urb.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968
  1. #include <linux/module.h>
  2. #include <linux/string.h>
  3. #include <linux/bitops.h>
  4. #include <linux/slab.h>
  5. #include <linux/log2.h>
  6. #include <linux/usb.h>
  7. #include <linux/wait.h>
  8. #include <linux/usb/hcd.h>
  9. #include <linux/scatterlist.h>
  10. #define to_urb(d) container_of(d, struct urb, kref)
  11. static void urb_destroy(struct kref *kref)
  12. {
  13. struct urb *urb = to_urb(kref);
  14. if (urb->transfer_flags & URB_FREE_BUFFER)
  15. kfree(urb->transfer_buffer);
  16. kfree(urb);
  17. }
  18. /**
  19. * usb_init_urb - initializes a urb so that it can be used by a USB driver
  20. * @urb: pointer to the urb to initialize
  21. *
  22. * Initializes a urb so that the USB subsystem can use it properly.
  23. *
  24. * If a urb is created with a call to usb_alloc_urb() it is not
  25. * necessary to call this function. Only use this if you allocate the
  26. * space for a struct urb on your own. If you call this function, be
  27. * careful when freeing the memory for your urb that it is no longer in
  28. * use by the USB core.
  29. *
  30. * Only use this function if you _really_ understand what you are doing.
  31. */
  32. void usb_init_urb(struct urb *urb)
  33. {
  34. if (urb) {
  35. memset(urb, 0, sizeof(*urb));
  36. kref_init(&urb->kref);
  37. INIT_LIST_HEAD(&urb->anchor_list);
  38. }
  39. }
  40. EXPORT_SYMBOL_GPL(usb_init_urb);
  41. /**
  42. * usb_alloc_urb - creates a new urb for a USB driver to use
  43. * @iso_packets: number of iso packets for this urb
  44. * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
  45. * valid options for this.
  46. *
  47. * Creates an urb for the USB driver to use, initializes a few internal
  48. * structures, increments the usage counter, and returns a pointer to it.
  49. *
  50. * If the driver want to use this urb for interrupt, control, or bulk
  51. * endpoints, pass '0' as the number of iso packets.
  52. *
  53. * The driver must call usb_free_urb() when it is finished with the urb.
  54. *
  55. * Return: A pointer to the new urb, or %NULL if no memory is available.
  56. */
  57. struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
  58. {
  59. struct urb *urb;
  60. urb = kmalloc(sizeof(struct urb) +
  61. iso_packets * sizeof(struct usb_iso_packet_descriptor),
  62. mem_flags);
  63. if (!urb)
  64. return NULL;
  65. usb_init_urb(urb);
  66. return urb;
  67. }
  68. EXPORT_SYMBOL_GPL(usb_alloc_urb);
  69. /**
  70. * usb_free_urb - frees the memory used by a urb when all users of it are finished
  71. * @urb: pointer to the urb to free, may be NULL
  72. *
  73. * Must be called when a user of a urb is finished with it. When the last user
  74. * of the urb calls this function, the memory of the urb is freed.
  75. *
  76. * Note: The transfer buffer associated with the urb is not freed unless the
  77. * URB_FREE_BUFFER transfer flag is set.
  78. */
  79. void usb_free_urb(struct urb *urb)
  80. {
  81. if (urb)
  82. kref_put(&urb->kref, urb_destroy);
  83. }
  84. EXPORT_SYMBOL_GPL(usb_free_urb);
  85. /**
  86. * usb_get_urb - increments the reference count of the urb
  87. * @urb: pointer to the urb to modify, may be NULL
  88. *
  89. * This must be called whenever a urb is transferred from a device driver to a
  90. * host controller driver. This allows proper reference counting to happen
  91. * for urbs.
  92. *
  93. * Return: A pointer to the urb with the incremented reference counter.
  94. */
  95. struct urb *usb_get_urb(struct urb *urb)
  96. {
  97. if (urb)
  98. kref_get(&urb->kref);
  99. return urb;
  100. }
  101. EXPORT_SYMBOL_GPL(usb_get_urb);
  102. /**
  103. * usb_anchor_urb - anchors an URB while it is processed
  104. * @urb: pointer to the urb to anchor
  105. * @anchor: pointer to the anchor
  106. *
  107. * This can be called to have access to URBs which are to be executed
  108. * without bothering to track them
  109. */
  110. void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor)
  111. {
  112. unsigned long flags;
  113. spin_lock_irqsave(&anchor->lock, flags);
  114. usb_get_urb(urb);
  115. list_add_tail(&urb->anchor_list, &anchor->urb_list);
  116. urb->anchor = anchor;
  117. if (unlikely(anchor->poisoned))
  118. atomic_inc(&urb->reject);
  119. spin_unlock_irqrestore(&anchor->lock, flags);
  120. }
  121. EXPORT_SYMBOL_GPL(usb_anchor_urb);
  122. static int usb_anchor_check_wakeup(struct usb_anchor *anchor)
  123. {
  124. return atomic_read(&anchor->suspend_wakeups) == 0 &&
  125. list_empty(&anchor->urb_list);
  126. }
  127. /* Callers must hold anchor->lock */
  128. static void __usb_unanchor_urb(struct urb *urb, struct usb_anchor *anchor)
  129. {
  130. urb->anchor = NULL;
  131. list_del(&urb->anchor_list);
  132. usb_put_urb(urb);
  133. if (usb_anchor_check_wakeup(anchor))
  134. wake_up(&anchor->wait);
  135. }
  136. /**
  137. * usb_unanchor_urb - unanchors an URB
  138. * @urb: pointer to the urb to anchor
  139. *
  140. * Call this to stop the system keeping track of this URB
  141. */
  142. void usb_unanchor_urb(struct urb *urb)
  143. {
  144. unsigned long flags;
  145. struct usb_anchor *anchor;
  146. if (!urb)
  147. return;
  148. anchor = urb->anchor;
  149. if (!anchor)
  150. return;
  151. spin_lock_irqsave(&anchor->lock, flags);
  152. /*
  153. * At this point, we could be competing with another thread which
  154. * has the same intention. To protect the urb from being unanchored
  155. * twice, only the winner of the race gets the job.
  156. */
  157. if (likely(anchor == urb->anchor))
  158. __usb_unanchor_urb(urb, anchor);
  159. spin_unlock_irqrestore(&anchor->lock, flags);
  160. }
  161. EXPORT_SYMBOL_GPL(usb_unanchor_urb);
  162. /*-------------------------------------------------------------------*/
  163. /**
  164. * usb_submit_urb - issue an asynchronous transfer request for an endpoint
  165. * @urb: pointer to the urb describing the request
  166. * @mem_flags: the type of memory to allocate, see kmalloc() for a list
  167. * of valid options for this.
  168. *
  169. * This submits a transfer request, and transfers control of the URB
  170. * describing that request to the USB subsystem. Request completion will
  171. * be indicated later, asynchronously, by calling the completion handler.
  172. * The three types of completion are success, error, and unlink
  173. * (a software-induced fault, also called "request cancellation").
  174. *
  175. * URBs may be submitted in interrupt context.
  176. *
  177. * The caller must have correctly initialized the URB before submitting
  178. * it. Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
  179. * available to ensure that most fields are correctly initialized, for
  180. * the particular kind of transfer, although they will not initialize
  181. * any transfer flags.
  182. *
  183. * If the submission is successful, the complete() callback from the URB
  184. * will be called exactly once, when the USB core and Host Controller Driver
  185. * (HCD) are finished with the URB. When the completion function is called,
  186. * control of the URB is returned to the device driver which issued the
  187. * request. The completion handler may then immediately free or reuse that
  188. * URB.
  189. *
  190. * With few exceptions, USB device drivers should never access URB fields
  191. * provided by usbcore or the HCD until its complete() is called.
  192. * The exceptions relate to periodic transfer scheduling. For both
  193. * interrupt and isochronous urbs, as part of successful URB submission
  194. * urb->interval is modified to reflect the actual transfer period used
  195. * (normally some power of two units). And for isochronous urbs,
  196. * urb->start_frame is modified to reflect when the URB's transfers were
  197. * scheduled to start.
  198. *
  199. * Not all isochronous transfer scheduling policies will work, but most
  200. * host controller drivers should easily handle ISO queues going from now
  201. * until 10-200 msec into the future. Drivers should try to keep at
  202. * least one or two msec of data in the queue; many controllers require
  203. * that new transfers start at least 1 msec in the future when they are
  204. * added. If the driver is unable to keep up and the queue empties out,
  205. * the behavior for new submissions is governed by the URB_ISO_ASAP flag.
  206. * If the flag is set, or if the queue is idle, then the URB is always
  207. * assigned to the first available (and not yet expired) slot in the
  208. * endpoint's schedule. If the flag is not set and the queue is active
  209. * then the URB is always assigned to the next slot in the schedule
  210. * following the end of the endpoint's previous URB, even if that slot is
  211. * in the past. When a packet is assigned in this way to a slot that has
  212. * already expired, the packet is not transmitted and the corresponding
  213. * usb_iso_packet_descriptor's status field will return -EXDEV. If this
  214. * would happen to all the packets in the URB, submission fails with a
  215. * -EXDEV error code.
  216. *
  217. * For control endpoints, the synchronous usb_control_msg() call is
  218. * often used (in non-interrupt context) instead of this call.
  219. * That is often used through convenience wrappers, for the requests
  220. * that are standardized in the USB 2.0 specification. For bulk
  221. * endpoints, a synchronous usb_bulk_msg() call is available.
  222. *
  223. * Return:
  224. * 0 on successful submissions. A negative error number otherwise.
  225. *
  226. * Request Queuing:
  227. *
  228. * URBs may be submitted to endpoints before previous ones complete, to
  229. * minimize the impact of interrupt latencies and system overhead on data
  230. * throughput. With that queuing policy, an endpoint's queue would never
  231. * be empty. This is required for continuous isochronous data streams,
  232. * and may also be required for some kinds of interrupt transfers. Such
  233. * queuing also maximizes bandwidth utilization by letting USB controllers
  234. * start work on later requests before driver software has finished the
  235. * completion processing for earlier (successful) requests.
  236. *
  237. * As of Linux 2.6, all USB endpoint transfer queues support depths greater
  238. * than one. This was previously a HCD-specific behavior, except for ISO
  239. * transfers. Non-isochronous endpoint queues are inactive during cleanup
  240. * after faults (transfer errors or cancellation).
  241. *
  242. * Reserved Bandwidth Transfers:
  243. *
  244. * Periodic transfers (interrupt or isochronous) are performed repeatedly,
  245. * using the interval specified in the urb. Submitting the first urb to
  246. * the endpoint reserves the bandwidth necessary to make those transfers.
  247. * If the USB subsystem can't allocate sufficient bandwidth to perform
  248. * the periodic request, submitting such a periodic request should fail.
  249. *
  250. * For devices under xHCI, the bandwidth is reserved at configuration time, or
  251. * when the alt setting is selected. If there is not enough bus bandwidth, the
  252. * configuration/alt setting request will fail. Therefore, submissions to
  253. * periodic endpoints on devices under xHCI should never fail due to bandwidth
  254. * constraints.
  255. *
  256. * Device drivers must explicitly request that repetition, by ensuring that
  257. * some URB is always on the endpoint's queue (except possibly for short
  258. * periods during completion callbacks). When there is no longer an urb
  259. * queued, the endpoint's bandwidth reservation is canceled. This means
  260. * drivers can use their completion handlers to ensure they keep bandwidth
  261. * they need, by reinitializing and resubmitting the just-completed urb
  262. * until the driver longer needs that periodic bandwidth.
  263. *
  264. * Memory Flags:
  265. *
  266. * The general rules for how to decide which mem_flags to use
  267. * are the same as for kmalloc. There are four
  268. * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
  269. * GFP_ATOMIC.
  270. *
  271. * GFP_NOFS is not ever used, as it has not been implemented yet.
  272. *
  273. * GFP_ATOMIC is used when
  274. * (a) you are inside a completion handler, an interrupt, bottom half,
  275. * tasklet or timer, or
  276. * (b) you are holding a spinlock or rwlock (does not apply to
  277. * semaphores), or
  278. * (c) current->state != TASK_RUNNING, this is the case only after
  279. * you've changed it.
  280. *
  281. * GFP_NOIO is used in the block io path and error handling of storage
  282. * devices.
  283. *
  284. * All other situations use GFP_KERNEL.
  285. *
  286. * Some more specific rules for mem_flags can be inferred, such as
  287. * (1) start_xmit, timeout, and receive methods of network drivers must
  288. * use GFP_ATOMIC (they are called with a spinlock held);
  289. * (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
  290. * called with a spinlock held);
  291. * (3) If you use a kernel thread with a network driver you must use
  292. * GFP_NOIO, unless (b) or (c) apply;
  293. * (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
  294. * apply or your are in a storage driver's block io path;
  295. * (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
  296. * (6) changing firmware on a running storage or net device uses
  297. * GFP_NOIO, unless b) or c) apply
  298. *
  299. */
  300. int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
  301. {
  302. static int pipetypes[4] = {
  303. PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
  304. };
  305. int xfertype, max;
  306. struct usb_device *dev;
  307. struct usb_host_endpoint *ep;
  308. int is_out;
  309. unsigned int allowed;
  310. if (!urb || !urb->complete)
  311. return -EINVAL;
  312. if (urb->hcpriv) {
  313. WARN_ONCE(1, "URB %pK submitted while active\n", urb);
  314. return -EBUSY;
  315. }
  316. dev = urb->dev;
  317. if ((!dev) || (dev->state < USB_STATE_UNAUTHENTICATED))
  318. return -ENODEV;
  319. /* For now, get the endpoint from the pipe. Eventually drivers
  320. * will be required to set urb->ep directly and we will eliminate
  321. * urb->pipe.
  322. */
  323. ep = usb_pipe_endpoint(dev, urb->pipe);
  324. if (!ep)
  325. return -ENOENT;
  326. urb->ep = ep;
  327. urb->status = -EINPROGRESS;
  328. urb->actual_length = 0;
  329. /* Lots of sanity checks, so HCDs can rely on clean data
  330. * and don't need to duplicate tests
  331. */
  332. xfertype = usb_endpoint_type(&ep->desc);
  333. if (xfertype == USB_ENDPOINT_XFER_CONTROL) {
  334. struct usb_ctrlrequest *setup =
  335. (struct usb_ctrlrequest *) urb->setup_packet;
  336. if (!setup)
  337. return -ENOEXEC;
  338. is_out = !(setup->bRequestType & USB_DIR_IN) ||
  339. !setup->wLength;
  340. } else {
  341. is_out = usb_endpoint_dir_out(&ep->desc);
  342. }
  343. /* Clear the internal flags and cache the direction for later use */
  344. urb->transfer_flags &= ~(URB_DIR_MASK | URB_DMA_MAP_SINGLE |
  345. URB_DMA_MAP_PAGE | URB_DMA_MAP_SG | URB_MAP_LOCAL |
  346. URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL |
  347. URB_DMA_SG_COMBINED);
  348. urb->transfer_flags |= (is_out ? URB_DIR_OUT : URB_DIR_IN);
  349. if (xfertype != USB_ENDPOINT_XFER_CONTROL &&
  350. dev->state < USB_STATE_CONFIGURED)
  351. return -ENODEV;
  352. max = usb_endpoint_maxp(&ep->desc);
  353. if (max <= 0) {
  354. dev_dbg(&dev->dev,
  355. "bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
  356. usb_endpoint_num(&ep->desc), is_out ? "out" : "in",
  357. __func__, max);
  358. return -EMSGSIZE;
  359. }
  360. /* periodic transfers limit size per frame/uframe,
  361. * but drivers only control those sizes for ISO.
  362. * while we're checking, initialize return status.
  363. */
  364. if (xfertype == USB_ENDPOINT_XFER_ISOC) {
  365. int n, len;
  366. /* SuperSpeed isoc endpoints have up to 16 bursts of up to
  367. * 3 packets each
  368. */
  369. if (dev->speed >= USB_SPEED_SUPER) {
  370. int burst = 1 + ep->ss_ep_comp.bMaxBurst;
  371. int mult = USB_SS_MULT(ep->ss_ep_comp.bmAttributes);
  372. max *= burst;
  373. max *= mult;
  374. }
  375. /* "high bandwidth" mode, 1-3 packets/uframe? */
  376. if (dev->speed == USB_SPEED_HIGH) {
  377. int mult = 1 + ((max >> 11) & 0x03);
  378. max &= 0x07ff;
  379. max *= mult;
  380. }
  381. if (urb->number_of_packets <= 0)
  382. return -EINVAL;
  383. for (n = 0; n < urb->number_of_packets; n++) {
  384. len = urb->iso_frame_desc[n].length;
  385. if (len < 0 || len > max)
  386. return -EMSGSIZE;
  387. urb->iso_frame_desc[n].status = -EXDEV;
  388. urb->iso_frame_desc[n].actual_length = 0;
  389. }
  390. } else if (urb->num_sgs && !urb->dev->bus->no_sg_constraint &&
  391. dev->speed != USB_SPEED_WIRELESS) {
  392. struct scatterlist *sg;
  393. int i;
  394. for_each_sg(urb->sg, sg, urb->num_sgs - 1, i)
  395. if (sg->length % max)
  396. return -EINVAL;
  397. }
  398. /* the I/O buffer must be mapped/unmapped, except when length=0 */
  399. if (urb->transfer_buffer_length > INT_MAX)
  400. return -EMSGSIZE;
  401. /*
  402. * stuff that drivers shouldn't do, but which shouldn't
  403. * cause problems in HCDs if they get it wrong.
  404. */
  405. /* Check that the pipe's type matches the endpoint's type */
  406. if (usb_pipetype(urb->pipe) != pipetypes[xfertype])
  407. dev_WARN(&dev->dev, "BOGUS urb xfer, pipe %x != type %x\n",
  408. usb_pipetype(urb->pipe), pipetypes[xfertype]);
  409. /* Check against a simple/standard policy */
  410. allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT | URB_DIR_MASK |
  411. URB_FREE_BUFFER);
  412. switch (xfertype) {
  413. case USB_ENDPOINT_XFER_BULK:
  414. case USB_ENDPOINT_XFER_INT:
  415. if (is_out)
  416. allowed |= URB_ZERO_PACKET;
  417. /* FALLTHROUGH */
  418. case USB_ENDPOINT_XFER_CONTROL:
  419. allowed |= URB_NO_FSBR; /* only affects UHCI */
  420. /* FALLTHROUGH */
  421. default: /* all non-iso endpoints */
  422. if (!is_out)
  423. allowed |= URB_SHORT_NOT_OK;
  424. break;
  425. case USB_ENDPOINT_XFER_ISOC:
  426. allowed |= URB_ISO_ASAP;
  427. break;
  428. }
  429. allowed &= urb->transfer_flags;
  430. /* warn if submitter gave bogus flags */
  431. if (allowed != urb->transfer_flags)
  432. dev_WARN(&dev->dev, "BOGUS urb flags, %x --> %x\n",
  433. urb->transfer_flags, allowed);
  434. /*
  435. * Force periodic transfer intervals to be legal values that are
  436. * a power of two (so HCDs don't need to).
  437. *
  438. * FIXME want bus->{intr,iso}_sched_horizon values here. Each HC
  439. * supports different values... this uses EHCI/UHCI defaults (and
  440. * EHCI can use smaller non-default values).
  441. */
  442. switch (xfertype) {
  443. case USB_ENDPOINT_XFER_ISOC:
  444. case USB_ENDPOINT_XFER_INT:
  445. /* too small? */
  446. switch (dev->speed) {
  447. case USB_SPEED_WIRELESS:
  448. if ((urb->interval < 6)
  449. && (xfertype == USB_ENDPOINT_XFER_INT))
  450. return -EINVAL;
  451. default:
  452. if (urb->interval <= 0)
  453. return -EINVAL;
  454. break;
  455. }
  456. /* too big? */
  457. switch (dev->speed) {
  458. case USB_SPEED_SUPER_PLUS:
  459. case USB_SPEED_SUPER: /* units are 125us */
  460. /* Handle up to 2^(16-1) microframes */
  461. if (urb->interval > (1 << 15))
  462. return -EINVAL;
  463. max = 1 << 15;
  464. break;
  465. case USB_SPEED_WIRELESS:
  466. if (urb->interval > 16)
  467. return -EINVAL;
  468. break;
  469. case USB_SPEED_HIGH: /* units are microframes */
  470. /* NOTE usb handles 2^15 */
  471. if (urb->interval > (1024 * 8))
  472. urb->interval = 1024 * 8;
  473. max = 1024 * 8;
  474. break;
  475. case USB_SPEED_FULL: /* units are frames/msec */
  476. case USB_SPEED_LOW:
  477. if (xfertype == USB_ENDPOINT_XFER_INT) {
  478. if (urb->interval > 255)
  479. return -EINVAL;
  480. /* NOTE ohci only handles up to 32 */
  481. max = 128;
  482. } else {
  483. if (urb->interval > 1024)
  484. urb->interval = 1024;
  485. /* NOTE usb and ohci handle up to 2^15 */
  486. max = 1024;
  487. }
  488. break;
  489. default:
  490. return -EINVAL;
  491. }
  492. if (dev->speed != USB_SPEED_WIRELESS) {
  493. /* Round down to a power of 2, no more than max */
  494. urb->interval = min(max, 1 << ilog2(urb->interval));
  495. }
  496. }
  497. return usb_hcd_submit_urb(urb, mem_flags);
  498. }
  499. EXPORT_SYMBOL_GPL(usb_submit_urb);
  500. /*-------------------------------------------------------------------*/
  501. /**
  502. * usb_unlink_urb - abort/cancel a transfer request for an endpoint
  503. * @urb: pointer to urb describing a previously submitted request,
  504. * may be NULL
  505. *
  506. * This routine cancels an in-progress request. URBs complete only once
  507. * per submission, and may be canceled only once per submission.
  508. * Successful cancellation means termination of @urb will be expedited
  509. * and the completion handler will be called with a status code
  510. * indicating that the request has been canceled (rather than any other
  511. * code).
  512. *
  513. * Drivers should not call this routine or related routines, such as
  514. * usb_kill_urb() or usb_unlink_anchored_urbs(), after their disconnect
  515. * method has returned. The disconnect function should synchronize with
  516. * a driver's I/O routines to insure that all URB-related activity has
  517. * completed before it returns.
  518. *
  519. * This request is asynchronous, however the HCD might call the ->complete()
  520. * callback during unlink. Therefore when drivers call usb_unlink_urb(), they
  521. * must not hold any locks that may be taken by the completion function.
  522. * Success is indicated by returning -EINPROGRESS, at which time the URB will
  523. * probably not yet have been given back to the device driver. When it is
  524. * eventually called, the completion function will see @urb->status ==
  525. * -ECONNRESET.
  526. * Failure is indicated by usb_unlink_urb() returning any other value.
  527. * Unlinking will fail when @urb is not currently "linked" (i.e., it was
  528. * never submitted, or it was unlinked before, or the hardware is already
  529. * finished with it), even if the completion handler has not yet run.
  530. *
  531. * The URB must not be deallocated while this routine is running. In
  532. * particular, when a driver calls this routine, it must insure that the
  533. * completion handler cannot deallocate the URB.
  534. *
  535. * Return: -EINPROGRESS on success. See description for other values on
  536. * failure.
  537. *
  538. * Unlinking and Endpoint Queues:
  539. *
  540. * [The behaviors and guarantees described below do not apply to virtual
  541. * root hubs but only to endpoint queues for physical USB devices.]
  542. *
  543. * Host Controller Drivers (HCDs) place all the URBs for a particular
  544. * endpoint in a queue. Normally the queue advances as the controller
  545. * hardware processes each request. But when an URB terminates with an
  546. * error its queue generally stops (see below), at least until that URB's
  547. * completion routine returns. It is guaranteed that a stopped queue
  548. * will not restart until all its unlinked URBs have been fully retired,
  549. * with their completion routines run, even if that's not until some time
  550. * after the original completion handler returns. The same behavior and
  551. * guarantee apply when an URB terminates because it was unlinked.
  552. *
  553. * Bulk and interrupt endpoint queues are guaranteed to stop whenever an
  554. * URB terminates with any sort of error, including -ECONNRESET, -ENOENT,
  555. * and -EREMOTEIO. Control endpoint queues behave the same way except
  556. * that they are not guaranteed to stop for -EREMOTEIO errors. Queues
  557. * for isochronous endpoints are treated differently, because they must
  558. * advance at fixed rates. Such queues do not stop when an URB
  559. * encounters an error or is unlinked. An unlinked isochronous URB may
  560. * leave a gap in the stream of packets; it is undefined whether such
  561. * gaps can be filled in.
  562. *
  563. * Note that early termination of an URB because a short packet was
  564. * received will generate a -EREMOTEIO error if and only if the
  565. * URB_SHORT_NOT_OK flag is set. By setting this flag, USB device
  566. * drivers can build deep queues for large or complex bulk transfers
  567. * and clean them up reliably after any sort of aborted transfer by
  568. * unlinking all pending URBs at the first fault.
  569. *
  570. * When a control URB terminates with an error other than -EREMOTEIO, it
  571. * is quite likely that the status stage of the transfer will not take
  572. * place.
  573. */
  574. int usb_unlink_urb(struct urb *urb)
  575. {
  576. if (!urb)
  577. return -EINVAL;
  578. if (!urb->dev)
  579. return -ENODEV;
  580. if (!urb->ep)
  581. return -EIDRM;
  582. return usb_hcd_unlink_urb(urb, -ECONNRESET);
  583. }
  584. EXPORT_SYMBOL_GPL(usb_unlink_urb);
  585. /**
  586. * usb_kill_urb - cancel a transfer request and wait for it to finish
  587. * @urb: pointer to URB describing a previously submitted request,
  588. * may be NULL
  589. *
  590. * This routine cancels an in-progress request. It is guaranteed that
  591. * upon return all completion handlers will have finished and the URB
  592. * will be totally idle and available for reuse. These features make
  593. * this an ideal way to stop I/O in a disconnect() callback or close()
  594. * function. If the request has not already finished or been unlinked
  595. * the completion handler will see urb->status == -ENOENT.
  596. *
  597. * While the routine is running, attempts to resubmit the URB will fail
  598. * with error -EPERM. Thus even if the URB's completion handler always
  599. * tries to resubmit, it will not succeed and the URB will become idle.
  600. *
  601. * The URB must not be deallocated while this routine is running. In
  602. * particular, when a driver calls this routine, it must insure that the
  603. * completion handler cannot deallocate the URB.
  604. *
  605. * This routine may not be used in an interrupt context (such as a bottom
  606. * half or a completion handler), or when holding a spinlock, or in other
  607. * situations where the caller can't schedule().
  608. *
  609. * This routine should not be called by a driver after its disconnect
  610. * method has returned.
  611. */
  612. void usb_kill_urb(struct urb *urb)
  613. {
  614. might_sleep();
  615. if (!(urb && urb->dev && urb->ep))
  616. return;
  617. atomic_inc(&urb->reject);
  618. usb_hcd_unlink_urb(urb, -ENOENT);
  619. wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
  620. atomic_dec(&urb->reject);
  621. }
  622. EXPORT_SYMBOL_GPL(usb_kill_urb);
  623. /**
  624. * usb_poison_urb - reliably kill a transfer and prevent further use of an URB
  625. * @urb: pointer to URB describing a previously submitted request,
  626. * may be NULL
  627. *
  628. * This routine cancels an in-progress request. It is guaranteed that
  629. * upon return all completion handlers will have finished and the URB
  630. * will be totally idle and cannot be reused. These features make
  631. * this an ideal way to stop I/O in a disconnect() callback.
  632. * If the request has not already finished or been unlinked
  633. * the completion handler will see urb->status == -ENOENT.
  634. *
  635. * After and while the routine runs, attempts to resubmit the URB will fail
  636. * with error -EPERM. Thus even if the URB's completion handler always
  637. * tries to resubmit, it will not succeed and the URB will become idle.
  638. *
  639. * The URB must not be deallocated while this routine is running. In
  640. * particular, when a driver calls this routine, it must insure that the
  641. * completion handler cannot deallocate the URB.
  642. *
  643. * This routine may not be used in an interrupt context (such as a bottom
  644. * half or a completion handler), or when holding a spinlock, or in other
  645. * situations where the caller can't schedule().
  646. *
  647. * This routine should not be called by a driver after its disconnect
  648. * method has returned.
  649. */
  650. void usb_poison_urb(struct urb *urb)
  651. {
  652. might_sleep();
  653. if (!urb)
  654. return;
  655. atomic_inc(&urb->reject);
  656. if (!urb->dev || !urb->ep)
  657. return;
  658. usb_hcd_unlink_urb(urb, -ENOENT);
  659. wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
  660. }
  661. EXPORT_SYMBOL_GPL(usb_poison_urb);
  662. void usb_unpoison_urb(struct urb *urb)
  663. {
  664. if (!urb)
  665. return;
  666. atomic_dec(&urb->reject);
  667. }
  668. EXPORT_SYMBOL_GPL(usb_unpoison_urb);
  669. /**
  670. * usb_block_urb - reliably prevent further use of an URB
  671. * @urb: pointer to URB to be blocked, may be NULL
  672. *
  673. * After the routine has run, attempts to resubmit the URB will fail
  674. * with error -EPERM. Thus even if the URB's completion handler always
  675. * tries to resubmit, it will not succeed and the URB will become idle.
  676. *
  677. * The URB must not be deallocated while this routine is running. In
  678. * particular, when a driver calls this routine, it must insure that the
  679. * completion handler cannot deallocate the URB.
  680. */
  681. void usb_block_urb(struct urb *urb)
  682. {
  683. if (!urb)
  684. return;
  685. atomic_inc(&urb->reject);
  686. }
  687. EXPORT_SYMBOL_GPL(usb_block_urb);
  688. /**
  689. * usb_kill_anchored_urbs - cancel transfer requests en masse
  690. * @anchor: anchor the requests are bound to
  691. *
  692. * this allows all outstanding URBs to be killed starting
  693. * from the back of the queue
  694. *
  695. * This routine should not be called by a driver after its disconnect
  696. * method has returned.
  697. */
  698. void usb_kill_anchored_urbs(struct usb_anchor *anchor)
  699. {
  700. struct urb *victim;
  701. spin_lock_irq(&anchor->lock);
  702. while (!list_empty(&anchor->urb_list)) {
  703. victim = list_entry(anchor->urb_list.prev, struct urb,
  704. anchor_list);
  705. /* we must make sure the URB isn't freed before we kill it*/
  706. usb_get_urb(victim);
  707. spin_unlock_irq(&anchor->lock);
  708. /* this will unanchor the URB */
  709. usb_kill_urb(victim);
  710. usb_put_urb(victim);
  711. spin_lock_irq(&anchor->lock);
  712. }
  713. spin_unlock_irq(&anchor->lock);
  714. }
  715. EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs);
  716. /**
  717. * usb_poison_anchored_urbs - cease all traffic from an anchor
  718. * @anchor: anchor the requests are bound to
  719. *
  720. * this allows all outstanding URBs to be poisoned starting
  721. * from the back of the queue. Newly added URBs will also be
  722. * poisoned
  723. *
  724. * This routine should not be called by a driver after its disconnect
  725. * method has returned.
  726. */
  727. void usb_poison_anchored_urbs(struct usb_anchor *anchor)
  728. {
  729. struct urb *victim;
  730. spin_lock_irq(&anchor->lock);
  731. anchor->poisoned = 1;
  732. while (!list_empty(&anchor->urb_list)) {
  733. victim = list_entry(anchor->urb_list.prev, struct urb,
  734. anchor_list);
  735. /* we must make sure the URB isn't freed before we kill it*/
  736. usb_get_urb(victim);
  737. spin_unlock_irq(&anchor->lock);
  738. /* this will unanchor the URB */
  739. usb_poison_urb(victim);
  740. usb_put_urb(victim);
  741. spin_lock_irq(&anchor->lock);
  742. }
  743. spin_unlock_irq(&anchor->lock);
  744. }
  745. EXPORT_SYMBOL_GPL(usb_poison_anchored_urbs);
  746. /**
  747. * usb_unpoison_anchored_urbs - let an anchor be used successfully again
  748. * @anchor: anchor the requests are bound to
  749. *
  750. * Reverses the effect of usb_poison_anchored_urbs
  751. * the anchor can be used normally after it returns
  752. */
  753. void usb_unpoison_anchored_urbs(struct usb_anchor *anchor)
  754. {
  755. unsigned long flags;
  756. struct urb *lazarus;
  757. spin_lock_irqsave(&anchor->lock, flags);
  758. list_for_each_entry(lazarus, &anchor->urb_list, anchor_list) {
  759. usb_unpoison_urb(lazarus);
  760. }
  761. anchor->poisoned = 0;
  762. spin_unlock_irqrestore(&anchor->lock, flags);
  763. }
  764. EXPORT_SYMBOL_GPL(usb_unpoison_anchored_urbs);
  765. /**
  766. * usb_unlink_anchored_urbs - asynchronously cancel transfer requests en masse
  767. * @anchor: anchor the requests are bound to
  768. *
  769. * this allows all outstanding URBs to be unlinked starting
  770. * from the back of the queue. This function is asynchronous.
  771. * The unlinking is just triggered. It may happen after this
  772. * function has returned.
  773. *
  774. * This routine should not be called by a driver after its disconnect
  775. * method has returned.
  776. */
  777. void usb_unlink_anchored_urbs(struct usb_anchor *anchor)
  778. {
  779. struct urb *victim;
  780. while ((victim = usb_get_from_anchor(anchor)) != NULL) {
  781. usb_unlink_urb(victim);
  782. usb_put_urb(victim);
  783. }
  784. }
  785. EXPORT_SYMBOL_GPL(usb_unlink_anchored_urbs);
  786. /**
  787. * usb_anchor_suspend_wakeups
  788. * @anchor: the anchor you want to suspend wakeups on
  789. *
  790. * Call this to stop the last urb being unanchored from waking up any
  791. * usb_wait_anchor_empty_timeout waiters. This is used in the hcd urb give-
  792. * back path to delay waking up until after the completion handler has run.
  793. */
  794. void usb_anchor_suspend_wakeups(struct usb_anchor *anchor)
  795. {
  796. if (anchor)
  797. atomic_inc(&anchor->suspend_wakeups);
  798. }
  799. EXPORT_SYMBOL_GPL(usb_anchor_suspend_wakeups);
  800. /**
  801. * usb_anchor_resume_wakeups
  802. * @anchor: the anchor you want to resume wakeups on
  803. *
  804. * Allow usb_wait_anchor_empty_timeout waiters to be woken up again, and
  805. * wake up any current waiters if the anchor is empty.
  806. */
  807. void usb_anchor_resume_wakeups(struct usb_anchor *anchor)
  808. {
  809. if (!anchor)
  810. return;
  811. atomic_dec(&anchor->suspend_wakeups);
  812. if (usb_anchor_check_wakeup(anchor))
  813. wake_up(&anchor->wait);
  814. }
  815. EXPORT_SYMBOL_GPL(usb_anchor_resume_wakeups);
  816. /**
  817. * usb_wait_anchor_empty_timeout - wait for an anchor to be unused
  818. * @anchor: the anchor you want to become unused
  819. * @timeout: how long you are willing to wait in milliseconds
  820. *
  821. * Call this is you want to be sure all an anchor's
  822. * URBs have finished
  823. *
  824. * Return: Non-zero if the anchor became unused. Zero on timeout.
  825. */
  826. int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
  827. unsigned int timeout)
  828. {
  829. return wait_event_timeout(anchor->wait,
  830. usb_anchor_check_wakeup(anchor),
  831. msecs_to_jiffies(timeout));
  832. }
  833. EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout);
  834. /**
  835. * usb_get_from_anchor - get an anchor's oldest urb
  836. * @anchor: the anchor whose urb you want
  837. *
  838. * This will take the oldest urb from an anchor,
  839. * unanchor and return it
  840. *
  841. * Return: The oldest urb from @anchor, or %NULL if @anchor has no
  842. * urbs associated with it.
  843. */
  844. struct urb *usb_get_from_anchor(struct usb_anchor *anchor)
  845. {
  846. struct urb *victim;
  847. unsigned long flags;
  848. spin_lock_irqsave(&anchor->lock, flags);
  849. if (!list_empty(&anchor->urb_list)) {
  850. victim = list_entry(anchor->urb_list.next, struct urb,
  851. anchor_list);
  852. usb_get_urb(victim);
  853. __usb_unanchor_urb(victim, anchor);
  854. } else {
  855. victim = NULL;
  856. }
  857. spin_unlock_irqrestore(&anchor->lock, flags);
  858. return victim;
  859. }
  860. EXPORT_SYMBOL_GPL(usb_get_from_anchor);
  861. /**
  862. * usb_scuttle_anchored_urbs - unanchor all an anchor's urbs
  863. * @anchor: the anchor whose urbs you want to unanchor
  864. *
  865. * use this to get rid of all an anchor's urbs
  866. */
  867. void usb_scuttle_anchored_urbs(struct usb_anchor *anchor)
  868. {
  869. struct urb *victim;
  870. unsigned long flags;
  871. spin_lock_irqsave(&anchor->lock, flags);
  872. while (!list_empty(&anchor->urb_list)) {
  873. victim = list_entry(anchor->urb_list.prev, struct urb,
  874. anchor_list);
  875. __usb_unanchor_urb(victim, anchor);
  876. }
  877. spin_unlock_irqrestore(&anchor->lock, flags);
  878. }
  879. EXPORT_SYMBOL_GPL(usb_scuttle_anchored_urbs);
  880. /**
  881. * usb_anchor_empty - is an anchor empty
  882. * @anchor: the anchor you want to query
  883. *
  884. * Return: 1 if the anchor has no urbs associated with it.
  885. */
  886. int usb_anchor_empty(struct usb_anchor *anchor)
  887. {
  888. return list_empty(&anchor->urb_list);
  889. }
  890. EXPORT_SYMBOL_GPL(usb_anchor_empty);