684. rcu_read_unlock();
  685. return state;
  686. }
  687. }
  688. rcu_read_unlock();
  689. return AUDIT_BUILD_CONTEXT;
  690. }
  691. static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
  692. {
  693. int word, bit;
  694. if (val > 0xffffffff)
  695. return false;
  696. word = AUDIT_WORD(val);
  697. if (word >= AUDIT_BITMASK_SIZE)
  698. return false;
  699. bit = AUDIT_BIT(val);
  700. return rule->mask[word] & bit;
  701. }
  702. /* At syscall entry and exit time, this filter is called if the
  703. * audit_state is not low enough that auditing cannot take place, but is
  704. * also not high enough that we already know we have to write an audit
  705. * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
  706. */
  707. static enum audit_state audit_filter_syscall(struct task_struct *tsk,
  708. struct audit_context *ctx,
  709. struct list_head *list)
  710. {
  711. struct audit_entry *e;
  712. enum audit_state state;
  713. if (audit_pid && tsk->tgid == audit_pid)
  714. return AUDIT_DISABLED;
  715. rcu_read_lock();
  716. if (!list_empty(list)) {
  717. list_for_each_entry_rcu(e, list, list) {
  718. if (audit_in_mask(&e->rule, ctx->major) &&
  719. audit_filter_rules(tsk, &e->rule, ctx, NULL,
  720. &state, false)) {
  721. rcu_read_unlock();
  722. ctx->current_state = state;
  723. return state;
  724. }
  725. }
  726. }
  727. rcu_read_unlock();
  728. return AUDIT_BUILD_CONTEXT;
  729. }
  730. /*
  731. * Given an audit_name check the inode hash table to see if they match.
  732. * Called holding the rcu read lock to protect the use of audit_inode_hash
  733. */
  734. static int audit_filter_inode_name(struct task_struct *tsk,
  735. struct audit_names *n,
  736. struct audit_context *ctx) {
  737. int h = audit_hash_ino((u32)n->ino);
  738. struct list_head *list = &audit_inode_hash[h];
  739. struct audit_entry *e;
  740. enum audit_state state;
  741. if (list_empty(list))
  742. return 0;
  743. list_for_each_entry_rcu(e, list, list) {
  744. if (audit_in_mask(&e->rule, ctx->major) &&
  745. audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
  746. ctx->current_state = state;
  747. return 1;
  748. }
  749. }
  750. return 0;
  751. }
  752. /* At syscall exit time, this filter is called if any audit_names have been
  753. * collected during syscall processing. We only check rules in sublists at hash
  754. * buckets applicable to the inode numbers in audit_names.
  755. * Regarding audit_state, same rules apply as for audit_filter_syscall().
  756. */
  757. void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
  758. {
  759. struct audit_names *n;
  760. if (audit_pid && tsk->tgid == audit_pid)
  761. return;
  762. rcu_read_lock();
  763. list_for_each_entry(n, &ctx->names_list, list) {
  764. if (audit_filter_inode_name(tsk, n, ctx))
  765. break;
  766. }
  767. rcu_read_unlock();
  768. }
  769. /* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
  770. static inline struct audit_context *audit_take_context(struct task_struct *tsk,
  771. int return_valid,
  772. long return_code)
  773. {
  774. struct audit_context *context = tsk->audit_context;
  775. if (!context)
  776. return NULL;
  777. context->return_valid = return_valid;
  778. /*
  779. * we need to fix up the return code in the audit logs if the actual
  780. * return codes are later going to be fixed up by the arch specific
  781. * signal handlers
  782. *
  783. * This is actually a test for:
  784. * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
  785. * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
  786. *
  787. * but is faster than a bunch of ||
  788. */
  789. if (unlikely(return_code <= -ERESTARTSYS) &&
  790. (return_code >= -ERESTART_RESTARTBLOCK) &&
  791. (return_code != -ENOIOCTLCMD))
  792. context->return_code = -EINTR;
  793. else
  794. context->return_code = return_code;
  795. if (context->in_syscall && !context->dummy) {
  796. audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
  797. audit_filter_inodes(tsk, context);
  798. }
  799. tsk->audit_context = NULL;
  800. return context;
  801. }
  802. static inline void audit_proctitle_free(struct audit_context *context)
  803. {
  804. kfree(context->proctitle.value);
  805. context->proctitle.value = NULL;
  806. context->proctitle.len = 0;
  807. }
  808. static inline void audit_free_names(struct audit_context *context)
  809. {
  810. struct audit_names *n, *next;
  811. list_for_each_entry_safe(n, next, &context->names_list, list) {
  812. list_del(&n->list);
  813. if (n->name)
  814. putname(n->name);
  815. if (n->should_free)
  816. kfree(n);
  817. }
  818. context->name_count = 0;
  819. path_put(&context->pwd);
  820. context->pwd.dentry = NULL;
  821. context->pwd.mnt = NULL;
  822. }
  823. static inline void audit_free_aux(struct audit_context *context)
  824. {
  825. struct audit_aux_data *aux;
  826. while ((aux = context->aux)) {
  827. context->aux = aux->next;
  828. kfree(aux);
  829. }
  830. while ((aux = context->aux_pids)) {
  831. context->aux_pids = aux->next;
  832. kfree(aux);
  833. }
  834. }
  835. static inline struct audit_context *audit_alloc_context(enum audit_state state)
  836. {
  837. struct audit_context *context;
  838. context = kzalloc(sizeof(*context), GFP_KERNEL);
  839. if (!context)
  840. return NULL;
  841. context->state = state;
  842. context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
  843. INIT_LIST_HEAD(&context->killed_trees);
  844. INIT_LIST_HEAD(&context->names_list);
  845. return context;
  846. }
  847. /**
  848. * audit_alloc - allocate an audit context block for a task
  849. * @tsk: task
  850. *
  851. * Filter on the task information and allocate a per-task audit context
  852. * if necessary. Doing so turns on system call auditing for the
  853. * specified task. This is called from copy_process, so no lock is
  854. * needed.
  855. */
  856. int audit_alloc(struct task_struct *tsk)
  857. {
  858. struct audit_context *context;
  859. enum audit_state state;
  860. char *key = NULL;
  861. if (likely(!audit_ever_enabled))
  862. return 0; /* Return if not auditing. */
  863. state = audit_filter_task(tsk, &key);
  864. if (state == AUDIT_DISABLED) {
  865. clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
  866. return 0;
  867. }
  868. if (!(context = audit_alloc_context(state))) {
  869. kfree(key);
  870. audit_log_lost("out of memory in audit_alloc");
  871. return -ENOMEM;
  872. }
  873. context->filterkey = key;
  874. tsk->audit_context = context;
  875. set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
  876. return 0;
  877. }
  878. static inline void audit_free_context(struct audit_context *context)
  879. {
  880. audit_free_names(context);
  881. unroll_tree_refs(context, NULL, 0);
  882. free_tree_refs(context);
  883. audit_free_aux(context);
  884. kfree(context->filterkey);
  885. kfree(context->sockaddr);
  886. audit_proctitle_free(context);
  887. kfree(context);
  888. }
  889. static int audit_log_pid_context(struct audit_context *context, pid_t pid,
  890. kuid_t auid, kuid_t uid, unsigned int sessionid,
  891. u32 sid, char *comm)
  892. {
  893. struct audit_buffer *ab;
  894. char *ctx = NULL;
  895. u32 len;
  896. int rc = 0;
  897. ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
  898. if (!ab)
  899. return rc;
  900. audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
  901. from_kuid(&init_user_ns, auid),
  902. from_kuid(&init_user_ns, uid), sessionid);
  903. if (sid) {
  904. if (security_secid_to_secctx(sid, &ctx, &len)) {
  905. audit_log_format(ab, " obj=(none)");
  906. rc = 1;
  907. } else {
  908. audit_log_format(ab, " obj=%s", ctx);
  909. security_release_secctx(ctx, len);
  910. }
  911. }
  912. audit_log_format(ab, " ocomm=");
  913. audit_log_untrustedstring(ab, comm);
  914. audit_log_end(ab);
  915. return rc;
  916. }
  917. static void audit_log_execve_info(struct audit_context *context,
  918. struct audit_buffer **ab)
  919. {
  920. long len_max;
  921. long len_rem;
  922. long len_full;
  923. long len_buf;
  924. long len_abuf;
  925. long len_tmp;
  926. bool require_data;
  927. bool encode;
  928. unsigned int iter;
  929. unsigned int arg;
  930. char *buf_head;
  931. char *buf;
  932. const char __user *p = (const char __user *)current->mm->arg_start;
  933. /* NOTE: this buffer needs to be large enough to hold all the non-arg
  934. * data we put in the audit record for this argument (see the
  935. * code below) ... at this point in time 96 is plenty */
  936. char abuf[96];
  937. /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
  938. * current value of 7500 is not as important as the fact that it
  939. * is less than 8k, a setting of 7500 gives us plenty of wiggle
  940. * room if we go over a little bit in the logging below */
  941. WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
  942. len_max = MAX_EXECVE_AUDIT_LEN;
  943. /* scratch buffer to hold the userspace args */
  944. buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
  945. if (!buf_head) {
  946. audit_panic("out of memory for argv string");
  947. return;
  948. }
  949. buf = buf_head;
  950. audit_log_format(*ab, "argc=%d", context->execve.argc);
  951. len_rem = len_max;
  952. len_buf = 0;
  953. len_full = 0;
  954. require_data = true;
  955. encode = false;
  956. iter = 0;
  957. arg = 0;
  958. do {
  959. /* NOTE: we don't ever want to trust this value for anything
  960. * serious, but the audit record format insists we
  961. * provide an argument length for really long arguments,
  962. * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
  963. * to use strncpy_from_user() to obtain this value for
  964. * recording in the log, although we don't use it
  965. * anywhere here to avoid a double-fetch problem */
  966. if (len_full == 0)
  967. len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
  968. /* read more data from userspace */
  969. if (require_data) {
  970. /* can we make more room in the buffer? */
  971. if (buf != buf_head) {
  972. memmove(buf_head, buf, len_buf);
  973. buf = buf_head;
  974. }
  975. /* fetch as much as we can of the argument */
  976. len_tmp = strncpy_from_user(&buf_head[len_buf], p,
  977. len_max - len_buf);
  978. if (len_tmp == -EFAULT) {
  979. /* unable to copy from userspace */
  980. send_sig(SIGKILL, current, 0);
  981. goto out;
  982. } else if (len_tmp == (len_max - len_buf)) {
  983. /* buffer is not large enough */
  984. require_data = true;
  985. /* NOTE: if we are going to span multiple
  986. * buffers force the encoding so we stand
  987. * a chance at a sane len_full value and
  988. * consistent record encoding */
  989. encode = true;
  990. len_full = len_full * 2;
  991. p += len_tmp;
  992. } else {
  993. require_data = false;
  994. if (!encode)
  995. encode = audit_string_contains_control(
  996. buf, len_tmp);
  997. /* try to use a trusted value for len_full */
  998. if (len_full < len_max)
  999. len_full = (encode ?
  1000. len_tmp * 2 : len_tmp);
  1001. p += len_tmp + 1;
  1002. }
  1003. len_buf += len_tmp;
  1004. buf_head[len_buf] = '\0';
  1005. /* length of the buffer in the audit record? */
  1006. len_abuf = (encode ? len_buf * 2 : len_buf + 2);
  1007. }
  1008. /* write as much as we can to the audit log */
  1009. if (len_buf > 0) {
  1010. /* NOTE: some magic numbers here - basically if we
  1011. * can't fit a reasonable amount of data into the
  1012. * existing audit buffer, flush it and start with
  1013. * a new buffer */
  1014. if ((sizeof(abuf) + 8) > len_rem) {
  1015. len_rem = len_max;
  1016. audit_log_end(*ab);
  1017. *ab = audit_log_start(context,
  1018. GFP_KERNEL, AUDIT_EXECVE);
  1019. if (!*ab)
  1020. goto out;
  1021. }
  1022. /* create the non-arg portion of the arg record */
  1023. len_tmp = 0;
  1024. if (require_data || (iter > 0) ||
  1025. ((len_abuf + sizeof(abuf)) > len_rem)) {
  1026. if (iter == 0) {
  1027. len_tmp += snprintf(&abuf[len_tmp],
  1028. sizeof(abuf) - len_tmp,
  1029. " a%d_len=%lu",
  1030. arg, len_full);
  1031. }
  1032. len_tmp += snprintf(&abuf[len_tmp],
  1033. sizeof(abuf) - len_tmp,
  1034. " a%d[%d]=", arg, iter++);
  1035. } else
  1036. len_tmp += snprintf(&abuf[len_tmp],
  1037. sizeof(abuf) - len_tmp,
  1038. " a%d=", arg);
  1039. WARN_ON(len_tmp >= sizeof(abuf));
  1040. abuf[sizeof(abuf) - 1] = '\0';
  1041. /* log the arg in the audit record */
  1042. audit_log_format(*ab, "%s", abuf);
  1043. len_rem -= len_tmp;
  1044. len_tmp = len_buf;
  1045. if (encode) {
  1046. if (len_abuf > len_rem)
  1047. len_tmp = len_rem / 2; /* encoding */
  1048. audit_log_n_hex(*ab, buf, len_tmp);
  1049. len_rem -= len_tmp * 2;
  1050. len_abuf -= len_tmp * 2;
  1051. } else {
  1052. if (len_abuf > len_rem)
  1053. len_tmp = len_rem - 2; /* quotes */
  1054. audit_log_n_string(*ab, buf, len_tmp);
  1055. len_rem -= len_tmp + 2;
  1056. /* don't subtract the "2" because we still need
  1057. * to add quotes to the remaining string */
  1058. len_abuf -= len_tmp;
  1059. }
  1060. len_buf -= len_tmp;
  1061. buf += len_tmp;
  1062. }
  1063. /* ready to move to the next argument? */
  1064. if ((len_buf == 0) && !require_data) {
  1065. arg++;
  1066. iter = 0;
  1067. len_full = 0;
  1068. require_data = true;
  1069. encode = false;
  1070. }
  1071. } while (arg < context->execve.argc);
  1072. /* NOTE: the caller handles the final audit_log_end() call */
  1073. out:
  1074. kfree(buf_head);
  1075. }
  1076. static void show_special(struct audit_context *context, int *call_panic)
  1077. {
  1078. struct audit_buffer *ab;
  1079. int i;
  1080. ab = audit_log_start(context, GFP_KERNEL, context->type);
  1081. if (!ab)
  1082. return;
  1083. switch (context->type) {
  1084. case AUDIT_SOCKETCALL: {
  1085. int nargs = context->socketcall.nargs;
  1086. audit_log_format(ab, "nargs=%d", nargs);
  1087. for (i = 0; i < nargs; i++)
  1088. audit_log_format(ab, " a%d=%lx", i,
  1089. context->socketcall.args[i]);
  1090. break; }
  1091. case AUDIT_IPC: {
  1092. u32 osid = context->ipc.osid;
  1093. audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
  1094. from_kuid(&init_user_ns, context->ipc.uid),
  1095. from_kgid(&init_user_ns, context->ipc.gid),
  1096. context->ipc.mode);
  1097. if (osid) {
  1098. char *ctx = NULL;
  1099. u32 len;
  1100. if (security_secid_to_secctx(osid, &ctx, &len)) {
  1101. audit_log_format(ab, " osid=%u", osid);
  1102. *call_panic = 1;
  1103. } else {
  1104. audit_log_format(ab, " obj=%s", ctx);
  1105. security_release_secctx(ctx, len);
  1106. }
  1107. }
  1108. if (context->ipc.has_perm) {
  1109. audit_log_end(ab);
  1110. ab = audit_log_start(context, GFP_KERNEL,
  1111. AUDIT_IPC_SET_PERM);
  1112. if (unlikely(!ab))
  1113. return;
  1114. audit_log_format(ab,
  1115. "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
  1116. context->ipc.qbytes,
  1117. context->ipc.perm_uid,
  1118. context->ipc.perm_gid,
  1119. context->ipc.perm_mode);
  1120. }
  1121. break; }
  1122. case AUDIT_MQ_OPEN: {
  1123. audit_log_format(ab,
  1124. "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
  1125. "mq_msgsize=%ld mq_curmsgs=%ld",
  1126. context->mq_open.oflag, context->mq_open.mode,
  1127. context->mq_open.attr.mq_flags,
  1128. context->mq_open.attr.mq_maxmsg,
  1129. context->mq_open.attr.mq_msgsize,
  1130. context->mq_open.attr.mq_curmsgs);
  1131. break; }
  1132. case AUDIT_MQ_SENDRECV: {
  1133. audit_log_format(ab,
  1134. "mqdes=%d msg_len=%zd msg_prio=%u "
  1135. "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
  1136. context->mq_sendrecv.mqdes,
  1137. context->mq_sendrecv.msg_len,
  1138. context->mq_sendrecv.msg_prio,
  1139. context->mq_sendrecv.abs_timeout.tv_sec,
  1140. context->mq_sendrecv.abs_timeout.tv_nsec);
  1141. break; }
  1142. case AUDIT_MQ_NOTIFY: {
  1143. audit_log_format(ab, "mqdes=%d sigev_signo=%d",
  1144. context->mq_notify.mqdes,
  1145. context->mq_notify.sigev_signo);
  1146. break; }
  1147. case AUDIT_MQ_GETSETATTR: {
  1148. struct mq_attr *attr = &context->mq_getsetattr.mqstat;
  1149. audit_log_format(ab,
  1150. "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
  1151. "mq_curmsgs=%ld ",
  1152. context->mq_getsetattr.mqdes,
  1153. attr->mq_flags, attr->mq_maxmsg,
  1154. attr->mq_msgsize, attr->mq_curmsgs);
  1155. break; }
  1156. case AUDIT_CAPSET: {
  1157. audit_log_format(ab, "pid=%d", context->capset.pid);
  1158. audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
  1159. audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
  1160. audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
  1161. break; }
  1162. case AUDIT_MMAP: {
  1163. audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
  1164. context->mmap.flags);
  1165. break; }
  1166. case AUDIT_EXECVE: {
  1167. audit_log_execve_info(context, &ab);
  1168. break; }
  1169. }
  1170. audit_log_end(ab);
  1171. }
  1172. static inline int audit_proctitle_rtrim(char *proctitle, int len)
  1173. {
  1174. char *end = proctitle + len - 1;
  1175. while (end > proctitle && !isprint(*end))
  1176. end--;
  1177. /* catch the case where proctitle is only 1 non-print character */
  1178. len = end - proctitle + 1;
  1179. len -= isprint(proctitle[len-1]) == 0;
  1180. return len;
  1181. }
  1182. static void audit_log_proctitle(struct task_struct *tsk,
  1183. struct audit_context *context)
  1184. {
  1185. int res;
  1186. char *buf;
  1187. char *msg = "(null)";
  1188. int len = strlen(msg);
  1189. struct audit_buffer *ab;
  1190. ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
  1191. if (!ab)
  1192. return; /* audit_panic or being filtered */
  1193. audit_log_format(ab, "proctitle=");
  1194. /* Not cached */
  1195. if (!context->proctitle.value) {
  1196. buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
  1197. if (!buf)
  1198. goto out;
  1199. /* Historically called this from procfs naming */
  1200. res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
  1201. if (res == 0) {
  1202. kfree(buf);
  1203. goto out;
  1204. }
  1205. res = audit_proctitle_rtrim(buf, res);
  1206. if (res == 0) {
  1207. kfree(buf);
  1208. goto out;
  1209. }
  1210. context->proctitle.value = buf;
  1211. context->proctitle.len = res;
  1212. }
  1213. msg = context->proctitle.value;
  1214. len = context->proctitle.len;
  1215. out:
  1216. audit_log_n_untrustedstring(ab, msg, len);
  1217. audit_log_end(ab);
  1218. }
  1219. static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
  1220. {
  1221. int i, call_panic = 0;
  1222. struct audit_buffer *ab;
  1223. struct audit_aux_data *aux;
  1224. struct audit_names *n;
  1225. /* tsk == current */
  1226. context->personality = tsk->personality;
  1227. ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
  1228. if (!ab)
  1229. return; /* audit_panic has been called */
  1230. audit_log_format(ab, "arch=%x syscall=%d",
  1231. context->arch, context->major);
  1232. if (context->personality != PER_LINUX)
  1233. audit_log_format(ab, " per=%lx", context->personality);
  1234. if (context->return_valid)
  1235. audit_log_format(ab, " success=%s exit=%ld",
  1236. (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
  1237. context->return_code);
  1238. audit_log_format(ab,
  1239. " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
  1240. context->argv[0],
  1241. context->argv[1],
  1242. context->argv[2],
  1243. context->argv[3],
  1244. context->name_count);
  1245. audit_log_task_info(ab, tsk);
  1246. audit_log_key(ab, context->filterkey);
  1247. audit_log_end(ab);
  1248. for (aux = context->aux; aux; aux = aux->next) {
  1249. ab = audit_log_start(context, GFP_KERNEL, aux->type);
  1250. if (!ab)
  1251. continue; /* audit_panic has been called */
  1252. switch (aux->type) {
  1253. case AUDIT_BPRM_FCAPS: {
  1254. struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
  1255. audit_log_format(ab, "fver=%x", axs->fcap_ver);
  1256. audit_log_cap(ab, "fp", &axs->fcap.permitted);
  1257. audit_log_cap(ab, "fi", &axs->fcap.inheritable);
  1258. audit_log_format(ab, " fe=%d", axs->fcap.fE);
  1259. audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
  1260. audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
  1261. audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
  1262. audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
  1263. audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
  1264. audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
  1265. break; }
  1266. }
  1267. audit_log_end(ab);
  1268. }
  1269. if (context->type)
  1270. show_special(context, &call_panic);
  1271. if (context->fds[0] >= 0) {
  1272. ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
  1273. if (ab) {
  1274. audit_log_format(ab, "fd0=%d fd1=%d",
  1275. context->fds[0], context->fds[1]);
  1276. audit_log_end(ab);
  1277. }
  1278. }
  1279. if (context->sockaddr_len) {
  1280. ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
  1281. if (ab) {
  1282. audit_log_format(ab, "saddr=");
  1283. audit_log_n_hex(ab, (void *)context->sockaddr,
  1284. context->sockaddr_len);
  1285. audit_log_end(ab);
  1286. }
  1287. }
  1288. for (aux = context->aux_pids; aux; aux = aux->next) {
  1289. struct audit_aux_data_pids *axs = (void *)aux;
  1290. for (i = 0; i < axs->pid_count; i++)
  1291. if (audit_log_pid_context(context, axs->target_pid[i],
  1292. axs->target_auid[i],
  1293. axs->target_uid[i],
  1294. axs->target_sessionid[i],
  1295. axs->target_sid[i],
  1296. axs->target_comm[i]))
  1297. call_panic = 1;
  1298. }
  1299. if (context->target_pid &&
  1300. audit_log_pid_context(context, context->target_pid,
  1301. context->target_auid, context->target_uid,
  1302. context->target_sessionid,
  1303. context->target_sid, context->target_comm))
  1304. call_panic = 1;
  1305. if (context->pwd.dentry && context->pwd.mnt) {
  1306. ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
  1307. if (ab) {
  1308. audit_log_d_path(ab, "cwd=", &context->pwd);
  1309. audit_log_end(ab);
  1310. }
  1311. }
  1312. i = 0;
  1313. list_for_each_entry(n, &context->names_list, list) {
  1314. if (n->hidden)
  1315. continue;
  1316. audit_log_name(context, n, NULL, i++, &call_panic);
  1317. }
  1318. audit_log_proctitle(tsk, context);
  1319. /* Send end of event record to help user space know we are finished */
  1320. ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
  1321. if (ab)
  1322. audit_log_end(ab);
  1323. if (call_panic)
  1324. audit_panic("error converting sid to string");
  1325. }
  1326. /**
  1327. * audit_free - free a per-task audit context
  1328. * @tsk: task whose audit context block to free
  1329. *
  1330. * Called from copy_process and do_exit
  1331. */
  1332. void __audit_free(struct task_struct *tsk)
  1333. {
  1334. struct audit_context *context;
  1335. context = audit_take_context(tsk, 0, 0);
  1336. if (!context)
  1337. return;
  1338. /* Check for system calls that do not go through the exit
  1339. * function (e.g., exit_group), then free context block.
  1340. * We use GFP_ATOMIC here because we might be doing this
  1341. * in the context of the idle thread */
  1342. /* that can happen only if we are called from do_exit() */
  1343. if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
  1344. audit_log_exit(context, tsk);
  1345. if (!list_empty(&context->killed_trees))
  1346. audit_kill_trees(&context->killed_trees);
  1347. audit_free_context(context);
  1348. }
  1349. /**
  1350. * audit_syscall_entry - fill in an audit record at syscall entry
  1351. * @major: major syscall type (function)
  1352. * @a1: additional syscall register 1
  1353. * @a2: additional syscall register 2
  1354. * @a3: additional syscall register 3
  1355. * @a4: additional syscall register 4
  1356. *
  1357. * Fill in audit context at syscall entry. This only happens if the
  1358. * audit context was created when the task was created and the state or
  1359. * filters demand the audit context be built. If the state from the
  1360. * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
  1361. * then the record will be written at syscall exit time (otherwise, it
  1362. * will only be written if another part of the kernel requests that it
  1363. * be written).
  1364. */
  1365. void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
  1366. unsigned long a3, unsigned long a4)
  1367. {
  1368. struct task_struct *tsk = current;
  1369. struct audit_context *context = tsk->audit_context;
  1370. enum audit_state state;
  1371. if (!context)
  1372. return;
  1373. BUG_ON(context->in_syscall || context->name_count);
  1374. if (!audit_enabled)
  1375. return;
  1376. context->arch = syscall_get_arch();
  1377. context->major = major;
  1378. context->argv[0] = a1;
  1379. context->argv[1] = a2;
  1380. context->argv[2] = a3;
  1381. context->argv[3] = a4;
  1382. state = context->state;
  1383. context->dummy = !audit_n_rules;
  1384. if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
  1385. context->prio = 0;
  1386. state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
  1387. }
  1388. if (state == AUDIT_DISABLED)
  1389. return;
  1390. context->serial = 0;
  1391. context->ctime = CURRENT_TIME;
  1392. context->in_syscall = 1;
  1393. context->current_state = state;
  1394. context->ppid = 0;
  1395. }
  1396. /**
  1397. * audit_syscall_exit - deallocate audit context after a system call
  1398. * @success: success value of the syscall
  1399. * @return_code: return value of the syscall
  1400. *
  1401. * Tear down after system call. If the audit context has been marked as
  1402. * auditable (either because of the AUDIT_RECORD_CONTEXT state from
  1403. * filtering, or because some other part of the kernel wrote an audit
  1404. * message), then write out the syscall information. In call cases,
  1405. * free the names stored from getname().
  1406. */
  1407. void __audit_syscall_exit(int success, long return_code)
  1408. {
  1409. struct task_struct *tsk = current;
  1410. struct audit_context *context;
  1411. if (success)
  1412. success = AUDITSC_SUCCESS;
  1413. else
  1414. success = AUDITSC_FAILURE;
  1415. context = audit_take_context(tsk, success, return_code);
  1416. if (!context)
  1417. return;
  1418. if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
  1419. audit_log_exit(context, tsk);
  1420. context->in_syscall = 0;
  1421. context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
  1422. if (!list_empty(&context->killed_trees))
  1423. audit_kill_trees(&context->killed_trees);
  1424. audit_free_names(context);
  1425. unroll_tree_refs(context, NULL, 0);
  1426. audit_free_aux(context);
  1427. context->aux = NULL;
  1428. context->aux_pids = NULL;
  1429. context->target_pid = 0;
  1430. context->target_sid = 0;
  1431. context->sockaddr_len = 0;
  1432. context->type = 0;
  1433. context->fds[0] = -1;
  1434. if (context->state != AUDIT_RECORD_CONTEXT) {
  1435. kfree(context->filterkey);
  1436. context->filterkey = NULL;
  1437. }
  1438. tsk->audit_context = context;
  1439. }
  1440. static inline void handle_one(const struct inode *inode)
  1441. {
  1442. #ifdef CONFIG_AUDIT_TREE
  1443. struct audit_context *context;
  1444. struct audit_tree_refs *p;
  1445. struct audit_chunk *chunk;
  1446. int count;
  1447. if (likely(hlist_empty(&inode->i_fsnotify_marks)))
  1448. return;
  1449. context = current->audit_context;
  1450. p = context->trees;
  1451. count = context->tree_count;
  1452. rcu_read_lock();
  1453. chunk = audit_tree_lookup(inode);
  1454. rcu_read_unlock();
  1455. if (!chunk)
  1456. return;
  1457. if (likely(put_tree_ref(context, chunk)))
  1458. return;
  1459. if (unlikely(!grow_tree_refs(context))) {
  1460. pr_warn("out of memory, audit has lost a tree reference\n");
  1461. audit_set_auditable(context);
  1462. audit_put_chunk(chunk);
  1463. unroll_tree_refs(context, p, count);
  1464. return;
  1465. }
  1466. put_tree_ref(context, chunk);
  1467. #endif
  1468. }
  1469. static void handle_path(const struct dentry *dentry)
  1470. {
  1471. #ifdef CONFIG_AUDIT_TREE
  1472. struct audit_context *context;
  1473. struct audit_tree_refs *p;
  1474. const struct dentry *d, *parent;
  1475. struct audit_chunk *drop;
  1476. unsigned long seq;
  1477. int count;
  1478. context = current->audit_context;
  1479. p = context->trees;
  1480. count = context->tree_count;
  1481. retry:
  1482. drop = NULL;
  1483. d = dentry;
  1484. rcu_read_lock();
  1485. seq = read_seqbegin(&rename_lock);
  1486. for(;;) {
  1487. struct inode *inode = d_backing_inode(d);
  1488. if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
  1489. struct audit_chunk *chunk;
  1490. chunk = audit_tree_lookup(inode);
  1491. if (chunk) {
  1492. if (unlikely(!put_tree_ref(context, chunk))) {
  1493. drop = chunk;
  1494. break;
  1495. }
  1496. }
  1497. }
  1498. parent = d->d_parent;
  1499. if (parent == d)
  1500. break;
  1501. d = parent;
  1502. }
  1503. if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
  1504. rcu_read_unlock();
  1505. if (!drop) {
  1506. /* just a race with rename */
  1507. unroll_tree_refs(context, p, count);
  1508. goto retry;
  1509. }
  1510. audit_put_chunk(drop);
  1511. if (grow_tree_refs(context)) {
  1512. /* OK, got more space */
  1513. unroll_tree_refs(context, p, count);
  1514. goto retry;
  1515. }
  1516. /* too bad */
  1517. pr_warn("out of memory, audit has lost a tree reference\n");
  1518. unroll_tree_refs(context, p, count);
  1519. audit_set_auditable(context);
  1520. return;
  1521. }
  1522. rcu_read_unlock();
  1523. #endif
  1524. }
  1525. static struct audit_names *audit_alloc_name(struct audit_context *context,
  1526. unsigned char type)
  1527. {
  1528. struct audit_names *aname;
  1529. if (context->name_count < AUDIT_NAMES) {
  1530. aname = &context->preallocated_names[context->name_count];
  1531. memset(aname, 0, sizeof(*aname));
  1532. } else {
  1533. aname = kzalloc(sizeof(*aname), GFP_NOFS);
  1534. if (!aname)
  1535. return NULL;
  1536. aname->should_free = true;
  1537. }
  1538. aname->ino = AUDIT_INO_UNSET;
  1539. aname->type = type;
  1540. list_add_tail(&aname->list, &context->names_list);
  1541. context->name_count++;
  1542. return aname;
  1543. }
  1544. /**
  1545. * audit_reusename - fill out filename with info from existing entry
  1546. * @uptr: userland ptr to pathname
  1547. *
  1548. * Search the audit_names list for the current audit context. If there is an
  1549. * existing entry with a matching "uptr" then return the filename
  1550. * associated with that audit_name. If not, return NULL.
  1551. */
  1552. struct filename *
  1553. __audit_reusename(const __user char *uptr)
  1554. {
  1555. struct audit_context *context = current->audit_context;
  1556. struct audit_names *n;
  1557. list_for_each_entry(n, &context->names_list, list) {
  1558. if (!n->name)
  1559. continue;
  1560. if (n->name->uptr == uptr) {
  1561. n->name->refcnt++;
  1562. return n->name;
  1563. }
  1564. }
  1565. return NULL;
  1566. }
  1567. /**
  1568. * audit_getname - add a name to the list
  1569. * @name: name to add
  1570. *
  1571. * Add a name to the list of audit names for this context.
  1572. * Called from fs/namei.c:getname().
  1573. */
  1574. void __audit_getname(struct filename *name)
  1575. {
  1576. struct audit_context *context = current->audit_context;
  1577. struct audit_names *n;
  1578. if (!context->in_syscall)
  1579. return;
  1580. n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
  1581. if (!n)
  1582. return;
  1583. n->name = name;
  1584. n->name_len = AUDIT_NAME_FULL;
  1585. name->aname = n;
  1586. name->refcnt++;
  1587. if (!context->pwd.dentry)
  1588. get_fs_pwd(current->fs, &context->pwd);
  1589. }
  1590. /**
  1591. * __audit_inode - store the inode and device from a lookup
  1592. * @name: name being audited
  1593. * @dentry: dentry being audited
  1594. * @flags: attributes for this particular entry
  1595. */
  1596. void __audit_inode(struct filename *name, const struct dentry *dentry,
  1597. unsigned int flags)
  1598. {
  1599. struct audit_context *context = current->audit_context;
  1600. struct inode *inode = d_backing_inode(dentry);
  1601. struct audit_names *n;
  1602. bool parent = flags & AUDIT_INODE_PARENT;
  1603. if (!context->in_syscall)
  1604. return;
  1605. if (!name)
  1606. goto out_alloc;
  1607. /*
  1608. * If we have a pointer to an audit_names entry already, then we can
  1609. * just use it directly if the type is correct.
  1610. */
  1611. n = name->aname;
  1612. if (n) {
  1613. if (parent) {
  1614. if (n->type == AUDIT_TYPE_PARENT ||
  1615. n->type == AUDIT_TYPE_UNKNOWN)
  1616. goto out;
  1617. } else {
  1618. if (n->type != AUDIT_TYPE_PARENT)
  1619. goto out;
  1620. }
  1621. }
  1622. list_for_each_entry_reverse(n, &context->names_list, list) {
  1623. if (n->ino) {
  1624. /* valid inode number, use that for the comparison */
  1625. if (n->ino != inode->i_ino ||
  1626. n->dev != inode->i_sb->s_dev)
  1627. continue;
  1628. } else if (n->name) {
  1629. /* inode number has not been set, check the name */
  1630. if (strcmp(n->name->name, name->name))
  1631. continue;
  1632. } else
  1633. /* no inode and no name (?!) ... this is odd ... */
  1634. continue;
  1635. /* match the correct record type */
  1636. if (parent) {
  1637. if (n->type == AUDIT_TYPE_PARENT ||
  1638. n->type == AUDIT_TYPE_UNKNOWN)
  1639. goto out;
  1640. } else {
  1641. if (n->type != AUDIT_TYPE_PARENT)
  1642. goto out;
  1643. }
  1644. }
  1645. out_alloc:
  1646. /* unable to find an entry with both a matching name and type */
  1647. n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
  1648. if (!n)
  1649. return;
  1650. if (name) {
  1651. n->name = name;
  1652. name->refcnt++;
  1653. }
  1654. out:
  1655. if (parent) {
  1656. n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
  1657. n->type = AUDIT_TYPE_PARENT;
  1658. if (flags & AUDIT_INODE_HIDDEN)
  1659. n->hidden = true;
  1660. } else {
  1661. n->name_len = AUDIT_NAME_FULL;
  1662. n->type = AUDIT_TYPE_NORMAL;
  1663. }
  1664. handle_path(dentry);
  1665. audit_copy_inode(n, dentry, inode);
  1666. }
  1667. void __audit_file(const struct file *file)
  1668. {
  1669. __audit_inode(NULL, file->f_path.dentry, 0);
  1670. }
  1671. /**
  1672. * __audit_inode_child - collect inode info for created/removed objects
  1673. * @parent: inode of dentry parent
  1674. * @dentry: dentry being audited
  1675. * @type: AUDIT_TYPE_* value that we're looking for
  1676. *
  1677. * For syscalls that create or remove filesystem objects, audit_inode
  1678. * can only collect information for the filesystem object's parent.
  1679. * This call updates the audit context with the child's information.
  1680. * Syscalls that create a new filesystem object must be hooked after
  1681. * the object is created. Syscalls that remove a filesystem object
  1682. * must be hooked prior, in order to capture the target inode during
  1683. * unsuccessful attempts.
  1684. */
  1685. void __audit_inode_child(struct inode *parent,
  1686. const struct dentry *dentry,
  1687. const unsigned char type)
  1688. {
  1689. struct audit_context *context = current->audit_context;
  1690. struct inode *inode = d_backing_inode(dentry);
  1691. const char *dname = dentry->d_name.name;
  1692. struct audit_names *n, *found_parent = NULL, *found_child = NULL;
  1693. if (!context->in_syscall)
  1694. return;
  1695. if (inode)
  1696. handle_one(inode);
  1697. /* look for a parent entry first */
  1698. list_for_each_entry(n, &context->names_list, list) {
  1699. if (!n->name ||
  1700. (n->type != AUDIT_TYPE_PARENT &&
  1701. n->type != AUDIT_TYPE_UNKNOWN))
  1702. continue;
  1703. if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
  1704. !audit_compare_dname_path(dname,
  1705. n->name->name, n->name_len)) {
  1706. if (n->type == AUDIT_TYPE_UNKNOWN)
  1707. n->type = AUDIT_TYPE_PARENT;
  1708. found_parent = n;
  1709. break;
  1710. }
  1711. }
  1712. /* is there a matching child entry? */
  1713. list_for_each_entry(n, &context->names_list, list) {
  1714. /* can only match entries that have a name */
  1715. if (!n->name ||
  1716. (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
  1717. continue;
  1718. if (!strcmp(dname, n->name->name) ||
  1719. !audit_compare_dname_path(dname, n->name->name,
  1720. found_parent ?
  1721. found_parent->name_len :
  1722. AUDIT_NAME_FULL)) {
  1723. if (n->type == AUDIT_TYPE_UNKNOWN)
  1724. n->type = type;
  1725. found_child = n;
  1726. break;
  1727. }
  1728. }
  1729. if (!found_parent) {
  1730. /* create a new, "anonymous" parent record */
  1731. n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
  1732. if (!n)
  1733. return;
  1734. audit_copy_inode(n, NULL, parent);
  1735. }
  1736. if (!found_child) {
  1737. found_child = audit_alloc_name(context, type);
  1738. if (!found_child)
  1739. return;
  1740. /* Re-use the name belonging to the slot for a matching parent
  1741. * directory. All names for this context are relinquished in
  1742. * audit_free_names() */
  1743. if (found_parent) {
  1744. found_child->name = found_parent->name;
  1745. found_child->name_len = AUDIT_NAME_FULL;
  1746. found_child->name->refcnt++;
  1747. }
  1748. }
  1749. if (inode)
  1750. audit_copy_inode(found_child, dentry, inode);
  1751. else
  1752. found_child->ino = AUDIT_INO_UNSET;
  1753. }
  1754. EXPORT_SYMBOL_GPL(__audit_inode_child);
  1755. /**
  1756. * auditsc_get_stamp - get local copies of audit_context values
  1757. * @ctx: audit_context for the task
  1758. * @t: timespec to store time recorded in the audit_context
  1759. * @serial: serial value that is recorded in the audit_context
  1760. *
  1761. * Also sets the context as auditable.
  1762. */
  1763. int auditsc_get_stamp(struct audit_context *ctx,
  1764. struct timespec *t, unsigned int *serial)
  1765. {
  1766. if (!ctx->in_syscall)
  1767. return 0;
  1768. if (!ctx->serial)
  1769. ctx->serial = audit_serial();
  1770. t->tv_sec = ctx->ctime.tv_sec;
  1771. t->tv_nsec = ctx->ctime.tv_nsec;
  1772. *serial = ctx->serial;
  1773. if (!ctx->prio) {
  1774. ctx->prio = 1;
  1775. ctx->current_state = AUDIT_RECORD_CONTEXT;
  1776. }
  1777. return 1;
  1778. }
  1779. /* global counter which is incremented every time something logs in */
  1780. static atomic_t session_id = ATOMIC_INIT(0);
  1781. static int audit_set_loginuid_perm(kuid_t loginuid)
  1782. {
  1783. /* if we are unset, we don't need privs */
  1784. if (!audit_loginuid_set(current))
  1785. return 0;
  1786. /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
  1787. if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
  1788. return -EPERM;
  1789. /* it is set, you need permission */
  1790. if (!capable(CAP_AUDIT_CONTROL))
  1791. return -EPERM;
  1792. /* reject if this is not an unset and we don't allow that */
  1793. if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
  1794. return -EPERM;
  1795. return 0;
  1796. }
  1797. static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
  1798. unsigned int oldsessionid, unsigned int sessionid,
  1799. int rc)
  1800. {
  1801. struct audit_buffer *ab;
  1802. uid_t uid, oldloginuid, loginuid;
  1803. struct tty_struct *tty;
  1804. if (!audit_enabled)
  1805. return;
  1806. ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
  1807. if (!ab)
  1808. return;
  1809. uid = from_kuid(&init_user_ns, task_uid(current));
  1810. oldloginuid = from_kuid(&init_user_ns, koldloginuid);
  1811. loginuid = from_kuid(&init_user_ns, kloginuid),
  1812. tty = audit_get_tty(current);
  1813. audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
  1814. audit_log_task_context(ab);
  1815. audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
  1816. oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
  1817. oldsessionid, sessionid, !rc);
  1818. audit_put_tty(tty);
  1819. audit_log_end(ab);
  1820. }
  1821. /**
  1822. * audit_set_loginuid - set current task's audit_context loginuid
  1823. * @loginuid: loginuid value
  1824. *
  1825. * Returns 0.
  1826. *
  1827. * Called (set) from fs/proc/base.c::proc_loginuid_write().
  1828. */
  1829. int audit_set_loginuid(kuid_t loginuid)
  1830. {
  1831. struct task_struct *task = current;
  1832. unsigned int oldsessionid, sessionid = (unsigned int)-1;
  1833. kuid_t oldloginuid;
  1834. int rc;
  1835. oldloginuid = audit_get_loginuid(current);
  1836. oldsessionid = audit_get_sessionid(current);
  1837. rc = audit_set_loginuid_perm(loginuid);
  1838. if (rc)
  1839. goto out;
  1840. /* are we setting or clearing? */
  1841. if (uid_valid(loginuid))
  1842. sessionid = (unsigned int)atomic_inc_return(&session_id);
  1843. task->sessionid = sessionid;
  1844. task->loginuid = loginuid;
  1845. out:
  1846. audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
  1847. return rc;
  1848. }
  1849. /**
  1850. * __audit_mq_open - record audit data for a POSIX MQ open
  1851. * @oflag: open flag
  1852. * @mode: mode bits
  1853. * @attr: queue attributes
  1854. *
  1855. */
  1856. void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
  1857. {
  1858. struct audit_context *context = current->audit_context;
  1859. if (attr)
  1860. memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
  1861. else
  1862. memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
  1863. context->mq_open.oflag = oflag;
  1864. context->mq_open.mode = mode;
  1865. context->type = AUDIT_MQ_OPEN;
  1866. }
  1867. /**
  1868. * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
  1869. * @mqdes: MQ descriptor
  1870. * @msg_len: Message length
  1871. * @msg_prio: Message priority
  1872. * @abs_timeout: Message timeout in absolute time
  1873. *
  1874. */
  1875. void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
  1876. const struct timespec *abs_timeout)
  1877. {
  1878. struct audit_context *context = current->audit_context;
  1879. struct timespec *p = &context->mq_sendrecv.abs_timeout;
  1880. if (abs_timeout)
  1881. memcpy(p, abs_timeout, sizeof(struct timespec));
  1882. else
  1883. memset(p, 0, sizeof(struct timespec));
  1884. context->mq_sendrecv.mqdes = mqdes;
  1885. context->mq_sendrecv.msg_len = msg_len;
  1886. context->mq_sendrecv.msg_prio = msg_prio;
  1887. context->type = AUDIT_MQ_SENDRECV;
  1888. }
  1889. /**
  1890. * __audit_mq_notify - record audit data for a POSIX MQ notify
  1891. * @mqdes: MQ descriptor
  1892. * @notification: Notification event
  1893. *
  1894. */
  1895. void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
  1896. {
  1897. struct audit_context *context = current->audit_context;
  1898. if (notification)
  1899. context->mq_notify.sigev_signo = notification->sigev_signo;
  1900. else
  1901. context->mq_notify.sigev_signo = 0;
  1902. context->mq_notify.mqdes = mqdes;
  1903. context->type = AUDIT_MQ_NOTIFY;
  1904. }
  1905. /**
  1906. * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
  1907. * @mqdes: MQ descriptor
  1908. * @mqstat: MQ flags
  1909. *
  1910. */
  1911. void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
  1912. {
  1913. struct audit_context *context = current->audit_context;
  1914. context->mq_getsetattr.mqdes = mqdes;
  1915. context->mq_getsetattr.mqstat = *mqstat;
  1916. context->type = AUDIT_MQ_GETSETATTR;
  1917. }
  1918. /**
  1919. * audit_ipc_obj - record audit data for ipc object
  1920. * @ipcp: ipc permissions
  1921. *
  1922. */
  1923. void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
  1924. {
  1925. struct audit_context *context = current->audit_context;
  1926. context->ipc.uid = ipcp->uid;
  1927. context->ipc.gid = ipcp->gid;
  1928. context->ipc.mode = ipcp->mode;
  1929. context->ipc.has_perm = 0;
  1930. security_ipc_getsecid(ipcp, &context->ipc.osid);
  1931. context->type = AUDIT_IPC;
  1932. }
  1933. /**
  1934. * audit_ipc_set_perm - record audit data for new ipc permissions
  1935. * @qbytes: msgq bytes
  1936. * @uid: msgq user id
  1937. * @gid: msgq group id
  1938. * @mode: msgq mode (permissions)
  1939. *
  1940. * Called only after audit_ipc_obj().
  1941. */
  1942. void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
  1943. {
  1944. struct audit_context *context = current->audit_context;
  1945. context->ipc.qbytes = qbytes;
  1946. context->ipc.perm_uid = uid;
  1947. context->ipc.perm_gid = gid;
  1948. context->ipc.perm_mode = mode;
  1949. context->ipc.has_perm = 1;
  1950. }
  1951. void __audit_bprm(struct linux_binprm *bprm)
  1952. {
  1953. struct audit_context *context = current->audit_context;
  1954. context->type = AUDIT_EXECVE;
  1955. context->execve.argc = bprm->argc;
  1956. }
  1957. /**
  1958. * audit_socketcall - record audit data for sys_socketcall
  1959. * @nargs: number of args, which should not be more than AUDITSC_ARGS.
  1960. * @args: args array
  1961. *
  1962. */
  1963. int __audit_socketcall(int nargs, unsigned long *args)
  1964. {
  1965. struct audit_context *context = current->audit_context;
  1966. if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
  1967. return -EINVAL;
  1968. context->type = AUDIT_SOCKETCALL;
  1969. context->socketcall.nargs = nargs;
  1970. memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
  1971. return 0;
  1972. }
  1973. /**
  1974. * __audit_fd_pair - record audit data for pipe and socketpair
  1975. * @fd1: the first file descriptor
  1976. * @fd2: the second file descriptor
  1977. *
  1978. */
  1979. void __audit_fd_pair(int fd1, int fd2)
  1980. {
  1981. struct audit_context *context = current->audit_context;
  1982. context->fds[0] = fd1;
  1983. context->fds[1] = fd2;
  1984. }
  1985. /**
  1986. * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
  1987. * @len: data length in user space
  1988. * @a: data address in kernel space
  1989. *
  1990. * Returns 0 for success or NULL context or < 0 on error.
  1991. */
  1992. int __audit_sockaddr(int len, void *a)
  1993. {
  1994. struct audit_context *context = current->audit_context;
  1995. if (!context->sockaddr) {
  1996. void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
  1997. if (!p)
  1998. return -ENOMEM;
  1999. context->sockaddr = p;
  2000. }
  2001. context->sockaddr_len = len;
  2002. memcpy(context->sockaddr, a, len);
  2003. return 0;
  2004. }
  2005. void __audit_ptrace(struct task_struct *t)
  2006. {
  2007. struct audit_context *context = current->audit_context;
  2008. context->target_pid = task_tgid_nr(t);
  2009. context->target_auid = audit_get_loginuid(t);
  2010. context->target_uid = task_uid(t);
  2011. context->target_sessionid = audit_get_sessionid(t);
  2012. security_task_getsecid(t, &context->target_sid);
  2013. memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
  2014. }
  2015. /**
  2016. * audit_signal_info - record signal info for shutting down audit subsystem
  2017. * @sig: signal value
  2018. * @t: task being signaled
  2019. *
  2020. * If the audit subsystem is being terminated, record the task (pid)
  2021. * and uid that is doing that.
  2022. */
  2023. int __audit_signal_info(int sig, struct task_struct *t)
  2024. {
  2025. struct audit_aux_data_pids *axp;
  2026. struct task_struct *tsk = current;
  2027. struct audit_context *ctx = tsk->audit_context;
  2028. kuid_t uid = current_uid(), t_uid = task_uid(t);
  2029. if (audit_pid && t->tgid == audit_pid) {
  2030. if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
  2031. audit_sig_pid = task_tgid_nr(tsk);
  2032. if (uid_valid(tsk->loginuid))
  2033. audit_sig_uid = tsk->loginuid;
  2034. else
  2035. audit_sig_uid = uid;
  2036. security_task_getsecid(tsk, &audit_sig_sid);
  2037. }
  2038. if (!audit_signals || audit_dummy_context())
  2039. return 0;
  2040. }
  2041. /* optimize the common case by putting first signal recipient directly
  2042. * in audit_context */
  2043. if (!ctx->target_pid) {
  2044. ctx->target_pid = task_tgid_nr(t);
  2045. ctx->target_auid = audit_get_loginuid(t);
  2046. ctx->target_uid = t_uid;
  2047. ctx->target_sessionid = audit_get_sessionid(t);
  2048. security_task_getsecid(t, &ctx->target_sid);
  2049. memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
  2050. return 0;
  2051. }
  2052. axp = (void *)ctx->aux_pids;
  2053. if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
  2054. axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
  2055. if (!axp)
  2056. return -ENOMEM;
  2057. axp->d.type = AUDIT_OBJ_PID;
  2058. axp->d.next = ctx->aux_pids;
  2059. ctx->aux_pids = (void *)axp;
  2060. }
  2061. BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
  2062. axp->target_pid[axp->pid_count] = task_tgid_nr(t);
  2063. axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
  2064. axp->target_uid[axp->pid_count] = t_uid;
  2065. axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
  2066. security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
  2067. memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
  2068. axp->pid_count++;
  2069. return 0;
  2070. }
  2071. /**
  2072. * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
  2073. * @bprm: pointer to the bprm being processed
  2074. * @new: the proposed new credentials
  2075. * @old: the old credentials
  2076. *
  2077. * Simply check if the proc already has the caps given by the file and if not
  2078. * store the priv escalation info for later auditing at the end of the syscall
  2079. *
  2080. * -Eric
  2081. */
  2082. int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
  2083. const struct cred *new, const struct cred *old)
  2084. {
  2085. struct audit_aux_data_bprm_fcaps *ax;
  2086. struct audit_context *context = current->audit_context;
  2087. struct cpu_vfs_cap_data vcaps;
  2088. ax = kmalloc(sizeof(*ax), GFP_KERNEL);
  2089. if (!ax)
  2090. return -ENOMEM;
  2091. ax->d.type = AUDIT_BPRM_FCAPS;
  2092. ax->d.next = context->aux;
  2093. context->aux = (void *)ax;
  2094. get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
  2095. ax->fcap.permitted = vcaps.permitted;
  2096. ax->fcap.inheritable = vcaps.inheritable;
  2097. ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
  2098. ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
  2099. ax->old_pcap.permitted = old->cap_permitted;
  2100. ax->old_pcap.inheritable = old->cap_inheritable;
  2101. ax->old_pcap.effective = old->cap_effective;
  2102. ax->new_pcap.permitted = new->cap_permitted;
  2103. ax->new_pcap.inheritable = new->cap_inheritable;
  2104. ax->new_pcap.effective = new->cap_effective;
  2105. return 0;
  2106. }
  2107. /**
  2108. * __audit_log_capset - store information about the arguments to the capset syscall
  2109. * @new: the new credentials
  2110. * @old: the old (current) credentials
  2111. *
  2112. * Record the arguments userspace sent to sys_capset for later printing by the
  2113. * audit system if applicable
  2114. */
  2115. void __audit_log_capset(const struct cred *new, const struct cred *old)
  2116. {
  2117. struct audit_context *context = current->audit_context;
  2118. context->capset.pid = task_tgid_nr(current);
  2119. context->capset.cap.effective = new->cap_effective;
  2120. context->capset.cap.inheritable = new->cap_effective;
  2121. context->capset.cap.permitted = new->cap_permitted;
  2122. context->type = AUDIT_CAPSET;
  2123. }
  2124. void __audit_mmap_fd(int fd, int flags)
  2125. {
  2126. struct audit_context *context = current->audit_context;
  2127. context->mmap.fd = fd;
  2128. context->mmap.flags = flags;
  2129. context->type = AUDIT_MMAP;
  2130. }
  2131. static void audit_log_task(struct audit_buffer *ab)
  2132. {
  2133. kuid_t auid, uid;
  2134. kgid_t gid;
  2135. unsigned int sessionid;
  2136. char comm[sizeof(current->comm)];
  2137. auid = audit_get_loginuid(current);
  2138. sessionid = audit_get_sessionid(current);
  2139. current_uid_gid(&uid, &gid);
  2140. audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
  2141. from_kuid(&init_user_ns, auid),
  2142. from_kuid(&init_user_ns, uid),
  2143. from_kgid(&init_user_ns, gid),
  2144. sessionid);
  2145. audit_log_task_context(ab);
  2146. audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
  2147. audit_log_untrustedstring(ab, get_task_comm(comm, current));
  2148. audit_log_d_path_exe(ab, current->mm);
  2149. }
  2150. /**
  2151. * audit_core_dumps - record information about processes that end abnormally
  2152. * @signr: signal value
  2153. *
  2154. * If a process ends with a core dump, something fishy is going on and we
  2155. * should record the event for investigation.
  2156. */
  2157. void audit_core_dumps(long signr)
  2158. {
  2159. struct audit_buffer *ab;
  2160. if (!audit_enabled)
  2161. return;
  2162. if (signr == SIGQUIT) /* don't care for those */
  2163. return;
  2164. ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
  2165. if (unlikely(!ab))
  2166. return;
  2167. audit_log_task(ab);
  2168. audit_log_format(ab, " sig=%ld", signr);
  2169. audit_log_end(ab);
  2170. }
  2171. void __audit_seccomp(unsigned long syscall, long signr, int code)
  2172. {
  2173. struct audit_buffer *ab;
  2174. ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
  2175. if (unlikely(!ab))
  2176. return;
  2177. audit_log_task(ab);
  2178. audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
  2179. signr, syscall_get_arch(), syscall,
  2180. in_compat_syscall(), KSTK_EIP(current), code);
  2181. audit_log_end(ab);
  2182. }
  2183. struct list_head *audit_killed_trees(void)
  2184. {
  2185. struct audit_context *ctx = current->audit_context;
  2186. if (likely(!ctx || !ctx->in_syscall))
  2187. return NULL;
  2188. return &ctx->killed_trees;
  2189. }