fsl_ucc_hdlc.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179
  1. /* Freescale QUICC Engine HDLC Device Driver
  2. *
  3. * Copyright 2016 Freescale Semiconductor Inc.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of the GNU General Public License as published by the
  7. * Free Software Foundation; either version 2 of the License, or (at your
  8. * option) any later version.
  9. */
  10. #include <linux/delay.h>
  11. #include <linux/dma-mapping.h>
  12. #include <linux/hdlc.h>
  13. #include <linux/init.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/io.h>
  16. #include <linux/irq.h>
  17. #include <linux/kernel.h>
  18. #include <linux/module.h>
  19. #include <linux/netdevice.h>
  20. #include <linux/of_address.h>
  21. #include <linux/of_irq.h>
  22. #include <linux/of_platform.h>
  23. #include <linux/platform_device.h>
  24. #include <linux/sched.h>
  25. #include <linux/skbuff.h>
  26. #include <linux/slab.h>
  27. #include <linux/spinlock.h>
  28. #include <linux/stddef.h>
  29. #include <soc/fsl/qe/qe_tdm.h>
  30. #include <uapi/linux/if_arp.h>
  31. #include "fsl_ucc_hdlc.h"
  32. #define DRV_DESC "Freescale QE UCC HDLC Driver"
  33. #define DRV_NAME "ucc_hdlc"
  34. #define TDM_PPPOHT_SLIC_MAXIN
  35. #define BROKEN_FRAME_INFO
  36. static struct ucc_tdm_info utdm_primary_info = {
  37. .uf_info = {
  38. .tsa = 0,
  39. .cdp = 0,
  40. .cds = 1,
  41. .ctsp = 1,
  42. .ctss = 1,
  43. .revd = 0,
  44. .urfs = 256,
  45. .utfs = 256,
  46. .urfet = 128,
  47. .urfset = 192,
  48. .utfet = 128,
  49. .utftt = 0x40,
  50. .ufpt = 256,
  51. .mode = UCC_FAST_PROTOCOL_MODE_HDLC,
  52. .ttx_trx = UCC_FAST_GUMR_TRANSPARENT_TTX_TRX_NORMAL,
  53. .tenc = UCC_FAST_TX_ENCODING_NRZ,
  54. .renc = UCC_FAST_RX_ENCODING_NRZ,
  55. .tcrc = UCC_FAST_16_BIT_CRC,
  56. .synl = UCC_FAST_SYNC_LEN_NOT_USED,
  57. },
  58. .si_info = {
  59. #ifdef TDM_PPPOHT_SLIC_MAXIN
  60. .simr_rfsd = 1,
  61. .simr_tfsd = 2,
  62. #else
  63. .simr_rfsd = 0,
  64. .simr_tfsd = 0,
  65. #endif
  66. .simr_crt = 0,
  67. .simr_sl = 0,
  68. .simr_ce = 1,
  69. .simr_fe = 1,
  70. .simr_gm = 0,
  71. },
  72. };
  73. static struct ucc_tdm_info utdm_info[MAX_HDLC_NUM];
  74. static int uhdlc_init(struct ucc_hdlc_private *priv)
  75. {
  76. struct ucc_tdm_info *ut_info;
  77. struct ucc_fast_info *uf_info;
  78. u32 cecr_subblock;
  79. u16 bd_status;
  80. int ret, i;
  81. void *bd_buffer;
  82. dma_addr_t bd_dma_addr;
  83. u32 riptr;
  84. u32 tiptr;
  85. u32 gumr;
  86. ut_info = priv->ut_info;
  87. uf_info = &ut_info->uf_info;
  88. if (priv->tsa) {
  89. uf_info->tsa = 1;
  90. uf_info->ctsp = 1;
  91. }
  92. uf_info->uccm_mask = ((UCC_HDLC_UCCE_RXB | UCC_HDLC_UCCE_RXF |
  93. UCC_HDLC_UCCE_TXB) << 16);
  94. ret = ucc_fast_init(uf_info, &priv->uccf);
  95. if (ret) {
  96. dev_err(priv->dev, "Failed to init uccf.");
  97. return ret;
  98. }
  99. priv->uf_regs = priv->uccf->uf_regs;
  100. ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
  101. /* Loopback mode */
  102. if (priv->loopback) {
  103. dev_info(priv->dev, "Loopback Mode\n");
  104. gumr = ioread32be(&priv->uf_regs->gumr);
  105. gumr |= (UCC_FAST_GUMR_LOOPBACK | UCC_FAST_GUMR_CDS |
  106. UCC_FAST_GUMR_TCI);
  107. gumr &= ~(UCC_FAST_GUMR_CTSP | UCC_FAST_GUMR_RSYN);
  108. iowrite32be(gumr, &priv->uf_regs->gumr);
  109. }
  110. /* Initialize SI */
  111. if (priv->tsa)
  112. ucc_tdm_init(priv->utdm, priv->ut_info);
  113. /* Write to QE CECR, UCCx channel to Stop Transmission */
  114. cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
  115. ret = qe_issue_cmd(QE_STOP_TX, cecr_subblock,
  116. QE_CR_PROTOCOL_UNSPECIFIED, 0);
  117. /* Set UPSMR normal mode (need fixed)*/
  118. iowrite32be(0, &priv->uf_regs->upsmr);
  119. priv->rx_ring_size = RX_BD_RING_LEN;
  120. priv->tx_ring_size = TX_BD_RING_LEN;
  121. /* Alloc Rx BD */
  122. priv->rx_bd_base = dma_alloc_coherent(priv->dev,
  123. RX_BD_RING_LEN * sizeof(struct qe_bd),
  124. &priv->dma_rx_bd, GFP_KERNEL);
  125. if (!priv->rx_bd_base) {
  126. dev_err(priv->dev, "Cannot allocate MURAM memory for RxBDs\n");
  127. ret = -ENOMEM;
  128. goto free_uccf;
  129. }
  130. /* Alloc Tx BD */
  131. priv->tx_bd_base = dma_alloc_coherent(priv->dev,
  132. TX_BD_RING_LEN * sizeof(struct qe_bd),
  133. &priv->dma_tx_bd, GFP_KERNEL);
  134. if (!priv->tx_bd_base) {
  135. dev_err(priv->dev, "Cannot allocate MURAM memory for TxBDs\n");
  136. ret = -ENOMEM;
  137. goto free_rx_bd;
  138. }
  139. /* Alloc parameter ram for ucc hdlc */
  140. priv->ucc_pram_offset = qe_muram_alloc(sizeof(struct ucc_hdlc_param),
  141. ALIGNMENT_OF_UCC_HDLC_PRAM);
  142. if (priv->ucc_pram_offset < 0) {
  143. dev_err(priv->dev, "Can not allocate MURAM for hdlc parameter.\n");
  144. ret = -ENOMEM;
  145. goto free_tx_bd;
  146. }
  147. priv->rx_skbuff = kzalloc(priv->rx_ring_size * sizeof(*priv->rx_skbuff),
  148. GFP_KERNEL);
  149. if (!priv->rx_skbuff)
  150. goto free_ucc_pram;
  151. priv->tx_skbuff = kzalloc(priv->tx_ring_size * sizeof(*priv->tx_skbuff),
  152. GFP_KERNEL);
  153. if (!priv->tx_skbuff)
  154. goto free_rx_skbuff;
  155. priv->skb_curtx = 0;
  156. priv->skb_dirtytx = 0;
  157. priv->curtx_bd = priv->tx_bd_base;
  158. priv->dirty_tx = priv->tx_bd_base;
  159. priv->currx_bd = priv->rx_bd_base;
  160. priv->currx_bdnum = 0;
  161. /* init parameter base */
  162. cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
  163. ret = qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, cecr_subblock,
  164. QE_CR_PROTOCOL_UNSPECIFIED, priv->ucc_pram_offset);
  165. priv->ucc_pram = (struct ucc_hdlc_param __iomem *)
  166. qe_muram_addr(priv->ucc_pram_offset);
  167. /* Zero out parameter ram */
  168. memset_io(priv->ucc_pram, 0, sizeof(struct ucc_hdlc_param));
  169. /* Alloc riptr, tiptr */
  170. riptr = qe_muram_alloc(32, 32);
  171. if (riptr < 0) {
  172. dev_err(priv->dev, "Cannot allocate MURAM mem for Receive internal temp data pointer\n");
  173. ret = -ENOMEM;
  174. goto free_tx_skbuff;
  175. }
  176. tiptr = qe_muram_alloc(32, 32);
  177. if (tiptr < 0) {
  178. dev_err(priv->dev, "Cannot allocate MURAM mem for Transmit internal temp data pointer\n");
  179. ret = -ENOMEM;
  180. goto free_riptr;
  181. }
  182. /* Set RIPTR, TIPTR */
  183. iowrite16be(riptr, &priv->ucc_pram->riptr);
  184. iowrite16be(tiptr, &priv->ucc_pram->tiptr);
  185. /* Set MRBLR */
  186. iowrite16be(MAX_RX_BUF_LENGTH, &priv->ucc_pram->mrblr);
  187. /* Set RBASE, TBASE */
  188. iowrite32be(priv->dma_rx_bd, &priv->ucc_pram->rbase);
  189. iowrite32be(priv->dma_tx_bd, &priv->ucc_pram->tbase);
  190. /* Set RSTATE, TSTATE */
  191. iowrite32be(BMR_GBL | BMR_BIG_ENDIAN, &priv->ucc_pram->rstate);
  192. iowrite32be(BMR_GBL | BMR_BIG_ENDIAN, &priv->ucc_pram->tstate);
  193. /* Set C_MASK, C_PRES for 16bit CRC */
  194. iowrite32be(CRC_16BIT_MASK, &priv->ucc_pram->c_mask);
  195. iowrite32be(CRC_16BIT_PRES, &priv->ucc_pram->c_pres);
  196. iowrite16be(MAX_FRAME_LENGTH, &priv->ucc_pram->mflr);
  197. iowrite16be(DEFAULT_RFTHR, &priv->ucc_pram->rfthr);
  198. iowrite16be(DEFAULT_RFTHR, &priv->ucc_pram->rfcnt);
  199. iowrite16be(DEFAULT_ADDR_MASK, &priv->ucc_pram->hmask);
  200. iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr1);
  201. iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr2);
  202. iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr3);
  203. iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr4);
  204. /* Get BD buffer */
  205. bd_buffer = dma_alloc_coherent(priv->dev,
  206. (RX_BD_RING_LEN + TX_BD_RING_LEN) *
  207. MAX_RX_BUF_LENGTH,
  208. &bd_dma_addr, GFP_KERNEL);
  209. if (!bd_buffer) {
  210. dev_err(priv->dev, "Could not allocate buffer descriptors\n");
  211. ret = -ENOMEM;
  212. goto free_tiptr;
  213. }
  214. memset(bd_buffer, 0, (RX_BD_RING_LEN + TX_BD_RING_LEN)
  215. * MAX_RX_BUF_LENGTH);
  216. priv->rx_buffer = bd_buffer;
  217. priv->tx_buffer = bd_buffer + RX_BD_RING_LEN * MAX_RX_BUF_LENGTH;
  218. priv->dma_rx_addr = bd_dma_addr;
  219. priv->dma_tx_addr = bd_dma_addr + RX_BD_RING_LEN * MAX_RX_BUF_LENGTH;
  220. for (i = 0; i < RX_BD_RING_LEN; i++) {
  221. if (i < (RX_BD_RING_LEN - 1))
  222. bd_status = R_E_S | R_I_S;
  223. else
  224. bd_status = R_E_S | R_I_S | R_W_S;
  225. iowrite16be(bd_status, &priv->rx_bd_base[i].status);
  226. iowrite32be(priv->dma_rx_addr + i * MAX_RX_BUF_LENGTH,
  227. &priv->rx_bd_base[i].buf);
  228. }
  229. for (i = 0; i < TX_BD_RING_LEN; i++) {
  230. if (i < (TX_BD_RING_LEN - 1))
  231. bd_status = T_I_S | T_TC_S;
  232. else
  233. bd_status = T_I_S | T_TC_S | T_W_S;
  234. iowrite16be(bd_status, &priv->tx_bd_base[i].status);
  235. iowrite32be(priv->dma_tx_addr + i * MAX_RX_BUF_LENGTH,
  236. &priv->tx_bd_base[i].buf);
  237. }
  238. return 0;
  239. free_tiptr:
  240. qe_muram_free(tiptr);
  241. free_riptr:
  242. qe_muram_free(riptr);
  243. free_tx_skbuff:
  244. kfree(priv->tx_skbuff);
  245. free_rx_skbuff:
  246. kfree(priv->rx_skbuff);
  247. free_ucc_pram:
  248. qe_muram_free(priv->ucc_pram_offset);
  249. free_tx_bd:
  250. dma_free_coherent(priv->dev,
  251. TX_BD_RING_LEN * sizeof(struct qe_bd),
  252. priv->tx_bd_base, priv->dma_tx_bd);
  253. free_rx_bd:
  254. dma_free_coherent(priv->dev,
  255. RX_BD_RING_LEN * sizeof(struct qe_bd),
  256. priv->rx_bd_base, priv->dma_rx_bd);
  257. free_uccf:
  258. ucc_fast_free(priv->uccf);
  259. return ret;
  260. }
  261. static netdev_tx_t ucc_hdlc_tx(struct sk_buff *skb, struct net_device *dev)
  262. {
  263. hdlc_device *hdlc = dev_to_hdlc(dev);
  264. struct ucc_hdlc_private *priv = (struct ucc_hdlc_private *)hdlc->priv;
  265. struct qe_bd __iomem *bd;
  266. u16 bd_status;
  267. unsigned long flags;
  268. u8 *send_buf;
  269. int i;
  270. u16 *proto_head;
  271. switch (dev->type) {
  272. case ARPHRD_RAWHDLC:
  273. if (skb_headroom(skb) < HDLC_HEAD_LEN) {
  274. dev->stats.tx_dropped++;
  275. dev_kfree_skb(skb);
  276. netdev_err(dev, "No enough space for hdlc head\n");
  277. return -ENOMEM;
  278. }
  279. skb_push(skb, HDLC_HEAD_LEN);
  280. proto_head = (u16 *)skb->data;
  281. *proto_head = htons(DEFAULT_HDLC_HEAD);
  282. dev->stats.tx_bytes += skb->len;
  283. break;
  284. case ARPHRD_PPP:
  285. proto_head = (u16 *)skb->data;
  286. if (*proto_head != htons(DEFAULT_PPP_HEAD)) {
  287. dev->stats.tx_dropped++;
  288. dev_kfree_skb(skb);
  289. netdev_err(dev, "Wrong ppp header\n");
  290. return -ENOMEM;
  291. }
  292. dev->stats.tx_bytes += skb->len;
  293. break;
  294. default:
  295. dev->stats.tx_dropped++;
  296. dev_kfree_skb(skb);
  297. return -ENOMEM;
  298. }
  299. pr_info("Tx data skb->len:%d ", skb->len);
  300. send_buf = (u8 *)skb->data;
  301. pr_info("\nTransmitted data:\n");
  302. for (i = 0; i < 16; i++) {
  303. if (i == skb->len)
  304. pr_info("++++");
  305. else
  306. pr_info("%02x\n", send_buf[i]);
  307. }
  308. spin_lock_irqsave(&priv->lock, flags);
  309. /* Start from the next BD that should be filled */
  310. bd = priv->curtx_bd;
  311. bd_status = ioread16be(&bd->status);
  312. /* Save the skb pointer so we can free it later */
  313. priv->tx_skbuff[priv->skb_curtx] = skb;
  314. /* Update the current skb pointer (wrapping if this was the last) */
  315. priv->skb_curtx =
  316. (priv->skb_curtx + 1) & TX_RING_MOD_MASK(TX_BD_RING_LEN);
  317. /* copy skb data to tx buffer for sdma processing */
  318. memcpy(priv->tx_buffer + (be32_to_cpu(bd->buf) - priv->dma_tx_addr),
  319. skb->data, skb->len);
  320. /* set bd status and length */
  321. bd_status = (bd_status & T_W_S) | T_R_S | T_I_S | T_L_S | T_TC_S;
  322. iowrite16be(bd_status, &bd->status);
  323. iowrite16be(skb->len, &bd->length);
  324. /* Move to next BD in the ring */
  325. if (!(bd_status & T_W_S))
  326. bd += 1;
  327. else
  328. bd = priv->tx_bd_base;
  329. if (bd == priv->dirty_tx) {
  330. if (!netif_queue_stopped(dev))
  331. netif_stop_queue(dev);
  332. }
  333. priv->curtx_bd = bd;
  334. spin_unlock_irqrestore(&priv->lock, flags);
  335. return NETDEV_TX_OK;
  336. }
  337. static int hdlc_tx_done(struct ucc_hdlc_private *priv)
  338. {
  339. /* Start from the next BD that should be filled */
  340. struct net_device *dev = priv->ndev;
  341. struct qe_bd *bd; /* BD pointer */
  342. u16 bd_status;
  343. bd = priv->dirty_tx;
  344. bd_status = ioread16be(&bd->status);
  345. /* Normal processing. */
  346. while ((bd_status & T_R_S) == 0) {
  347. struct sk_buff *skb;
  348. /* BD contains already transmitted buffer. */
  349. /* Handle the transmitted buffer and release */
  350. /* the BD to be used with the current frame */
  351. skb = priv->tx_skbuff[priv->skb_dirtytx];
  352. if (!skb)
  353. break;
  354. pr_info("TxBD: %x\n", bd_status);
  355. dev->stats.tx_packets++;
  356. memset(priv->tx_buffer +
  357. (be32_to_cpu(bd->buf) - priv->dma_tx_addr),
  358. 0, skb->len);
  359. dev_kfree_skb_irq(skb);
  360. priv->tx_skbuff[priv->skb_dirtytx] = NULL;
  361. priv->skb_dirtytx =
  362. (priv->skb_dirtytx +
  363. 1) & TX_RING_MOD_MASK(TX_BD_RING_LEN);
  364. /* We freed a buffer, so now we can restart transmission */
  365. if (netif_queue_stopped(dev))
  366. netif_wake_queue(dev);
  367. /* Advance the confirmation BD pointer */
  368. if (!(bd_status & T_W_S))
  369. bd += 1;
  370. else
  371. bd = priv->tx_bd_base;
  372. bd_status = ioread16be(&bd->status);
  373. }
  374. priv->dirty_tx = bd;
  375. return 0;
  376. }
  377. static int hdlc_rx_done(struct ucc_hdlc_private *priv, int rx_work_limit)
  378. {
  379. struct net_device *dev = priv->ndev;
  380. struct sk_buff *skb = NULL;
  381. hdlc_device *hdlc = dev_to_hdlc(dev);
  382. struct qe_bd *bd;
  383. u32 bd_status;
  384. u16 length, howmany = 0;
  385. u8 *bdbuffer;
  386. int i;
  387. static int entry;
  388. bd = priv->currx_bd;
  389. bd_status = ioread16be(&bd->status);
  390. /* while there are received buffers and BD is full (~R_E) */
  391. while (!((bd_status & (R_E_S)) || (--rx_work_limit < 0))) {
  392. if (bd_status & R_OV_S)
  393. dev->stats.rx_over_errors++;
  394. if (bd_status & R_CR_S) {
  395. #ifdef BROKEN_FRAME_INFO
  396. pr_info("Broken Frame with RxBD: %x\n", bd_status);
  397. #endif
  398. dev->stats.rx_crc_errors++;
  399. dev->stats.rx_dropped++;
  400. goto recycle;
  401. }
  402. bdbuffer = priv->rx_buffer +
  403. (priv->currx_bdnum * MAX_RX_BUF_LENGTH);
  404. length = ioread16be(&bd->length);
  405. pr_info("Received data length:%d", length);
  406. pr_info("while entry times:%d", entry++);
  407. pr_info("\nReceived data:\n");
  408. for (i = 0; (i < 16); i++) {
  409. if (i == length)
  410. pr_info("++++");
  411. else
  412. pr_info("%02x\n", bdbuffer[i]);
  413. }
  414. switch (dev->type) {
  415. case ARPHRD_RAWHDLC:
  416. bdbuffer += HDLC_HEAD_LEN;
  417. length -= (HDLC_HEAD_LEN + HDLC_CRC_SIZE);
  418. skb = dev_alloc_skb(length);
  419. if (!skb) {
  420. dev->stats.rx_dropped++;
  421. return -ENOMEM;
  422. }
  423. skb_put(skb, length);
  424. skb->len = length;
  425. skb->dev = dev;
  426. memcpy(skb->data, bdbuffer, length);
  427. break;
  428. case ARPHRD_PPP:
  429. length -= HDLC_CRC_SIZE;
  430. skb = dev_alloc_skb(length);
  431. if (!skb) {
  432. dev->stats.rx_dropped++;
  433. return -ENOMEM;
  434. }
  435. skb_put(skb, length);
  436. skb->len = length;
  437. skb->dev = dev;
  438. memcpy(skb->data, bdbuffer, length);
  439. break;
  440. }
  441. dev->stats.rx_packets++;
  442. dev->stats.rx_bytes += skb->len;
  443. howmany++;
  444. if (hdlc->proto)
  445. skb->protocol = hdlc_type_trans(skb, dev);
  446. pr_info("skb->protocol:%x\n", skb->protocol);
  447. netif_receive_skb(skb);
  448. recycle:
  449. iowrite16be(bd_status | R_E_S | R_I_S, &bd->status);
  450. /* update to point at the next bd */
  451. if (bd_status & R_W_S) {
  452. priv->currx_bdnum = 0;
  453. bd = priv->rx_bd_base;
  454. } else {
  455. if (priv->currx_bdnum < (RX_BD_RING_LEN - 1))
  456. priv->currx_bdnum += 1;
  457. else
  458. priv->currx_bdnum = RX_BD_RING_LEN - 1;
  459. bd += 1;
  460. }
  461. bd_status = ioread16be(&bd->status);
  462. }
  463. priv->currx_bd = bd;
  464. return howmany;
  465. }
  466. static int ucc_hdlc_poll(struct napi_struct *napi, int budget)
  467. {
  468. struct ucc_hdlc_private *priv = container_of(napi,
  469. struct ucc_hdlc_private,
  470. napi);
  471. int howmany;
  472. /* Tx event processing */
  473. spin_lock(&priv->lock);
  474. hdlc_tx_done(priv);
  475. spin_unlock(&priv->lock);
  476. howmany = 0;
  477. howmany += hdlc_rx_done(priv, budget - howmany);
  478. if (howmany < budget) {
  479. napi_complete(napi);
  480. qe_setbits32(priv->uccf->p_uccm,
  481. (UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS) << 16);
  482. }
  483. return howmany;
  484. }
  485. static irqreturn_t ucc_hdlc_irq_handler(int irq, void *dev_id)
  486. {
  487. struct ucc_hdlc_private *priv = (struct ucc_hdlc_private *)dev_id;
  488. struct net_device *dev = priv->ndev;
  489. struct ucc_fast_private *uccf;
  490. struct ucc_tdm_info *ut_info;
  491. u32 ucce;
  492. u32 uccm;
  493. ut_info = priv->ut_info;
  494. uccf = priv->uccf;
  495. ucce = ioread32be(uccf->p_ucce);
  496. uccm = ioread32be(uccf->p_uccm);
  497. ucce &= uccm;
  498. iowrite32be(ucce, uccf->p_ucce);
  499. pr_info("irq ucce:%x\n", ucce);
  500. if (!ucce)
  501. return IRQ_NONE;
  502. if ((ucce >> 16) & (UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS)) {
  503. if (napi_schedule_prep(&priv->napi)) {
  504. uccm &= ~((UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS)
  505. << 16);
  506. iowrite32be(uccm, uccf->p_uccm);
  507. __napi_schedule(&priv->napi);
  508. }
  509. }
  510. /* Errors and other events */
  511. if (ucce >> 16 & UCC_HDLC_UCCE_BSY)
  512. dev->stats.rx_errors++;
  513. if (ucce >> 16 & UCC_HDLC_UCCE_TXE)
  514. dev->stats.tx_errors++;
  515. return IRQ_HANDLED;
  516. }
  517. static int uhdlc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  518. {
  519. const size_t size = sizeof(te1_settings);
  520. te1_settings line;
  521. struct ucc_hdlc_private *priv = netdev_priv(dev);
  522. if (cmd != SIOCWANDEV)
  523. return hdlc_ioctl(dev, ifr, cmd);
  524. switch (ifr->ifr_settings.type) {
  525. case IF_GET_IFACE:
  526. ifr->ifr_settings.type = IF_IFACE_E1;
  527. if (ifr->ifr_settings.size < size) {
  528. ifr->ifr_settings.size = size; /* data size wanted */
  529. return -ENOBUFS;
  530. }
  531. memset(&line, 0, sizeof(line));
  532. line.clock_type = priv->clocking;
  533. if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &line, size))
  534. return -EFAULT;
  535. return 0;
  536. default:
  537. return hdlc_ioctl(dev, ifr, cmd);
  538. }
  539. }
  540. static int uhdlc_open(struct net_device *dev)
  541. {
  542. u32 cecr_subblock;
  543. hdlc_device *hdlc = dev_to_hdlc(dev);
  544. struct ucc_hdlc_private *priv = hdlc->priv;
  545. struct ucc_tdm *utdm = priv->utdm;
  546. if (priv->hdlc_busy != 1) {
  547. if (request_irq(priv->ut_info->uf_info.irq,
  548. ucc_hdlc_irq_handler, 0, "hdlc", priv))
  549. return -ENODEV;
  550. cecr_subblock = ucc_fast_get_qe_cr_subblock(
  551. priv->ut_info->uf_info.ucc_num);
  552. qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
  553. QE_CR_PROTOCOL_UNSPECIFIED, 0);
  554. ucc_fast_enable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
  555. /* Enable the TDM port */
  556. if (priv->tsa)
  557. utdm->si_regs->siglmr1_h |= (0x1 << utdm->tdm_port);
  558. priv->hdlc_busy = 1;
  559. netif_device_attach(priv->ndev);
  560. napi_enable(&priv->napi);
  561. netif_start_queue(dev);
  562. hdlc_open(dev);
  563. }
  564. return 0;
  565. }
  566. static void uhdlc_memclean(struct ucc_hdlc_private *priv)
  567. {
  568. qe_muram_free(priv->ucc_pram->riptr);
  569. qe_muram_free(priv->ucc_pram->tiptr);
  570. if (priv->rx_bd_base) {
  571. dma_free_coherent(priv->dev,
  572. RX_BD_RING_LEN * sizeof(struct qe_bd),
  573. priv->rx_bd_base, priv->dma_rx_bd);
  574. priv->rx_bd_base = NULL;
  575. priv->dma_rx_bd = 0;
  576. }
  577. if (priv->tx_bd_base) {
  578. dma_free_coherent(priv->dev,
  579. TX_BD_RING_LEN * sizeof(struct qe_bd),
  580. priv->tx_bd_base, priv->dma_tx_bd);
  581. priv->tx_bd_base = NULL;
  582. priv->dma_tx_bd = 0;
  583. }
  584. if (priv->ucc_pram) {
  585. qe_muram_free(priv->ucc_pram_offset);
  586. priv->ucc_pram = NULL;
  587. priv->ucc_pram_offset = 0;
  588. }
  589. kfree(priv->rx_skbuff);
  590. priv->rx_skbuff = NULL;
  591. kfree(priv->tx_skbuff);
  592. priv->tx_skbuff = NULL;
  593. if (priv->uf_regs) {
  594. iounmap(priv->uf_regs);
  595. priv->uf_regs = NULL;
  596. }
  597. if (priv->uccf) {
  598. ucc_fast_free(priv->uccf);
  599. priv->uccf = NULL;
  600. }
  601. if (priv->rx_buffer) {
  602. dma_free_coherent(priv->dev,
  603. RX_BD_RING_LEN * MAX_RX_BUF_LENGTH,
  604. priv->rx_buffer, priv->dma_rx_addr);
  605. priv->rx_buffer = NULL;
  606. priv->dma_rx_addr = 0;
  607. }
  608. if (priv->tx_buffer) {
  609. dma_free_coherent(priv->dev,
  610. TX_BD_RING_LEN * MAX_RX_BUF_LENGTH,
  611. priv->tx_buffer, priv->dma_tx_addr);
  612. priv->tx_buffer = NULL;
  613. priv->dma_tx_addr = 0;
  614. }
  615. }
  616. static int uhdlc_close(struct net_device *dev)
  617. {
  618. struct ucc_hdlc_private *priv = dev_to_hdlc(dev)->priv;
  619. struct ucc_tdm *utdm = priv->utdm;
  620. u32 cecr_subblock;
  621. napi_disable(&priv->napi);
  622. cecr_subblock = ucc_fast_get_qe_cr_subblock(
  623. priv->ut_info->uf_info.ucc_num);
  624. qe_issue_cmd(QE_GRACEFUL_STOP_TX, cecr_subblock,
  625. (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
  626. qe_issue_cmd(QE_CLOSE_RX_BD, cecr_subblock,
  627. (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
  628. if (priv->tsa)
  629. utdm->si_regs->siglmr1_h &= ~(0x1 << utdm->tdm_port);
  630. ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
  631. free_irq(priv->ut_info->uf_info.irq, priv);
  632. netif_stop_queue(dev);
  633. priv->hdlc_busy = 0;
  634. return 0;
  635. }
  636. static int ucc_hdlc_attach(struct net_device *dev, unsigned short encoding,
  637. unsigned short parity)
  638. {
  639. struct ucc_hdlc_private *priv = dev_to_hdlc(dev)->priv;
  640. if (encoding != ENCODING_NRZ &&
  641. encoding != ENCODING_NRZI)
  642. return -EINVAL;
  643. if (parity != PARITY_NONE &&
  644. parity != PARITY_CRC32_PR1_CCITT &&
  645. parity != PARITY_CRC16_PR1_CCITT)
  646. return -EINVAL;
  647. priv->encoding = encoding;
  648. priv->parity = parity;
  649. return 0;
  650. }
  651. #ifdef CONFIG_PM
  652. static void store_clk_config(struct ucc_hdlc_private *priv)
  653. {
  654. struct qe_mux *qe_mux_reg = &qe_immr->qmx;
  655. /* store si clk */
  656. priv->cmxsi1cr_h = ioread32be(&qe_mux_reg->cmxsi1cr_h);
  657. priv->cmxsi1cr_l = ioread32be(&qe_mux_reg->cmxsi1cr_l);
  658. /* store si sync */
  659. priv->cmxsi1syr = ioread32be(&qe_mux_reg->cmxsi1syr);
  660. /* store ucc clk */
  661. memcpy_fromio(priv->cmxucr, qe_mux_reg->cmxucr, 4 * sizeof(u32));
  662. }
  663. static void resume_clk_config(struct ucc_hdlc_private *priv)
  664. {
  665. struct qe_mux *qe_mux_reg = &qe_immr->qmx;
  666. memcpy_toio(qe_mux_reg->cmxucr, priv->cmxucr, 4 * sizeof(u32));
  667. iowrite32be(priv->cmxsi1cr_h, &qe_mux_reg->cmxsi1cr_h);
  668. iowrite32be(priv->cmxsi1cr_l, &qe_mux_reg->cmxsi1cr_l);
  669. iowrite32be(priv->cmxsi1syr, &qe_mux_reg->cmxsi1syr);
  670. }
  671. static int uhdlc_suspend(struct device *dev)
  672. {
  673. struct ucc_hdlc_private *priv = dev_get_drvdata(dev);
  674. struct ucc_tdm_info *ut_info;
  675. struct ucc_fast __iomem *uf_regs;
  676. if (!priv)
  677. return -EINVAL;
  678. if (!netif_running(priv->ndev))
  679. return 0;
  680. netif_device_detach(priv->ndev);
  681. napi_disable(&priv->napi);
  682. ut_info = priv->ut_info;
  683. uf_regs = priv->uf_regs;
  684. /* backup gumr guemr*/
  685. priv->gumr = ioread32be(&uf_regs->gumr);
  686. priv->guemr = ioread8(&uf_regs->guemr);
  687. priv->ucc_pram_bak = kmalloc(sizeof(*priv->ucc_pram_bak),
  688. GFP_KERNEL);
  689. if (!priv->ucc_pram_bak)
  690. return -ENOMEM;
  691. /* backup HDLC parameter */
  692. memcpy_fromio(priv->ucc_pram_bak, priv->ucc_pram,
  693. sizeof(struct ucc_hdlc_param));
  694. /* store the clk configuration */
  695. store_clk_config(priv);
  696. /* save power */
  697. ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
  698. dev_dbg(dev, "ucc hdlc suspend\n");
  699. return 0;
  700. }
  701. static int uhdlc_resume(struct device *dev)
  702. {
  703. struct ucc_hdlc_private *priv = dev_get_drvdata(dev);
  704. struct ucc_tdm *utdm;
  705. struct ucc_tdm_info *ut_info;
  706. struct ucc_fast __iomem *uf_regs;
  707. struct ucc_fast_private *uccf;
  708. struct ucc_fast_info *uf_info;
  709. int ret, i;
  710. u32 cecr_subblock;
  711. u16 bd_status;
  712. if (!priv)
  713. return -EINVAL;
  714. if (!netif_running(priv->ndev))
  715. return 0;
  716. utdm = priv->utdm;
  717. ut_info = priv->ut_info;
  718. uf_info = &ut_info->uf_info;
  719. uf_regs = priv->uf_regs;
  720. uccf = priv->uccf;
  721. /* restore gumr guemr */
  722. iowrite8(priv->guemr, &uf_regs->guemr);
  723. iowrite32be(priv->gumr, &uf_regs->gumr);
  724. /* Set Virtual Fifo registers */
  725. iowrite16be(uf_info->urfs, &uf_regs->urfs);
  726. iowrite16be(uf_info->urfet, &uf_regs->urfet);
  727. iowrite16be(uf_info->urfset, &uf_regs->urfset);
  728. iowrite16be(uf_info->utfs, &uf_regs->utfs);
  729. iowrite16be(uf_info->utfet, &uf_regs->utfet);
  730. iowrite16be(uf_info->utftt, &uf_regs->utftt);
  731. /* utfb, urfb are offsets from MURAM base */
  732. iowrite32be(uccf->ucc_fast_tx_virtual_fifo_base_offset, &uf_regs->utfb);
  733. iowrite32be(uccf->ucc_fast_rx_virtual_fifo_base_offset, &uf_regs->urfb);
  734. /* Rx Tx and sync clock routing */
  735. resume_clk_config(priv);
  736. iowrite32be(uf_info->uccm_mask, &uf_regs->uccm);
  737. iowrite32be(0xffffffff, &uf_regs->ucce);
  738. ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
  739. /* rebuild SIRAM */
  740. if (priv->tsa)
  741. ucc_tdm_init(priv->utdm, priv->ut_info);
  742. /* Write to QE CECR, UCCx channel to Stop Transmission */
  743. cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
  744. ret = qe_issue_cmd(QE_STOP_TX, cecr_subblock,
  745. (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
  746. /* Set UPSMR normal mode */
  747. iowrite32be(0, &uf_regs->upsmr);
  748. /* init parameter base */
  749. cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
  750. ret = qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, cecr_subblock,
  751. QE_CR_PROTOCOL_UNSPECIFIED, priv->ucc_pram_offset);
  752. priv->ucc_pram = (struct ucc_hdlc_param __iomem *)
  753. qe_muram_addr(priv->ucc_pram_offset);
  754. /* restore ucc parameter */
  755. memcpy_toio(priv->ucc_pram, priv->ucc_pram_bak,
  756. sizeof(struct ucc_hdlc_param));
  757. kfree(priv->ucc_pram_bak);
  758. /* rebuild BD entry */
  759. for (i = 0; i < RX_BD_RING_LEN; i++) {
  760. if (i < (RX_BD_RING_LEN - 1))
  761. bd_status = R_E_S | R_I_S;
  762. else
  763. bd_status = R_E_S | R_I_S | R_W_S;
  764. iowrite16be(bd_status, &priv->rx_bd_base[i].status);
  765. iowrite32be(priv->dma_rx_addr + i * MAX_RX_BUF_LENGTH,
  766. &priv->rx_bd_base[i].buf);
  767. }
  768. for (i = 0; i < TX_BD_RING_LEN; i++) {
  769. if (i < (TX_BD_RING_LEN - 1))
  770. bd_status = T_I_S | T_TC_S;
  771. else
  772. bd_status = T_I_S | T_TC_S | T_W_S;
  773. iowrite16be(bd_status, &priv->tx_bd_base[i].status);
  774. iowrite32be(priv->dma_tx_addr + i * MAX_RX_BUF_LENGTH,
  775. &priv->tx_bd_base[i].buf);
  776. }
  777. /* if hdlc is busy enable TX and RX */
  778. if (priv->hdlc_busy == 1) {
  779. cecr_subblock = ucc_fast_get_qe_cr_subblock(
  780. priv->ut_info->uf_info.ucc_num);
  781. qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
  782. (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
  783. ucc_fast_enable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
  784. /* Enable the TDM port */
  785. if (priv->tsa)
  786. utdm->si_regs->siglmr1_h |= (0x1 << utdm->tdm_port);
  787. }
  788. napi_enable(&priv->napi);
  789. netif_device_attach(priv->ndev);
  790. return 0;
  791. }
  792. static const struct dev_pm_ops uhdlc_pm_ops = {
  793. .suspend = uhdlc_suspend,
  794. .resume = uhdlc_resume,
  795. .freeze = uhdlc_suspend,
  796. .thaw = uhdlc_resume,
  797. };
  798. #define HDLC_PM_OPS (&uhdlc_pm_ops)
  799. #else
  800. #define HDLC_PM_OPS NULL
  801. #endif
  802. static const struct net_device_ops uhdlc_ops = {
  803. .ndo_open = uhdlc_open,
  804. .ndo_stop = uhdlc_close,
  805. .ndo_change_mtu = hdlc_change_mtu,
  806. .ndo_start_xmit = hdlc_start_xmit,
  807. .ndo_do_ioctl = uhdlc_ioctl,
  808. };
  809. static int ucc_hdlc_probe(struct platform_device *pdev)
  810. {
  811. struct device_node *np = pdev->dev.of_node;
  812. struct ucc_hdlc_private *uhdlc_priv = NULL;
  813. struct ucc_tdm_info *ut_info;
  814. struct ucc_tdm *utdm = NULL;
  815. struct resource res;
  816. struct net_device *dev;
  817. hdlc_device *hdlc;
  818. int ucc_num;
  819. const char *sprop;
  820. int ret;
  821. u32 val;
  822. ret = of_property_read_u32_index(np, "cell-index", 0, &val);
  823. if (ret) {
  824. dev_err(&pdev->dev, "Invalid ucc property\n");
  825. return -ENODEV;
  826. }
  827. ucc_num = val - 1;
  828. if ((ucc_num > 3) || (ucc_num < 0)) {
  829. dev_err(&pdev->dev, ": Invalid UCC num\n");
  830. return -EINVAL;
  831. }
  832. memcpy(&utdm_info[ucc_num], &utdm_primary_info,
  833. sizeof(utdm_primary_info));
  834. ut_info = &utdm_info[ucc_num];
  835. ut_info->uf_info.ucc_num = ucc_num;
  836. sprop = of_get_property(np, "rx-clock-name", NULL);
  837. if (sprop) {
  838. ut_info->uf_info.rx_clock = qe_clock_source(sprop);
  839. if ((ut_info->uf_info.rx_clock < QE_CLK_NONE) ||
  840. (ut_info->uf_info.rx_clock > QE_CLK24)) {
  841. dev_err(&pdev->dev, "Invalid rx-clock-name property\n");
  842. return -EINVAL;
  843. }
  844. } else {
  845. dev_err(&pdev->dev, "Invalid rx-clock-name property\n");
  846. return -EINVAL;
  847. }
  848. sprop = of_get_property(np, "tx-clock-name", NULL);
  849. if (sprop) {
  850. ut_info->uf_info.tx_clock = qe_clock_source(sprop);
  851. if ((ut_info->uf_info.tx_clock < QE_CLK_NONE) ||
  852. (ut_info->uf_info.tx_clock > QE_CLK24)) {
  853. dev_err(&pdev->dev, "Invalid tx-clock-name property\n");
  854. return -EINVAL;
  855. }
  856. } else {
  857. dev_err(&pdev->dev, "Invalid tx-clock-name property\n");
  858. return -EINVAL;
  859. }
  860. /* use the same clock when work in loopback */
  861. if (ut_info->uf_info.rx_clock == ut_info->uf_info.tx_clock)
  862. qe_setbrg(ut_info->uf_info.rx_clock, 20000000, 1);
  863. ret = of_address_to_resource(np, 0, &res);
  864. if (ret)
  865. return -EINVAL;
  866. ut_info->uf_info.regs = res.start;
  867. ut_info->uf_info.irq = irq_of_parse_and_map(np, 0);
  868. uhdlc_priv = kzalloc(sizeof(*uhdlc_priv), GFP_KERNEL);
  869. if (!uhdlc_priv) {
  870. return -ENOMEM;
  871. }
  872. dev_set_drvdata(&pdev->dev, uhdlc_priv);
  873. uhdlc_priv->dev = &pdev->dev;
  874. uhdlc_priv->ut_info = ut_info;
  875. if (of_get_property(np, "fsl,tdm-interface", NULL))
  876. uhdlc_priv->tsa = 1;
  877. if (of_get_property(np, "fsl,ucc-internal-loopback", NULL))
  878. uhdlc_priv->loopback = 1;
  879. if (uhdlc_priv->tsa == 1) {
  880. utdm = kzalloc(sizeof(*utdm), GFP_KERNEL);
  881. if (!utdm) {
  882. ret = -ENOMEM;
  883. dev_err(&pdev->dev, "No mem to alloc ucc tdm data\n");
  884. goto free_uhdlc_priv;
  885. }
  886. uhdlc_priv->utdm = utdm;
  887. ret = ucc_of_parse_tdm(np, utdm, ut_info);
  888. if (ret)
  889. goto free_utdm;
  890. }
  891. ret = uhdlc_init(uhdlc_priv);
  892. if (ret) {
  893. dev_err(&pdev->dev, "Failed to init uhdlc\n");
  894. goto free_utdm;
  895. }
  896. dev = alloc_hdlcdev(uhdlc_priv);
  897. if (!dev) {
  898. ret = -ENOMEM;
  899. pr_err("ucc_hdlc: unable to allocate memory\n");
  900. goto undo_uhdlc_init;
  901. }
  902. uhdlc_priv->ndev = dev;
  903. hdlc = dev_to_hdlc(dev);
  904. dev->tx_queue_len = 16;
  905. dev->netdev_ops = &uhdlc_ops;
  906. hdlc->attach = ucc_hdlc_attach;
  907. hdlc->xmit = ucc_hdlc_tx;
  908. netif_napi_add(dev, &uhdlc_priv->napi, ucc_hdlc_poll, 32);
  909. if (register_hdlc_device(dev)) {
  910. ret = -ENOBUFS;
  911. pr_err("ucc_hdlc: unable to register hdlc device\n");
  912. free_netdev(dev);
  913. goto free_dev;
  914. }
  915. return 0;
  916. free_dev:
  917. free_netdev(dev);
  918. undo_uhdlc_init:
  919. free_utdm:
  920. if (uhdlc_priv->tsa)
  921. kfree(utdm);
  922. free_uhdlc_priv:
  923. kfree(uhdlc_priv);
  924. return ret;
  925. }
  926. static int ucc_hdlc_remove(struct platform_device *pdev)
  927. {
  928. struct ucc_hdlc_private *priv = dev_get_drvdata(&pdev->dev);
  929. uhdlc_memclean(priv);
  930. if (priv->utdm->si_regs) {
  931. iounmap(priv->utdm->si_regs);
  932. priv->utdm->si_regs = NULL;
  933. }
  934. if (priv->utdm->siram) {
  935. iounmap(priv->utdm->siram);
  936. priv->utdm->siram = NULL;
  937. }
  938. kfree(priv);
  939. dev_info(&pdev->dev, "UCC based hdlc module removed\n");
  940. return 0;
  941. }
  942. static const struct of_device_id fsl_ucc_hdlc_of_match[] = {
  943. {
  944. .compatible = "fsl,ucc-hdlc",
  945. },
  946. {},
  947. };
  948. MODULE_DEVICE_TABLE(of, fsl_ucc_hdlc_of_match);
  949. static struct platform_driver ucc_hdlc_driver = {
  950. .probe = ucc_hdlc_probe,
  951. .remove = ucc_hdlc_remove,
  952. .driver = {
  953. .name = DRV_NAME,
  954. .pm = HDLC_PM_OPS,
  955. .of_match_table = fsl_ucc_hdlc_of_match,
  956. },
  957. };
  958. module_platform_driver(ucc_hdlc_driver);