sungem.c 76 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030
  1. /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
  2. * sungem.c: Sun GEM ethernet driver.
  3. *
  4. * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
  5. *
  6. * Support for Apple GMAC and assorted PHYs, WOL, Power Management
  7. * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
  8. * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
  9. *
  10. * NAPI and NETPOLL support
  11. * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
  12. *
  13. */
  14. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  15. #include <linux/module.h>
  16. #include <linux/kernel.h>
  17. #include <linux/types.h>
  18. #include <linux/fcntl.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/ioport.h>
  21. #include <linux/in.h>
  22. #include <linux/sched.h>
  23. #include <linux/string.h>
  24. #include <linux/delay.h>
  25. #include <linux/errno.h>
  26. #include <linux/pci.h>
  27. #include <linux/dma-mapping.h>
  28. #include <linux/netdevice.h>
  29. #include <linux/etherdevice.h>
  30. #include <linux/skbuff.h>
  31. #include <linux/mii.h>
  32. #include <linux/ethtool.h>
  33. #include <linux/crc32.h>
  34. #include <linux/random.h>
  35. #include <linux/workqueue.h>
  36. #include <linux/if_vlan.h>
  37. #include <linux/bitops.h>
  38. #include <linux/mm.h>
  39. #include <linux/gfp.h>
  40. #include <asm/io.h>
  41. #include <asm/byteorder.h>
  42. #include <asm/uaccess.h>
  43. #include <asm/irq.h>
  44. #ifdef CONFIG_SPARC
  45. #include <asm/idprom.h>
  46. #include <asm/prom.h>
  47. #endif
  48. #ifdef CONFIG_PPC_PMAC
  49. #include <asm/prom.h>
  50. #include <asm/machdep.h>
  51. #include <asm/pmac_feature.h>
  52. #endif
  53. #include <linux/sungem_phy.h>
  54. #include "sungem.h"
  55. #define STRIP_FCS
  56. #define DEFAULT_MSG (NETIF_MSG_DRV | \
  57. NETIF_MSG_PROBE | \
  58. NETIF_MSG_LINK)
  59. #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
  60. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
  61. SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
  62. SUPPORTED_Pause | SUPPORTED_Autoneg)
  63. #define DRV_NAME "sungem"
  64. #define DRV_VERSION "1.0"
  65. #define DRV_AUTHOR "David S. Miller <davem@redhat.com>"
  66. static char version[] =
  67. DRV_NAME ".c:v" DRV_VERSION " " DRV_AUTHOR "\n";
  68. MODULE_AUTHOR(DRV_AUTHOR);
  69. MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
  70. MODULE_LICENSE("GPL");
  71. #define GEM_MODULE_NAME "gem"
  72. static const struct pci_device_id gem_pci_tbl[] = {
  73. { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
  74. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  75. /* These models only differ from the original GEM in
  76. * that their tx/rx fifos are of a different size and
  77. * they only support 10/100 speeds. -DaveM
  78. *
  79. * Apple's GMAC does support gigabit on machines with
  80. * the BCM54xx PHYs. -BenH
  81. */
  82. { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
  83. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  84. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
  85. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  86. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
  87. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  88. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
  89. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  90. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
  91. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  92. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
  93. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  94. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
  95. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  96. {0, }
  97. };
  98. MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
  99. static u16 __sungem_phy_read(struct gem *gp, int phy_addr, int reg)
  100. {
  101. u32 cmd;
  102. int limit = 10000;
  103. cmd = (1 << 30);
  104. cmd |= (2 << 28);
  105. cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
  106. cmd |= (reg << 18) & MIF_FRAME_REGAD;
  107. cmd |= (MIF_FRAME_TAMSB);
  108. writel(cmd, gp->regs + MIF_FRAME);
  109. while (--limit) {
  110. cmd = readl(gp->regs + MIF_FRAME);
  111. if (cmd & MIF_FRAME_TALSB)
  112. break;
  113. udelay(10);
  114. }
  115. if (!limit)
  116. cmd = 0xffff;
  117. return cmd & MIF_FRAME_DATA;
  118. }
  119. static inline int _sungem_phy_read(struct net_device *dev, int mii_id, int reg)
  120. {
  121. struct gem *gp = netdev_priv(dev);
  122. return __sungem_phy_read(gp, mii_id, reg);
  123. }
  124. static inline u16 sungem_phy_read(struct gem *gp, int reg)
  125. {
  126. return __sungem_phy_read(gp, gp->mii_phy_addr, reg);
  127. }
  128. static void __sungem_phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
  129. {
  130. u32 cmd;
  131. int limit = 10000;
  132. cmd = (1 << 30);
  133. cmd |= (1 << 28);
  134. cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
  135. cmd |= (reg << 18) & MIF_FRAME_REGAD;
  136. cmd |= (MIF_FRAME_TAMSB);
  137. cmd |= (val & MIF_FRAME_DATA);
  138. writel(cmd, gp->regs + MIF_FRAME);
  139. while (limit--) {
  140. cmd = readl(gp->regs + MIF_FRAME);
  141. if (cmd & MIF_FRAME_TALSB)
  142. break;
  143. udelay(10);
  144. }
  145. }
  146. static inline void _sungem_phy_write(struct net_device *dev, int mii_id, int reg, int val)
  147. {
  148. struct gem *gp = netdev_priv(dev);
  149. __sungem_phy_write(gp, mii_id, reg, val & 0xffff);
  150. }
  151. static inline void sungem_phy_write(struct gem *gp, int reg, u16 val)
  152. {
  153. __sungem_phy_write(gp, gp->mii_phy_addr, reg, val);
  154. }
  155. static inline void gem_enable_ints(struct gem *gp)
  156. {
  157. /* Enable all interrupts but TXDONE */
  158. writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
  159. }
  160. static inline void gem_disable_ints(struct gem *gp)
  161. {
  162. /* Disable all interrupts, including TXDONE */
  163. writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
  164. (void)readl(gp->regs + GREG_IMASK); /* write posting */
  165. }
  166. static void gem_get_cell(struct gem *gp)
  167. {
  168. BUG_ON(gp->cell_enabled < 0);
  169. gp->cell_enabled++;
  170. #ifdef CONFIG_PPC_PMAC
  171. if (gp->cell_enabled == 1) {
  172. mb();
  173. pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
  174. udelay(10);
  175. }
  176. #endif /* CONFIG_PPC_PMAC */
  177. }
  178. /* Turn off the chip's clock */
  179. static void gem_put_cell(struct gem *gp)
  180. {
  181. BUG_ON(gp->cell_enabled <= 0);
  182. gp->cell_enabled--;
  183. #ifdef CONFIG_PPC_PMAC
  184. if (gp->cell_enabled == 0) {
  185. mb();
  186. pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
  187. udelay(10);
  188. }
  189. #endif /* CONFIG_PPC_PMAC */
  190. }
  191. static inline void gem_netif_stop(struct gem *gp)
  192. {
  193. netif_trans_update(gp->dev); /* prevent tx timeout */
  194. napi_disable(&gp->napi);
  195. netif_tx_disable(gp->dev);
  196. }
  197. static inline void gem_netif_start(struct gem *gp)
  198. {
  199. /* NOTE: unconditional netif_wake_queue is only
  200. * appropriate so long as all callers are assured to
  201. * have free tx slots.
  202. */
  203. netif_wake_queue(gp->dev);
  204. napi_enable(&gp->napi);
  205. }
  206. static void gem_schedule_reset(struct gem *gp)
  207. {
  208. gp->reset_task_pending = 1;
  209. schedule_work(&gp->reset_task);
  210. }
  211. static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
  212. {
  213. if (netif_msg_intr(gp))
  214. printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
  215. }
  216. static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  217. {
  218. u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
  219. u32 pcs_miistat;
  220. if (netif_msg_intr(gp))
  221. printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
  222. gp->dev->name, pcs_istat);
  223. if (!(pcs_istat & PCS_ISTAT_LSC)) {
  224. netdev_err(dev, "PCS irq but no link status change???\n");
  225. return 0;
  226. }
  227. /* The link status bit latches on zero, so you must
  228. * read it twice in such a case to see a transition
  229. * to the link being up.
  230. */
  231. pcs_miistat = readl(gp->regs + PCS_MIISTAT);
  232. if (!(pcs_miistat & PCS_MIISTAT_LS))
  233. pcs_miistat |=
  234. (readl(gp->regs + PCS_MIISTAT) &
  235. PCS_MIISTAT_LS);
  236. if (pcs_miistat & PCS_MIISTAT_ANC) {
  237. /* The remote-fault indication is only valid
  238. * when autoneg has completed.
  239. */
  240. if (pcs_miistat & PCS_MIISTAT_RF)
  241. netdev_info(dev, "PCS AutoNEG complete, RemoteFault\n");
  242. else
  243. netdev_info(dev, "PCS AutoNEG complete\n");
  244. }
  245. if (pcs_miistat & PCS_MIISTAT_LS) {
  246. netdev_info(dev, "PCS link is now up\n");
  247. netif_carrier_on(gp->dev);
  248. } else {
  249. netdev_info(dev, "PCS link is now down\n");
  250. netif_carrier_off(gp->dev);
  251. /* If this happens and the link timer is not running,
  252. * reset so we re-negotiate.
  253. */
  254. if (!timer_pending(&gp->link_timer))
  255. return 1;
  256. }
  257. return 0;
  258. }
  259. static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  260. {
  261. u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
  262. if (netif_msg_intr(gp))
  263. printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
  264. gp->dev->name, txmac_stat);
  265. /* Defer timer expiration is quite normal,
  266. * don't even log the event.
  267. */
  268. if ((txmac_stat & MAC_TXSTAT_DTE) &&
  269. !(txmac_stat & ~MAC_TXSTAT_DTE))
  270. return 0;
  271. if (txmac_stat & MAC_TXSTAT_URUN) {
  272. netdev_err(dev, "TX MAC xmit underrun\n");
  273. dev->stats.tx_fifo_errors++;
  274. }
  275. if (txmac_stat & MAC_TXSTAT_MPE) {
  276. netdev_err(dev, "TX MAC max packet size error\n");
  277. dev->stats.tx_errors++;
  278. }
  279. /* The rest are all cases of one of the 16-bit TX
  280. * counters expiring.
  281. */
  282. if (txmac_stat & MAC_TXSTAT_NCE)
  283. dev->stats.collisions += 0x10000;
  284. if (txmac_stat & MAC_TXSTAT_ECE) {
  285. dev->stats.tx_aborted_errors += 0x10000;
  286. dev->stats.collisions += 0x10000;
  287. }
  288. if (txmac_stat & MAC_TXSTAT_LCE) {
  289. dev->stats.tx_aborted_errors += 0x10000;
  290. dev->stats.collisions += 0x10000;
  291. }
  292. /* We do not keep track of MAC_TXSTAT_FCE and
  293. * MAC_TXSTAT_PCE events.
  294. */
  295. return 0;
  296. }
  297. /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
  298. * so we do the following.
  299. *
  300. * If any part of the reset goes wrong, we return 1 and that causes the
  301. * whole chip to be reset.
  302. */
  303. static int gem_rxmac_reset(struct gem *gp)
  304. {
  305. struct net_device *dev = gp->dev;
  306. int limit, i;
  307. u64 desc_dma;
  308. u32 val;
  309. /* First, reset & disable MAC RX. */
  310. writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
  311. for (limit = 0; limit < 5000; limit++) {
  312. if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
  313. break;
  314. udelay(10);
  315. }
  316. if (limit == 5000) {
  317. netdev_err(dev, "RX MAC will not reset, resetting whole chip\n");
  318. return 1;
  319. }
  320. writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
  321. gp->regs + MAC_RXCFG);
  322. for (limit = 0; limit < 5000; limit++) {
  323. if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
  324. break;
  325. udelay(10);
  326. }
  327. if (limit == 5000) {
  328. netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
  329. return 1;
  330. }
  331. /* Second, disable RX DMA. */
  332. writel(0, gp->regs + RXDMA_CFG);
  333. for (limit = 0; limit < 5000; limit++) {
  334. if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
  335. break;
  336. udelay(10);
  337. }
  338. if (limit == 5000) {
  339. netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
  340. return 1;
  341. }
  342. mdelay(5);
  343. /* Execute RX reset command. */
  344. writel(gp->swrst_base | GREG_SWRST_RXRST,
  345. gp->regs + GREG_SWRST);
  346. for (limit = 0; limit < 5000; limit++) {
  347. if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
  348. break;
  349. udelay(10);
  350. }
  351. if (limit == 5000) {
  352. netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
  353. return 1;
  354. }
  355. /* Refresh the RX ring. */
  356. for (i = 0; i < RX_RING_SIZE; i++) {
  357. struct gem_rxd *rxd = &gp->init_block->rxd[i];
  358. if (gp->rx_skbs[i] == NULL) {
  359. netdev_err(dev, "Parts of RX ring empty, resetting whole chip\n");
  360. return 1;
  361. }
  362. rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
  363. }
  364. gp->rx_new = gp->rx_old = 0;
  365. /* Now we must reprogram the rest of RX unit. */
  366. desc_dma = (u64) gp->gblock_dvma;
  367. desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
  368. writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
  369. writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
  370. writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
  371. val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
  372. (ETH_HLEN << 13) | RXDMA_CFG_FTHRESH_128);
  373. writel(val, gp->regs + RXDMA_CFG);
  374. if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
  375. writel(((5 & RXDMA_BLANK_IPKTS) |
  376. ((8 << 12) & RXDMA_BLANK_ITIME)),
  377. gp->regs + RXDMA_BLANK);
  378. else
  379. writel(((5 & RXDMA_BLANK_IPKTS) |
  380. ((4 << 12) & RXDMA_BLANK_ITIME)),
  381. gp->regs + RXDMA_BLANK);
  382. val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
  383. val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
  384. writel(val, gp->regs + RXDMA_PTHRESH);
  385. val = readl(gp->regs + RXDMA_CFG);
  386. writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
  387. writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
  388. val = readl(gp->regs + MAC_RXCFG);
  389. writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  390. return 0;
  391. }
  392. static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  393. {
  394. u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
  395. int ret = 0;
  396. if (netif_msg_intr(gp))
  397. printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
  398. gp->dev->name, rxmac_stat);
  399. if (rxmac_stat & MAC_RXSTAT_OFLW) {
  400. u32 smac = readl(gp->regs + MAC_SMACHINE);
  401. netdev_err(dev, "RX MAC fifo overflow smac[%08x]\n", smac);
  402. dev->stats.rx_over_errors++;
  403. dev->stats.rx_fifo_errors++;
  404. ret = gem_rxmac_reset(gp);
  405. }
  406. if (rxmac_stat & MAC_RXSTAT_ACE)
  407. dev->stats.rx_frame_errors += 0x10000;
  408. if (rxmac_stat & MAC_RXSTAT_CCE)
  409. dev->stats.rx_crc_errors += 0x10000;
  410. if (rxmac_stat & MAC_RXSTAT_LCE)
  411. dev->stats.rx_length_errors += 0x10000;
  412. /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
  413. * events.
  414. */
  415. return ret;
  416. }
  417. static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  418. {
  419. u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
  420. if (netif_msg_intr(gp))
  421. printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
  422. gp->dev->name, mac_cstat);
  423. /* This interrupt is just for pause frame and pause
  424. * tracking. It is useful for diagnostics and debug
  425. * but probably by default we will mask these events.
  426. */
  427. if (mac_cstat & MAC_CSTAT_PS)
  428. gp->pause_entered++;
  429. if (mac_cstat & MAC_CSTAT_PRCV)
  430. gp->pause_last_time_recvd = (mac_cstat >> 16);
  431. return 0;
  432. }
  433. static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  434. {
  435. u32 mif_status = readl(gp->regs + MIF_STATUS);
  436. u32 reg_val, changed_bits;
  437. reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
  438. changed_bits = (mif_status & MIF_STATUS_STAT);
  439. gem_handle_mif_event(gp, reg_val, changed_bits);
  440. return 0;
  441. }
  442. static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  443. {
  444. u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
  445. if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
  446. gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
  447. netdev_err(dev, "PCI error [%04x]", pci_estat);
  448. if (pci_estat & GREG_PCIESTAT_BADACK)
  449. pr_cont(" <No ACK64# during ABS64 cycle>");
  450. if (pci_estat & GREG_PCIESTAT_DTRTO)
  451. pr_cont(" <Delayed transaction timeout>");
  452. if (pci_estat & GREG_PCIESTAT_OTHER)
  453. pr_cont(" <other>");
  454. pr_cont("\n");
  455. } else {
  456. pci_estat |= GREG_PCIESTAT_OTHER;
  457. netdev_err(dev, "PCI error\n");
  458. }
  459. if (pci_estat & GREG_PCIESTAT_OTHER) {
  460. u16 pci_cfg_stat;
  461. /* Interrogate PCI config space for the
  462. * true cause.
  463. */
  464. pci_read_config_word(gp->pdev, PCI_STATUS,
  465. &pci_cfg_stat);
  466. netdev_err(dev, "Read PCI cfg space status [%04x]\n",
  467. pci_cfg_stat);
  468. if (pci_cfg_stat & PCI_STATUS_PARITY)
  469. netdev_err(dev, "PCI parity error detected\n");
  470. if (pci_cfg_stat & PCI_STATUS_SIG_TARGET_ABORT)
  471. netdev_err(dev, "PCI target abort\n");
  472. if (pci_cfg_stat & PCI_STATUS_REC_TARGET_ABORT)
  473. netdev_err(dev, "PCI master acks target abort\n");
  474. if (pci_cfg_stat & PCI_STATUS_REC_MASTER_ABORT)
  475. netdev_err(dev, "PCI master abort\n");
  476. if (pci_cfg_stat & PCI_STATUS_SIG_SYSTEM_ERROR)
  477. netdev_err(dev, "PCI system error SERR#\n");
  478. if (pci_cfg_stat & PCI_STATUS_DETECTED_PARITY)
  479. netdev_err(dev, "PCI parity error\n");
  480. /* Write the error bits back to clear them. */
  481. pci_cfg_stat &= (PCI_STATUS_PARITY |
  482. PCI_STATUS_SIG_TARGET_ABORT |
  483. PCI_STATUS_REC_TARGET_ABORT |
  484. PCI_STATUS_REC_MASTER_ABORT |
  485. PCI_STATUS_SIG_SYSTEM_ERROR |
  486. PCI_STATUS_DETECTED_PARITY);
  487. pci_write_config_word(gp->pdev,
  488. PCI_STATUS, pci_cfg_stat);
  489. }
  490. /* For all PCI errors, we should reset the chip. */
  491. return 1;
  492. }
  493. /* All non-normal interrupt conditions get serviced here.
  494. * Returns non-zero if we should just exit the interrupt
  495. * handler right now (ie. if we reset the card which invalidates
  496. * all of the other original irq status bits).
  497. */
  498. static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
  499. {
  500. if (gem_status & GREG_STAT_RXNOBUF) {
  501. /* Frame arrived, no free RX buffers available. */
  502. if (netif_msg_rx_err(gp))
  503. printk(KERN_DEBUG "%s: no buffer for rx frame\n",
  504. gp->dev->name);
  505. dev->stats.rx_dropped++;
  506. }
  507. if (gem_status & GREG_STAT_RXTAGERR) {
  508. /* corrupt RX tag framing */
  509. if (netif_msg_rx_err(gp))
  510. printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
  511. gp->dev->name);
  512. dev->stats.rx_errors++;
  513. return 1;
  514. }
  515. if (gem_status & GREG_STAT_PCS) {
  516. if (gem_pcs_interrupt(dev, gp, gem_status))
  517. return 1;
  518. }
  519. if (gem_status & GREG_STAT_TXMAC) {
  520. if (gem_txmac_interrupt(dev, gp, gem_status))
  521. return 1;
  522. }
  523. if (gem_status & GREG_STAT_RXMAC) {
  524. if (gem_rxmac_interrupt(dev, gp, gem_status))
  525. return 1;
  526. }
  527. if (gem_status & GREG_STAT_MAC) {
  528. if (gem_mac_interrupt(dev, gp, gem_status))
  529. return 1;
  530. }
  531. if (gem_status & GREG_STAT_MIF) {
  532. if (gem_mif_interrupt(dev, gp, gem_status))
  533. return 1;
  534. }
  535. if (gem_status & GREG_STAT_PCIERR) {
  536. if (gem_pci_interrupt(dev, gp, gem_status))
  537. return 1;
  538. }
  539. return 0;
  540. }
  541. static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
  542. {
  543. int entry, limit;
  544. entry = gp->tx_old;
  545. limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
  546. while (entry != limit) {
  547. struct sk_buff *skb;
  548. struct gem_txd *txd;
  549. dma_addr_t dma_addr;
  550. u32 dma_len;
  551. int frag;
  552. if (netif_msg_tx_done(gp))
  553. printk(KERN_DEBUG "%s: tx done, slot %d\n",
  554. gp->dev->name, entry);
  555. skb = gp->tx_skbs[entry];
  556. if (skb_shinfo(skb)->nr_frags) {
  557. int last = entry + skb_shinfo(skb)->nr_frags;
  558. int walk = entry;
  559. int incomplete = 0;
  560. last &= (TX_RING_SIZE - 1);
  561. for (;;) {
  562. walk = NEXT_TX(walk);
  563. if (walk == limit)
  564. incomplete = 1;
  565. if (walk == last)
  566. break;
  567. }
  568. if (incomplete)
  569. break;
  570. }
  571. gp->tx_skbs[entry] = NULL;
  572. dev->stats.tx_bytes += skb->len;
  573. for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
  574. txd = &gp->init_block->txd[entry];
  575. dma_addr = le64_to_cpu(txd->buffer);
  576. dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
  577. pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE);
  578. entry = NEXT_TX(entry);
  579. }
  580. dev->stats.tx_packets++;
  581. dev_consume_skb_any(skb);
  582. }
  583. gp->tx_old = entry;
  584. /* Need to make the tx_old update visible to gem_start_xmit()
  585. * before checking for netif_queue_stopped(). Without the
  586. * memory barrier, there is a small possibility that gem_start_xmit()
  587. * will miss it and cause the queue to be stopped forever.
  588. */
  589. smp_mb();
  590. if (unlikely(netif_queue_stopped(dev) &&
  591. TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))) {
  592. struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
  593. __netif_tx_lock(txq, smp_processor_id());
  594. if (netif_queue_stopped(dev) &&
  595. TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
  596. netif_wake_queue(dev);
  597. __netif_tx_unlock(txq);
  598. }
  599. }
  600. static __inline__ void gem_post_rxds(struct gem *gp, int limit)
  601. {
  602. int cluster_start, curr, count, kick;
  603. cluster_start = curr = (gp->rx_new & ~(4 - 1));
  604. count = 0;
  605. kick = -1;
  606. dma_wmb();
  607. while (curr != limit) {
  608. curr = NEXT_RX(curr);
  609. if (++count == 4) {
  610. struct gem_rxd *rxd =
  611. &gp->init_block->rxd[cluster_start];
  612. for (;;) {
  613. rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
  614. rxd++;
  615. cluster_start = NEXT_RX(cluster_start);
  616. if (cluster_start == curr)
  617. break;
  618. }
  619. kick = curr;
  620. count = 0;
  621. }
  622. }
  623. if (kick >= 0) {
  624. mb();
  625. writel(kick, gp->regs + RXDMA_KICK);
  626. }
  627. }
  628. #define ALIGNED_RX_SKB_ADDR(addr) \
  629. ((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr))
  630. static __inline__ struct sk_buff *gem_alloc_skb(struct net_device *dev, int size,
  631. gfp_t gfp_flags)
  632. {
  633. struct sk_buff *skb = alloc_skb(size + 64, gfp_flags);
  634. if (likely(skb)) {
  635. unsigned long offset = ALIGNED_RX_SKB_ADDR(skb->data);
  636. skb_reserve(skb, offset);
  637. }
  638. return skb;
  639. }
  640. static int gem_rx(struct gem *gp, int work_to_do)
  641. {
  642. struct net_device *dev = gp->dev;
  643. int entry, drops, work_done = 0;
  644. u32 done;
  645. if (netif_msg_rx_status(gp))
  646. printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
  647. gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
  648. entry = gp->rx_new;
  649. drops = 0;
  650. done = readl(gp->regs + RXDMA_DONE);
  651. for (;;) {
  652. struct gem_rxd *rxd = &gp->init_block->rxd[entry];
  653. struct sk_buff *skb;
  654. u64 status = le64_to_cpu(rxd->status_word);
  655. dma_addr_t dma_addr;
  656. int len;
  657. if ((status & RXDCTRL_OWN) != 0)
  658. break;
  659. if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
  660. break;
  661. /* When writing back RX descriptor, GEM writes status
  662. * then buffer address, possibly in separate transactions.
  663. * If we don't wait for the chip to write both, we could
  664. * post a new buffer to this descriptor then have GEM spam
  665. * on the buffer address. We sync on the RX completion
  666. * register to prevent this from happening.
  667. */
  668. if (entry == done) {
  669. done = readl(gp->regs + RXDMA_DONE);
  670. if (entry == done)
  671. break;
  672. }
  673. /* We can now account for the work we're about to do */
  674. work_done++;
  675. skb = gp->rx_skbs[entry];
  676. len = (status & RXDCTRL_BUFSZ) >> 16;
  677. if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
  678. dev->stats.rx_errors++;
  679. if (len < ETH_ZLEN)
  680. dev->stats.rx_length_errors++;
  681. if (len & RXDCTRL_BAD)
  682. dev->stats.rx_crc_errors++;
  683. /* We'll just return it to GEM. */
  684. drop_it:
  685. dev->stats.rx_dropped++;
  686. goto next;
  687. }
  688. dma_addr = le64_to_cpu(rxd->buffer);
  689. if (len > RX_COPY_THRESHOLD) {
  690. struct sk_buff *new_skb;
  691. new_skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
  692. if (new_skb == NULL) {
  693. drops++;
  694. goto drop_it;
  695. }
  696. pci_unmap_page(gp->pdev, dma_addr,
  697. RX_BUF_ALLOC_SIZE(gp),
  698. PCI_DMA_FROMDEVICE);
  699. gp->rx_skbs[entry] = new_skb;
  700. skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
  701. rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev,
  702. virt_to_page(new_skb->data),
  703. offset_in_page(new_skb->data),
  704. RX_BUF_ALLOC_SIZE(gp),
  705. PCI_DMA_FROMDEVICE));
  706. skb_reserve(new_skb, RX_OFFSET);
  707. /* Trim the original skb for the netif. */
  708. skb_trim(skb, len);
  709. } else {
  710. struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
  711. if (copy_skb == NULL) {
  712. drops++;
  713. goto drop_it;
  714. }
  715. skb_reserve(copy_skb, 2);
  716. skb_put(copy_skb, len);
  717. pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
  718. skb_copy_from_linear_data(skb, copy_skb->data, len);
  719. pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
  720. /* We'll reuse the original ring buffer. */
  721. skb = copy_skb;
  722. }
  723. if (likely(dev->features & NETIF_F_RXCSUM)) {
  724. __sum16 csum;
  725. csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff);
  726. skb->csum = csum_unfold(csum);
  727. skb->ip_summed = CHECKSUM_COMPLETE;
  728. }
  729. skb->protocol = eth_type_trans(skb, gp->dev);
  730. napi_gro_receive(&gp->napi, skb);
  731. dev->stats.rx_packets++;
  732. dev->stats.rx_bytes += len;
  733. next:
  734. entry = NEXT_RX(entry);
  735. }
  736. gem_post_rxds(gp, entry);
  737. gp->rx_new = entry;
  738. if (drops)
  739. netdev_info(gp->dev, "Memory squeeze, deferring packet\n");
  740. return work_done;
  741. }
  742. static int gem_poll(struct napi_struct *napi, int budget)
  743. {
  744. struct gem *gp = container_of(napi, struct gem, napi);
  745. struct net_device *dev = gp->dev;
  746. int work_done;
  747. work_done = 0;
  748. do {
  749. /* Handle anomalies */
  750. if (unlikely(gp->status & GREG_STAT_ABNORMAL)) {
  751. struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
  752. int reset;
  753. /* We run the abnormal interrupt handling code with
  754. * the Tx lock. It only resets the Rx portion of the
  755. * chip, but we need to guard it against DMA being
  756. * restarted by the link poll timer
  757. */
  758. __netif_tx_lock(txq, smp_processor_id());
  759. reset = gem_abnormal_irq(dev, gp, gp->status);
  760. __netif_tx_unlock(txq);
  761. if (reset) {
  762. gem_schedule_reset(gp);
  763. napi_complete(napi);
  764. return work_done;
  765. }
  766. }
  767. /* Run TX completion thread */
  768. gem_tx(dev, gp, gp->status);
  769. /* Run RX thread. We don't use any locking here,
  770. * code willing to do bad things - like cleaning the
  771. * rx ring - must call napi_disable(), which
  772. * schedule_timeout()'s if polling is already disabled.
  773. */
  774. work_done += gem_rx(gp, budget - work_done);
  775. if (work_done >= budget)
  776. return work_done;
  777. gp->status = readl(gp->regs + GREG_STAT);
  778. } while (gp->status & GREG_STAT_NAPI);
  779. napi_complete(napi);
  780. gem_enable_ints(gp);
  781. return work_done;
  782. }
  783. static irqreturn_t gem_interrupt(int irq, void *dev_id)
  784. {
  785. struct net_device *dev = dev_id;
  786. struct gem *gp = netdev_priv(dev);
  787. if (napi_schedule_prep(&gp->napi)) {
  788. u32 gem_status = readl(gp->regs + GREG_STAT);
  789. if (unlikely(gem_status == 0)) {
  790. napi_enable(&gp->napi);
  791. return IRQ_NONE;
  792. }
  793. if (netif_msg_intr(gp))
  794. printk(KERN_DEBUG "%s: gem_interrupt() gem_status: 0x%x\n",
  795. gp->dev->name, gem_status);
  796. gp->status = gem_status;
  797. gem_disable_ints(gp);
  798. __napi_schedule(&gp->napi);
  799. }
  800. /* If polling was disabled at the time we received that
  801. * interrupt, we may return IRQ_HANDLED here while we
  802. * should return IRQ_NONE. No big deal...
  803. */
  804. return IRQ_HANDLED;
  805. }
  806. #ifdef CONFIG_NET_POLL_CONTROLLER
  807. static void gem_poll_controller(struct net_device *dev)
  808. {
  809. struct gem *gp = netdev_priv(dev);
  810. disable_irq(gp->pdev->irq);
  811. gem_interrupt(gp->pdev->irq, dev);
  812. enable_irq(gp->pdev->irq);
  813. }
  814. #endif
  815. static void gem_tx_timeout(struct net_device *dev)
  816. {
  817. struct gem *gp = netdev_priv(dev);
  818. netdev_err(dev, "transmit timed out, resetting\n");
  819. netdev_err(dev, "TX_STATE[%08x:%08x:%08x]\n",
  820. readl(gp->regs + TXDMA_CFG),
  821. readl(gp->regs + MAC_TXSTAT),
  822. readl(gp->regs + MAC_TXCFG));
  823. netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
  824. readl(gp->regs + RXDMA_CFG),
  825. readl(gp->regs + MAC_RXSTAT),
  826. readl(gp->regs + MAC_RXCFG));
  827. gem_schedule_reset(gp);
  828. }
  829. static __inline__ int gem_intme(int entry)
  830. {
  831. /* Algorithm: IRQ every 1/2 of descriptors. */
  832. if (!(entry & ((TX_RING_SIZE>>1)-1)))
  833. return 1;
  834. return 0;
  835. }
  836. static netdev_tx_t gem_start_xmit(struct sk_buff *skb,
  837. struct net_device *dev)
  838. {
  839. struct gem *gp = netdev_priv(dev);
  840. int entry;
  841. u64 ctrl;
  842. ctrl = 0;
  843. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  844. const u64 csum_start_off = skb_checksum_start_offset(skb);
  845. const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
  846. ctrl = (TXDCTRL_CENAB |
  847. (csum_start_off << 15) |
  848. (csum_stuff_off << 21));
  849. }
  850. if (unlikely(TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1))) {
  851. /* This is a hard error, log it. */
  852. if (!netif_queue_stopped(dev)) {
  853. netif_stop_queue(dev);
  854. netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
  855. }
  856. return NETDEV_TX_BUSY;
  857. }
  858. entry = gp->tx_new;
  859. gp->tx_skbs[entry] = skb;
  860. if (skb_shinfo(skb)->nr_frags == 0) {
  861. struct gem_txd *txd = &gp->init_block->txd[entry];
  862. dma_addr_t mapping;
  863. u32 len;
  864. len = skb->len;
  865. mapping = pci_map_page(gp->pdev,
  866. virt_to_page(skb->data),
  867. offset_in_page(skb->data),
  868. len, PCI_DMA_TODEVICE);
  869. ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
  870. if (gem_intme(entry))
  871. ctrl |= TXDCTRL_INTME;
  872. txd->buffer = cpu_to_le64(mapping);
  873. dma_wmb();
  874. txd->control_word = cpu_to_le64(ctrl);
  875. entry = NEXT_TX(entry);
  876. } else {
  877. struct gem_txd *txd;
  878. u32 first_len;
  879. u64 intme;
  880. dma_addr_t first_mapping;
  881. int frag, first_entry = entry;
  882. intme = 0;
  883. if (gem_intme(entry))
  884. intme |= TXDCTRL_INTME;
  885. /* We must give this initial chunk to the device last.
  886. * Otherwise we could race with the device.
  887. */
  888. first_len = skb_headlen(skb);
  889. first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data),
  890. offset_in_page(skb->data),
  891. first_len, PCI_DMA_TODEVICE);
  892. entry = NEXT_TX(entry);
  893. for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
  894. const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
  895. u32 len;
  896. dma_addr_t mapping;
  897. u64 this_ctrl;
  898. len = skb_frag_size(this_frag);
  899. mapping = skb_frag_dma_map(&gp->pdev->dev, this_frag,
  900. 0, len, DMA_TO_DEVICE);
  901. this_ctrl = ctrl;
  902. if (frag == skb_shinfo(skb)->nr_frags - 1)
  903. this_ctrl |= TXDCTRL_EOF;
  904. txd = &gp->init_block->txd[entry];
  905. txd->buffer = cpu_to_le64(mapping);
  906. dma_wmb();
  907. txd->control_word = cpu_to_le64(this_ctrl | len);
  908. if (gem_intme(entry))
  909. intme |= TXDCTRL_INTME;
  910. entry = NEXT_TX(entry);
  911. }
  912. txd = &gp->init_block->txd[first_entry];
  913. txd->buffer = cpu_to_le64(first_mapping);
  914. dma_wmb();
  915. txd->control_word =
  916. cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
  917. }
  918. gp->tx_new = entry;
  919. if (unlikely(TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))) {
  920. netif_stop_queue(dev);
  921. /* netif_stop_queue() must be done before checking
  922. * checking tx index in TX_BUFFS_AVAIL() below, because
  923. * in gem_tx(), we update tx_old before checking for
  924. * netif_queue_stopped().
  925. */
  926. smp_mb();
  927. if (TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
  928. netif_wake_queue(dev);
  929. }
  930. if (netif_msg_tx_queued(gp))
  931. printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
  932. dev->name, entry, skb->len);
  933. mb();
  934. writel(gp->tx_new, gp->regs + TXDMA_KICK);
  935. return NETDEV_TX_OK;
  936. }
  937. static void gem_pcs_reset(struct gem *gp)
  938. {
  939. int limit;
  940. u32 val;
  941. /* Reset PCS unit. */
  942. val = readl(gp->regs + PCS_MIICTRL);
  943. val |= PCS_MIICTRL_RST;
  944. writel(val, gp->regs + PCS_MIICTRL);
  945. limit = 32;
  946. while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
  947. udelay(100);
  948. if (limit-- <= 0)
  949. break;
  950. }
  951. if (limit < 0)
  952. netdev_warn(gp->dev, "PCS reset bit would not clear\n");
  953. }
  954. static void gem_pcs_reinit_adv(struct gem *gp)
  955. {
  956. u32 val;
  957. /* Make sure PCS is disabled while changing advertisement
  958. * configuration.
  959. */
  960. val = readl(gp->regs + PCS_CFG);
  961. val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
  962. writel(val, gp->regs + PCS_CFG);
  963. /* Advertise all capabilities except asymmetric
  964. * pause.
  965. */
  966. val = readl(gp->regs + PCS_MIIADV);
  967. val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
  968. PCS_MIIADV_SP | PCS_MIIADV_AP);
  969. writel(val, gp->regs + PCS_MIIADV);
  970. /* Enable and restart auto-negotiation, disable wrapback/loopback,
  971. * and re-enable PCS.
  972. */
  973. val = readl(gp->regs + PCS_MIICTRL);
  974. val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
  975. val &= ~PCS_MIICTRL_WB;
  976. writel(val, gp->regs + PCS_MIICTRL);
  977. val = readl(gp->regs + PCS_CFG);
  978. val |= PCS_CFG_ENABLE;
  979. writel(val, gp->regs + PCS_CFG);
  980. /* Make sure serialink loopback is off. The meaning
  981. * of this bit is logically inverted based upon whether
  982. * you are in Serialink or SERDES mode.
  983. */
  984. val = readl(gp->regs + PCS_SCTRL);
  985. if (gp->phy_type == phy_serialink)
  986. val &= ~PCS_SCTRL_LOOP;
  987. else
  988. val |= PCS_SCTRL_LOOP;
  989. writel(val, gp->regs + PCS_SCTRL);
  990. }
  991. #define STOP_TRIES 32
  992. static void gem_reset(struct gem *gp)
  993. {
  994. int limit;
  995. u32 val;
  996. /* Make sure we won't get any more interrupts */
  997. writel(0xffffffff, gp->regs + GREG_IMASK);
  998. /* Reset the chip */
  999. writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
  1000. gp->regs + GREG_SWRST);
  1001. limit = STOP_TRIES;
  1002. do {
  1003. udelay(20);
  1004. val = readl(gp->regs + GREG_SWRST);
  1005. if (limit-- <= 0)
  1006. break;
  1007. } while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
  1008. if (limit < 0)
  1009. netdev_err(gp->dev, "SW reset is ghetto\n");
  1010. if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes)
  1011. gem_pcs_reinit_adv(gp);
  1012. }
  1013. static void gem_start_dma(struct gem *gp)
  1014. {
  1015. u32 val;
  1016. /* We are ready to rock, turn everything on. */
  1017. val = readl(gp->regs + TXDMA_CFG);
  1018. writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
  1019. val = readl(gp->regs + RXDMA_CFG);
  1020. writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
  1021. val = readl(gp->regs + MAC_TXCFG);
  1022. writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
  1023. val = readl(gp->regs + MAC_RXCFG);
  1024. writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  1025. (void) readl(gp->regs + MAC_RXCFG);
  1026. udelay(100);
  1027. gem_enable_ints(gp);
  1028. writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
  1029. }
  1030. /* DMA won't be actually stopped before about 4ms tho ...
  1031. */
  1032. static void gem_stop_dma(struct gem *gp)
  1033. {
  1034. u32 val;
  1035. /* We are done rocking, turn everything off. */
  1036. val = readl(gp->regs + TXDMA_CFG);
  1037. writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
  1038. val = readl(gp->regs + RXDMA_CFG);
  1039. writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
  1040. val = readl(gp->regs + MAC_TXCFG);
  1041. writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
  1042. val = readl(gp->regs + MAC_RXCFG);
  1043. writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  1044. (void) readl(gp->regs + MAC_RXCFG);
  1045. /* Need to wait a bit ... done by the caller */
  1046. }
  1047. // XXX dbl check what that function should do when called on PCS PHY
  1048. static void gem_begin_auto_negotiation(struct gem *gp, struct ethtool_cmd *ep)
  1049. {
  1050. u32 advertise, features;
  1051. int autoneg;
  1052. int speed;
  1053. int duplex;
  1054. if (gp->phy_type != phy_mii_mdio0 &&
  1055. gp->phy_type != phy_mii_mdio1)
  1056. goto non_mii;
  1057. /* Setup advertise */
  1058. if (found_mii_phy(gp))
  1059. features = gp->phy_mii.def->features;
  1060. else
  1061. features = 0;
  1062. advertise = features & ADVERTISE_MASK;
  1063. if (gp->phy_mii.advertising != 0)
  1064. advertise &= gp->phy_mii.advertising;
  1065. autoneg = gp->want_autoneg;
  1066. speed = gp->phy_mii.speed;
  1067. duplex = gp->phy_mii.duplex;
  1068. /* Setup link parameters */
  1069. if (!ep)
  1070. goto start_aneg;
  1071. if (ep->autoneg == AUTONEG_ENABLE) {
  1072. advertise = ep->advertising;
  1073. autoneg = 1;
  1074. } else {
  1075. autoneg = 0;
  1076. speed = ethtool_cmd_speed(ep);
  1077. duplex = ep->duplex;
  1078. }
  1079. start_aneg:
  1080. /* Sanitize settings based on PHY capabilities */
  1081. if ((features & SUPPORTED_Autoneg) == 0)
  1082. autoneg = 0;
  1083. if (speed == SPEED_1000 &&
  1084. !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
  1085. speed = SPEED_100;
  1086. if (speed == SPEED_100 &&
  1087. !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
  1088. speed = SPEED_10;
  1089. if (duplex == DUPLEX_FULL &&
  1090. !(features & (SUPPORTED_1000baseT_Full |
  1091. SUPPORTED_100baseT_Full |
  1092. SUPPORTED_10baseT_Full)))
  1093. duplex = DUPLEX_HALF;
  1094. if (speed == 0)
  1095. speed = SPEED_10;
  1096. /* If we are asleep, we don't try to actually setup the PHY, we
  1097. * just store the settings
  1098. */
  1099. if (!netif_device_present(gp->dev)) {
  1100. gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
  1101. gp->phy_mii.speed = speed;
  1102. gp->phy_mii.duplex = duplex;
  1103. return;
  1104. }
  1105. /* Configure PHY & start aneg */
  1106. gp->want_autoneg = autoneg;
  1107. if (autoneg) {
  1108. if (found_mii_phy(gp))
  1109. gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
  1110. gp->lstate = link_aneg;
  1111. } else {
  1112. if (found_mii_phy(gp))
  1113. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
  1114. gp->lstate = link_force_ok;
  1115. }
  1116. non_mii:
  1117. gp->timer_ticks = 0;
  1118. mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
  1119. }
  1120. /* A link-up condition has occurred, initialize and enable the
  1121. * rest of the chip.
  1122. */
  1123. static int gem_set_link_modes(struct gem *gp)
  1124. {
  1125. struct netdev_queue *txq = netdev_get_tx_queue(gp->dev, 0);
  1126. int full_duplex, speed, pause;
  1127. u32 val;
  1128. full_duplex = 0;
  1129. speed = SPEED_10;
  1130. pause = 0;
  1131. if (found_mii_phy(gp)) {
  1132. if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
  1133. return 1;
  1134. full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
  1135. speed = gp->phy_mii.speed;
  1136. pause = gp->phy_mii.pause;
  1137. } else if (gp->phy_type == phy_serialink ||
  1138. gp->phy_type == phy_serdes) {
  1139. u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
  1140. if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes)
  1141. full_duplex = 1;
  1142. speed = SPEED_1000;
  1143. }
  1144. netif_info(gp, link, gp->dev, "Link is up at %d Mbps, %s-duplex\n",
  1145. speed, (full_duplex ? "full" : "half"));
  1146. /* We take the tx queue lock to avoid collisions between
  1147. * this code, the tx path and the NAPI-driven error path
  1148. */
  1149. __netif_tx_lock(txq, smp_processor_id());
  1150. val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
  1151. if (full_duplex) {
  1152. val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
  1153. } else {
  1154. /* MAC_TXCFG_NBO must be zero. */
  1155. }
  1156. writel(val, gp->regs + MAC_TXCFG);
  1157. val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
  1158. if (!full_duplex &&
  1159. (gp->phy_type == phy_mii_mdio0 ||
  1160. gp->phy_type == phy_mii_mdio1)) {
  1161. val |= MAC_XIFCFG_DISE;
  1162. } else if (full_duplex) {
  1163. val |= MAC_XIFCFG_FLED;
  1164. }
  1165. if (speed == SPEED_1000)
  1166. val |= (MAC_XIFCFG_GMII);
  1167. writel(val, gp->regs + MAC_XIFCFG);
  1168. /* If gigabit and half-duplex, enable carrier extension
  1169. * mode. Else, disable it.
  1170. */
  1171. if (speed == SPEED_1000 && !full_duplex) {
  1172. val = readl(gp->regs + MAC_TXCFG);
  1173. writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
  1174. val = readl(gp->regs + MAC_RXCFG);
  1175. writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
  1176. } else {
  1177. val = readl(gp->regs + MAC_TXCFG);
  1178. writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
  1179. val = readl(gp->regs + MAC_RXCFG);
  1180. writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
  1181. }
  1182. if (gp->phy_type == phy_serialink ||
  1183. gp->phy_type == phy_serdes) {
  1184. u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
  1185. if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
  1186. pause = 1;
  1187. }
  1188. if (!full_duplex)
  1189. writel(512, gp->regs + MAC_STIME);
  1190. else
  1191. writel(64, gp->regs + MAC_STIME);
  1192. val = readl(gp->regs + MAC_MCCFG);
  1193. if (pause)
  1194. val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
  1195. else
  1196. val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
  1197. writel(val, gp->regs + MAC_MCCFG);
  1198. gem_start_dma(gp);
  1199. __netif_tx_unlock(txq);
  1200. if (netif_msg_link(gp)) {
  1201. if (pause) {
  1202. netdev_info(gp->dev,
  1203. "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
  1204. gp->rx_fifo_sz,
  1205. gp->rx_pause_off,
  1206. gp->rx_pause_on);
  1207. } else {
  1208. netdev_info(gp->dev, "Pause is disabled\n");
  1209. }
  1210. }
  1211. return 0;
  1212. }
  1213. static int gem_mdio_link_not_up(struct gem *gp)
  1214. {
  1215. switch (gp->lstate) {
  1216. case link_force_ret:
  1217. netif_info(gp, link, gp->dev,
  1218. "Autoneg failed again, keeping forced mode\n");
  1219. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
  1220. gp->last_forced_speed, DUPLEX_HALF);
  1221. gp->timer_ticks = 5;
  1222. gp->lstate = link_force_ok;
  1223. return 0;
  1224. case link_aneg:
  1225. /* We try forced modes after a failed aneg only on PHYs that don't
  1226. * have "magic_aneg" bit set, which means they internally do the
  1227. * while forced-mode thingy. On these, we just restart aneg
  1228. */
  1229. if (gp->phy_mii.def->magic_aneg)
  1230. return 1;
  1231. netif_info(gp, link, gp->dev, "switching to forced 100bt\n");
  1232. /* Try forced modes. */
  1233. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
  1234. DUPLEX_HALF);
  1235. gp->timer_ticks = 5;
  1236. gp->lstate = link_force_try;
  1237. return 0;
  1238. case link_force_try:
  1239. /* Downgrade from 100 to 10 Mbps if necessary.
  1240. * If already at 10Mbps, warn user about the
  1241. * situation every 10 ticks.
  1242. */
  1243. if (gp->phy_mii.speed == SPEED_100) {
  1244. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
  1245. DUPLEX_HALF);
  1246. gp->timer_ticks = 5;
  1247. netif_info(gp, link, gp->dev,
  1248. "switching to forced 10bt\n");
  1249. return 0;
  1250. } else
  1251. return 1;
  1252. default:
  1253. return 0;
  1254. }
  1255. }
  1256. static void gem_link_timer(unsigned long data)
  1257. {
  1258. struct gem *gp = (struct gem *) data;
  1259. struct net_device *dev = gp->dev;
  1260. int restart_aneg = 0;
  1261. /* There's no point doing anything if we're going to be reset */
  1262. if (gp->reset_task_pending)
  1263. return;
  1264. if (gp->phy_type == phy_serialink ||
  1265. gp->phy_type == phy_serdes) {
  1266. u32 val = readl(gp->regs + PCS_MIISTAT);
  1267. if (!(val & PCS_MIISTAT_LS))
  1268. val = readl(gp->regs + PCS_MIISTAT);
  1269. if ((val & PCS_MIISTAT_LS) != 0) {
  1270. if (gp->lstate == link_up)
  1271. goto restart;
  1272. gp->lstate = link_up;
  1273. netif_carrier_on(dev);
  1274. (void)gem_set_link_modes(gp);
  1275. }
  1276. goto restart;
  1277. }
  1278. if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
  1279. /* Ok, here we got a link. If we had it due to a forced
  1280. * fallback, and we were configured for autoneg, we do
  1281. * retry a short autoneg pass. If you know your hub is
  1282. * broken, use ethtool ;)
  1283. */
  1284. if (gp->lstate == link_force_try && gp->want_autoneg) {
  1285. gp->lstate = link_force_ret;
  1286. gp->last_forced_speed = gp->phy_mii.speed;
  1287. gp->timer_ticks = 5;
  1288. if (netif_msg_link(gp))
  1289. netdev_info(dev,
  1290. "Got link after fallback, retrying autoneg once...\n");
  1291. gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
  1292. } else if (gp->lstate != link_up) {
  1293. gp->lstate = link_up;
  1294. netif_carrier_on(dev);
  1295. if (gem_set_link_modes(gp))
  1296. restart_aneg = 1;
  1297. }
  1298. } else {
  1299. /* If the link was previously up, we restart the
  1300. * whole process
  1301. */
  1302. if (gp->lstate == link_up) {
  1303. gp->lstate = link_down;
  1304. netif_info(gp, link, dev, "Link down\n");
  1305. netif_carrier_off(dev);
  1306. gem_schedule_reset(gp);
  1307. /* The reset task will restart the timer */
  1308. return;
  1309. } else if (++gp->timer_ticks > 10) {
  1310. if (found_mii_phy(gp))
  1311. restart_aneg = gem_mdio_link_not_up(gp);
  1312. else
  1313. restart_aneg = 1;
  1314. }
  1315. }
  1316. if (restart_aneg) {
  1317. gem_begin_auto_negotiation(gp, NULL);
  1318. return;
  1319. }
  1320. restart:
  1321. mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
  1322. }
  1323. static void gem_clean_rings(struct gem *gp)
  1324. {
  1325. struct gem_init_block *gb = gp->init_block;
  1326. struct sk_buff *skb;
  1327. int i;
  1328. dma_addr_t dma_addr;
  1329. for (i = 0; i < RX_RING_SIZE; i++) {
  1330. struct gem_rxd *rxd;
  1331. rxd = &gb->rxd[i];
  1332. if (gp->rx_skbs[i] != NULL) {
  1333. skb = gp->rx_skbs[i];
  1334. dma_addr = le64_to_cpu(rxd->buffer);
  1335. pci_unmap_page(gp->pdev, dma_addr,
  1336. RX_BUF_ALLOC_SIZE(gp),
  1337. PCI_DMA_FROMDEVICE);
  1338. dev_kfree_skb_any(skb);
  1339. gp->rx_skbs[i] = NULL;
  1340. }
  1341. rxd->status_word = 0;
  1342. dma_wmb();
  1343. rxd->buffer = 0;
  1344. }
  1345. for (i = 0; i < TX_RING_SIZE; i++) {
  1346. if (gp->tx_skbs[i] != NULL) {
  1347. struct gem_txd *txd;
  1348. int frag;
  1349. skb = gp->tx_skbs[i];
  1350. gp->tx_skbs[i] = NULL;
  1351. for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
  1352. int ent = i & (TX_RING_SIZE - 1);
  1353. txd = &gb->txd[ent];
  1354. dma_addr = le64_to_cpu(txd->buffer);
  1355. pci_unmap_page(gp->pdev, dma_addr,
  1356. le64_to_cpu(txd->control_word) &
  1357. TXDCTRL_BUFSZ, PCI_DMA_TODEVICE);
  1358. if (frag != skb_shinfo(skb)->nr_frags)
  1359. i++;
  1360. }
  1361. dev_kfree_skb_any(skb);
  1362. }
  1363. }
  1364. }
  1365. static void gem_init_rings(struct gem *gp)
  1366. {
  1367. struct gem_init_block *gb = gp->init_block;
  1368. struct net_device *dev = gp->dev;
  1369. int i;
  1370. dma_addr_t dma_addr;
  1371. gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
  1372. gem_clean_rings(gp);
  1373. gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
  1374. (unsigned)VLAN_ETH_FRAME_LEN);
  1375. for (i = 0; i < RX_RING_SIZE; i++) {
  1376. struct sk_buff *skb;
  1377. struct gem_rxd *rxd = &gb->rxd[i];
  1378. skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_KERNEL);
  1379. if (!skb) {
  1380. rxd->buffer = 0;
  1381. rxd->status_word = 0;
  1382. continue;
  1383. }
  1384. gp->rx_skbs[i] = skb;
  1385. skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
  1386. dma_addr = pci_map_page(gp->pdev,
  1387. virt_to_page(skb->data),
  1388. offset_in_page(skb->data),
  1389. RX_BUF_ALLOC_SIZE(gp),
  1390. PCI_DMA_FROMDEVICE);
  1391. rxd->buffer = cpu_to_le64(dma_addr);
  1392. dma_wmb();
  1393. rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
  1394. skb_reserve(skb, RX_OFFSET);
  1395. }
  1396. for (i = 0; i < TX_RING_SIZE; i++) {
  1397. struct gem_txd *txd = &gb->txd[i];
  1398. txd->control_word = 0;
  1399. dma_wmb();
  1400. txd->buffer = 0;
  1401. }
  1402. wmb();
  1403. }
  1404. /* Init PHY interface and start link poll state machine */
  1405. static void gem_init_phy(struct gem *gp)
  1406. {
  1407. u32 mifcfg;
  1408. /* Revert MIF CFG setting done on stop_phy */
  1409. mifcfg = readl(gp->regs + MIF_CFG);
  1410. mifcfg &= ~MIF_CFG_BBMODE;
  1411. writel(mifcfg, gp->regs + MIF_CFG);
  1412. if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
  1413. int i;
  1414. /* Those delay sucks, the HW seem to love them though, I'll
  1415. * serisouly consider breaking some locks here to be able
  1416. * to schedule instead
  1417. */
  1418. for (i = 0; i < 3; i++) {
  1419. #ifdef CONFIG_PPC_PMAC
  1420. pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
  1421. msleep(20);
  1422. #endif
  1423. /* Some PHYs used by apple have problem getting back to us,
  1424. * we do an additional reset here
  1425. */
  1426. sungem_phy_write(gp, MII_BMCR, BMCR_RESET);
  1427. msleep(20);
  1428. if (sungem_phy_read(gp, MII_BMCR) != 0xffff)
  1429. break;
  1430. if (i == 2)
  1431. netdev_warn(gp->dev, "GMAC PHY not responding !\n");
  1432. }
  1433. }
  1434. if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
  1435. gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
  1436. u32 val;
  1437. /* Init datapath mode register. */
  1438. if (gp->phy_type == phy_mii_mdio0 ||
  1439. gp->phy_type == phy_mii_mdio1) {
  1440. val = PCS_DMODE_MGM;
  1441. } else if (gp->phy_type == phy_serialink) {
  1442. val = PCS_DMODE_SM | PCS_DMODE_GMOE;
  1443. } else {
  1444. val = PCS_DMODE_ESM;
  1445. }
  1446. writel(val, gp->regs + PCS_DMODE);
  1447. }
  1448. if (gp->phy_type == phy_mii_mdio0 ||
  1449. gp->phy_type == phy_mii_mdio1) {
  1450. /* Reset and detect MII PHY */
  1451. sungem_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
  1452. /* Init PHY */
  1453. if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
  1454. gp->phy_mii.def->ops->init(&gp->phy_mii);
  1455. } else {
  1456. gem_pcs_reset(gp);
  1457. gem_pcs_reinit_adv(gp);
  1458. }
  1459. /* Default aneg parameters */
  1460. gp->timer_ticks = 0;
  1461. gp->lstate = link_down;
  1462. netif_carrier_off(gp->dev);
  1463. /* Print things out */
  1464. if (gp->phy_type == phy_mii_mdio0 ||
  1465. gp->phy_type == phy_mii_mdio1)
  1466. netdev_info(gp->dev, "Found %s PHY\n",
  1467. gp->phy_mii.def ? gp->phy_mii.def->name : "no");
  1468. gem_begin_auto_negotiation(gp, NULL);
  1469. }
  1470. static void gem_init_dma(struct gem *gp)
  1471. {
  1472. u64 desc_dma = (u64) gp->gblock_dvma;
  1473. u32 val;
  1474. val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
  1475. writel(val, gp->regs + TXDMA_CFG);
  1476. writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
  1477. writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
  1478. desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
  1479. writel(0, gp->regs + TXDMA_KICK);
  1480. val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
  1481. (ETH_HLEN << 13) | RXDMA_CFG_FTHRESH_128);
  1482. writel(val, gp->regs + RXDMA_CFG);
  1483. writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
  1484. writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
  1485. writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
  1486. val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
  1487. val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
  1488. writel(val, gp->regs + RXDMA_PTHRESH);
  1489. if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
  1490. writel(((5 & RXDMA_BLANK_IPKTS) |
  1491. ((8 << 12) & RXDMA_BLANK_ITIME)),
  1492. gp->regs + RXDMA_BLANK);
  1493. else
  1494. writel(((5 & RXDMA_BLANK_IPKTS) |
  1495. ((4 << 12) & RXDMA_BLANK_ITIME)),
  1496. gp->regs + RXDMA_BLANK);
  1497. }
  1498. static u32 gem_setup_multicast(struct gem *gp)
  1499. {
  1500. u32 rxcfg = 0;
  1501. int i;
  1502. if ((gp->dev->flags & IFF_ALLMULTI) ||
  1503. (netdev_mc_count(gp->dev) > 256)) {
  1504. for (i=0; i<16; i++)
  1505. writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
  1506. rxcfg |= MAC_RXCFG_HFE;
  1507. } else if (gp->dev->flags & IFF_PROMISC) {
  1508. rxcfg |= MAC_RXCFG_PROM;
  1509. } else {
  1510. u16 hash_table[16];
  1511. u32 crc;
  1512. struct netdev_hw_addr *ha;
  1513. int i;
  1514. memset(hash_table, 0, sizeof(hash_table));
  1515. netdev_for_each_mc_addr(ha, gp->dev) {
  1516. crc = ether_crc_le(6, ha->addr);
  1517. crc >>= 24;
  1518. hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
  1519. }
  1520. for (i=0; i<16; i++)
  1521. writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
  1522. rxcfg |= MAC_RXCFG_HFE;
  1523. }
  1524. return rxcfg;
  1525. }
  1526. static void gem_init_mac(struct gem *gp)
  1527. {
  1528. unsigned char *e = &gp->dev->dev_addr[0];
  1529. writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
  1530. writel(0x00, gp->regs + MAC_IPG0);
  1531. writel(0x08, gp->regs + MAC_IPG1);
  1532. writel(0x04, gp->regs + MAC_IPG2);
  1533. writel(0x40, gp->regs + MAC_STIME);
  1534. writel(0x40, gp->regs + MAC_MINFSZ);
  1535. /* Ethernet payload + header + FCS + optional VLAN tag. */
  1536. writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
  1537. writel(0x07, gp->regs + MAC_PASIZE);
  1538. writel(0x04, gp->regs + MAC_JAMSIZE);
  1539. writel(0x10, gp->regs + MAC_ATTLIM);
  1540. writel(0x8808, gp->regs + MAC_MCTYPE);
  1541. writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
  1542. writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
  1543. writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
  1544. writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
  1545. writel(0, gp->regs + MAC_ADDR3);
  1546. writel(0, gp->regs + MAC_ADDR4);
  1547. writel(0, gp->regs + MAC_ADDR5);
  1548. writel(0x0001, gp->regs + MAC_ADDR6);
  1549. writel(0xc200, gp->regs + MAC_ADDR7);
  1550. writel(0x0180, gp->regs + MAC_ADDR8);
  1551. writel(0, gp->regs + MAC_AFILT0);
  1552. writel(0, gp->regs + MAC_AFILT1);
  1553. writel(0, gp->regs + MAC_AFILT2);
  1554. writel(0, gp->regs + MAC_AF21MSK);
  1555. writel(0, gp->regs + MAC_AF0MSK);
  1556. gp->mac_rx_cfg = gem_setup_multicast(gp);
  1557. #ifdef STRIP_FCS
  1558. gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
  1559. #endif
  1560. writel(0, gp->regs + MAC_NCOLL);
  1561. writel(0, gp->regs + MAC_FASUCC);
  1562. writel(0, gp->regs + MAC_ECOLL);
  1563. writel(0, gp->regs + MAC_LCOLL);
  1564. writel(0, gp->regs + MAC_DTIMER);
  1565. writel(0, gp->regs + MAC_PATMPS);
  1566. writel(0, gp->regs + MAC_RFCTR);
  1567. writel(0, gp->regs + MAC_LERR);
  1568. writel(0, gp->regs + MAC_AERR);
  1569. writel(0, gp->regs + MAC_FCSERR);
  1570. writel(0, gp->regs + MAC_RXCVERR);
  1571. /* Clear RX/TX/MAC/XIF config, we will set these up and enable
  1572. * them once a link is established.
  1573. */
  1574. writel(0, gp->regs + MAC_TXCFG);
  1575. writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
  1576. writel(0, gp->regs + MAC_MCCFG);
  1577. writel(0, gp->regs + MAC_XIFCFG);
  1578. /* Setup MAC interrupts. We want to get all of the interesting
  1579. * counter expiration events, but we do not want to hear about
  1580. * normal rx/tx as the DMA engine tells us that.
  1581. */
  1582. writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
  1583. writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
  1584. /* Don't enable even the PAUSE interrupts for now, we
  1585. * make no use of those events other than to record them.
  1586. */
  1587. writel(0xffffffff, gp->regs + MAC_MCMASK);
  1588. /* Don't enable GEM's WOL in normal operations
  1589. */
  1590. if (gp->has_wol)
  1591. writel(0, gp->regs + WOL_WAKECSR);
  1592. }
  1593. static void gem_init_pause_thresholds(struct gem *gp)
  1594. {
  1595. u32 cfg;
  1596. /* Calculate pause thresholds. Setting the OFF threshold to the
  1597. * full RX fifo size effectively disables PAUSE generation which
  1598. * is what we do for 10/100 only GEMs which have FIFOs too small
  1599. * to make real gains from PAUSE.
  1600. */
  1601. if (gp->rx_fifo_sz <= (2 * 1024)) {
  1602. gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
  1603. } else {
  1604. int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
  1605. int off = (gp->rx_fifo_sz - (max_frame * 2));
  1606. int on = off - max_frame;
  1607. gp->rx_pause_off = off;
  1608. gp->rx_pause_on = on;
  1609. }
  1610. /* Configure the chip "burst" DMA mode & enable some
  1611. * HW bug fixes on Apple version
  1612. */
  1613. cfg = 0;
  1614. if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
  1615. cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
  1616. #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
  1617. cfg |= GREG_CFG_IBURST;
  1618. #endif
  1619. cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
  1620. cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
  1621. writel(cfg, gp->regs + GREG_CFG);
  1622. /* If Infinite Burst didn't stick, then use different
  1623. * thresholds (and Apple bug fixes don't exist)
  1624. */
  1625. if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
  1626. cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
  1627. cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
  1628. writel(cfg, gp->regs + GREG_CFG);
  1629. }
  1630. }
  1631. static int gem_check_invariants(struct gem *gp)
  1632. {
  1633. struct pci_dev *pdev = gp->pdev;
  1634. u32 mif_cfg;
  1635. /* On Apple's sungem, we can't rely on registers as the chip
  1636. * was been powered down by the firmware. The PHY is looked
  1637. * up later on.
  1638. */
  1639. if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
  1640. gp->phy_type = phy_mii_mdio0;
  1641. gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
  1642. gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
  1643. gp->swrst_base = 0;
  1644. mif_cfg = readl(gp->regs + MIF_CFG);
  1645. mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
  1646. mif_cfg |= MIF_CFG_MDI0;
  1647. writel(mif_cfg, gp->regs + MIF_CFG);
  1648. writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
  1649. writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
  1650. /* We hard-code the PHY address so we can properly bring it out of
  1651. * reset later on, we can't really probe it at this point, though
  1652. * that isn't an issue.
  1653. */
  1654. if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
  1655. gp->mii_phy_addr = 1;
  1656. else
  1657. gp->mii_phy_addr = 0;
  1658. return 0;
  1659. }
  1660. mif_cfg = readl(gp->regs + MIF_CFG);
  1661. if (pdev->vendor == PCI_VENDOR_ID_SUN &&
  1662. pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
  1663. /* One of the MII PHYs _must_ be present
  1664. * as this chip has no gigabit PHY.
  1665. */
  1666. if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
  1667. pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n",
  1668. mif_cfg);
  1669. return -1;
  1670. }
  1671. }
  1672. /* Determine initial PHY interface type guess. MDIO1 is the
  1673. * external PHY and thus takes precedence over MDIO0.
  1674. */
  1675. if (mif_cfg & MIF_CFG_MDI1) {
  1676. gp->phy_type = phy_mii_mdio1;
  1677. mif_cfg |= MIF_CFG_PSELECT;
  1678. writel(mif_cfg, gp->regs + MIF_CFG);
  1679. } else if (mif_cfg & MIF_CFG_MDI0) {
  1680. gp->phy_type = phy_mii_mdio0;
  1681. mif_cfg &= ~MIF_CFG_PSELECT;
  1682. writel(mif_cfg, gp->regs + MIF_CFG);
  1683. } else {
  1684. #ifdef CONFIG_SPARC
  1685. const char *p;
  1686. p = of_get_property(gp->of_node, "shared-pins", NULL);
  1687. if (p && !strcmp(p, "serdes"))
  1688. gp->phy_type = phy_serdes;
  1689. else
  1690. #endif
  1691. gp->phy_type = phy_serialink;
  1692. }
  1693. if (gp->phy_type == phy_mii_mdio1 ||
  1694. gp->phy_type == phy_mii_mdio0) {
  1695. int i;
  1696. for (i = 0; i < 32; i++) {
  1697. gp->mii_phy_addr = i;
  1698. if (sungem_phy_read(gp, MII_BMCR) != 0xffff)
  1699. break;
  1700. }
  1701. if (i == 32) {
  1702. if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
  1703. pr_err("RIO MII phy will not respond\n");
  1704. return -1;
  1705. }
  1706. gp->phy_type = phy_serdes;
  1707. }
  1708. }
  1709. /* Fetch the FIFO configurations now too. */
  1710. gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
  1711. gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
  1712. if (pdev->vendor == PCI_VENDOR_ID_SUN) {
  1713. if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
  1714. if (gp->tx_fifo_sz != (9 * 1024) ||
  1715. gp->rx_fifo_sz != (20 * 1024)) {
  1716. pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n",
  1717. gp->tx_fifo_sz, gp->rx_fifo_sz);
  1718. return -1;
  1719. }
  1720. gp->swrst_base = 0;
  1721. } else {
  1722. if (gp->tx_fifo_sz != (2 * 1024) ||
  1723. gp->rx_fifo_sz != (2 * 1024)) {
  1724. pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
  1725. gp->tx_fifo_sz, gp->rx_fifo_sz);
  1726. return -1;
  1727. }
  1728. gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
  1729. }
  1730. }
  1731. return 0;
  1732. }
  1733. static void gem_reinit_chip(struct gem *gp)
  1734. {
  1735. /* Reset the chip */
  1736. gem_reset(gp);
  1737. /* Make sure ints are disabled */
  1738. gem_disable_ints(gp);
  1739. /* Allocate & setup ring buffers */
  1740. gem_init_rings(gp);
  1741. /* Configure pause thresholds */
  1742. gem_init_pause_thresholds(gp);
  1743. /* Init DMA & MAC engines */
  1744. gem_init_dma(gp);
  1745. gem_init_mac(gp);
  1746. }
  1747. static void gem_stop_phy(struct gem *gp, int wol)
  1748. {
  1749. u32 mifcfg;
  1750. /* Let the chip settle down a bit, it seems that helps
  1751. * for sleep mode on some models
  1752. */
  1753. msleep(10);
  1754. /* Make sure we aren't polling PHY status change. We
  1755. * don't currently use that feature though
  1756. */
  1757. mifcfg = readl(gp->regs + MIF_CFG);
  1758. mifcfg &= ~MIF_CFG_POLL;
  1759. writel(mifcfg, gp->regs + MIF_CFG);
  1760. if (wol && gp->has_wol) {
  1761. unsigned char *e = &gp->dev->dev_addr[0];
  1762. u32 csr;
  1763. /* Setup wake-on-lan for MAGIC packet */
  1764. writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
  1765. gp->regs + MAC_RXCFG);
  1766. writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
  1767. writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
  1768. writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
  1769. writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
  1770. csr = WOL_WAKECSR_ENABLE;
  1771. if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
  1772. csr |= WOL_WAKECSR_MII;
  1773. writel(csr, gp->regs + WOL_WAKECSR);
  1774. } else {
  1775. writel(0, gp->regs + MAC_RXCFG);
  1776. (void)readl(gp->regs + MAC_RXCFG);
  1777. /* Machine sleep will die in strange ways if we
  1778. * dont wait a bit here, looks like the chip takes
  1779. * some time to really shut down
  1780. */
  1781. msleep(10);
  1782. }
  1783. writel(0, gp->regs + MAC_TXCFG);
  1784. writel(0, gp->regs + MAC_XIFCFG);
  1785. writel(0, gp->regs + TXDMA_CFG);
  1786. writel(0, gp->regs + RXDMA_CFG);
  1787. if (!wol) {
  1788. gem_reset(gp);
  1789. writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
  1790. writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
  1791. if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
  1792. gp->phy_mii.def->ops->suspend(&gp->phy_mii);
  1793. /* According to Apple, we must set the MDIO pins to this begnign
  1794. * state or we may 1) eat more current, 2) damage some PHYs
  1795. */
  1796. writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
  1797. writel(0, gp->regs + MIF_BBCLK);
  1798. writel(0, gp->regs + MIF_BBDATA);
  1799. writel(0, gp->regs + MIF_BBOENAB);
  1800. writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
  1801. (void) readl(gp->regs + MAC_XIFCFG);
  1802. }
  1803. }
  1804. static int gem_do_start(struct net_device *dev)
  1805. {
  1806. struct gem *gp = netdev_priv(dev);
  1807. int rc;
  1808. /* Enable the cell */
  1809. gem_get_cell(gp);
  1810. /* Make sure PCI access and bus master are enabled */
  1811. rc = pci_enable_device(gp->pdev);
  1812. if (rc) {
  1813. netdev_err(dev, "Failed to enable chip on PCI bus !\n");
  1814. /* Put cell and forget it for now, it will be considered as
  1815. * still asleep, a new sleep cycle may bring it back
  1816. */
  1817. gem_put_cell(gp);
  1818. return -ENXIO;
  1819. }
  1820. pci_set_master(gp->pdev);
  1821. /* Init & setup chip hardware */
  1822. gem_reinit_chip(gp);
  1823. /* An interrupt might come in handy */
  1824. rc = request_irq(gp->pdev->irq, gem_interrupt,
  1825. IRQF_SHARED, dev->name, (void *)dev);
  1826. if (rc) {
  1827. netdev_err(dev, "failed to request irq !\n");
  1828. gem_reset(gp);
  1829. gem_clean_rings(gp);
  1830. gem_put_cell(gp);
  1831. return rc;
  1832. }
  1833. /* Mark us as attached again if we come from resume(), this has
  1834. * no effect if we weren't detached and needs to be done now.
  1835. */
  1836. netif_device_attach(dev);
  1837. /* Restart NAPI & queues */
  1838. gem_netif_start(gp);
  1839. /* Detect & init PHY, start autoneg etc... this will
  1840. * eventually result in starting DMA operations when
  1841. * the link is up
  1842. */
  1843. gem_init_phy(gp);
  1844. return 0;
  1845. }
  1846. static void gem_do_stop(struct net_device *dev, int wol)
  1847. {
  1848. struct gem *gp = netdev_priv(dev);
  1849. /* Stop NAPI and stop tx queue */
  1850. gem_netif_stop(gp);
  1851. /* Make sure ints are disabled. We don't care about
  1852. * synchronizing as NAPI is disabled, thus a stray
  1853. * interrupt will do nothing bad (our irq handler
  1854. * just schedules NAPI)
  1855. */
  1856. gem_disable_ints(gp);
  1857. /* Stop the link timer */
  1858. del_timer_sync(&gp->link_timer);
  1859. /* We cannot cancel the reset task while holding the
  1860. * rtnl lock, we'd get an A->B / B->A deadlock stituation
  1861. * if we did. This is not an issue however as the reset
  1862. * task is synchronized vs. us (rtnl_lock) and will do
  1863. * nothing if the device is down or suspended. We do
  1864. * still clear reset_task_pending to avoid a spurrious
  1865. * reset later on in case we do resume before it gets
  1866. * scheduled.
  1867. */
  1868. gp->reset_task_pending = 0;
  1869. /* If we are going to sleep with WOL */
  1870. gem_stop_dma(gp);
  1871. msleep(10);
  1872. if (!wol)
  1873. gem_reset(gp);
  1874. msleep(10);
  1875. /* Get rid of rings */
  1876. gem_clean_rings(gp);
  1877. /* No irq needed anymore */
  1878. free_irq(gp->pdev->irq, (void *) dev);
  1879. /* Shut the PHY down eventually and setup WOL */
  1880. gem_stop_phy(gp, wol);
  1881. /* Make sure bus master is disabled */
  1882. pci_disable_device(gp->pdev);
  1883. /* Cell not needed neither if no WOL */
  1884. if (!wol)
  1885. gem_put_cell(gp);
  1886. }
  1887. static void gem_reset_task(struct work_struct *work)
  1888. {
  1889. struct gem *gp = container_of(work, struct gem, reset_task);
  1890. /* Lock out the network stack (essentially shield ourselves
  1891. * against a racing open, close, control call, or suspend
  1892. */
  1893. rtnl_lock();
  1894. /* Skip the reset task if suspended or closed, or if it's
  1895. * been cancelled by gem_do_stop (see comment there)
  1896. */
  1897. if (!netif_device_present(gp->dev) ||
  1898. !netif_running(gp->dev) ||
  1899. !gp->reset_task_pending) {
  1900. rtnl_unlock();
  1901. return;
  1902. }
  1903. /* Stop the link timer */
  1904. del_timer_sync(&gp->link_timer);
  1905. /* Stop NAPI and tx */
  1906. gem_netif_stop(gp);
  1907. /* Reset the chip & rings */
  1908. gem_reinit_chip(gp);
  1909. if (gp->lstate == link_up)
  1910. gem_set_link_modes(gp);
  1911. /* Restart NAPI and Tx */
  1912. gem_netif_start(gp);
  1913. /* We are back ! */
  1914. gp->reset_task_pending = 0;
  1915. /* If the link is not up, restart autoneg, else restart the
  1916. * polling timer
  1917. */
  1918. if (gp->lstate != link_up)
  1919. gem_begin_auto_negotiation(gp, NULL);
  1920. else
  1921. mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
  1922. rtnl_unlock();
  1923. }
  1924. static int gem_open(struct net_device *dev)
  1925. {
  1926. /* We allow open while suspended, we just do nothing,
  1927. * the chip will be initialized in resume()
  1928. */
  1929. if (netif_device_present(dev))
  1930. return gem_do_start(dev);
  1931. return 0;
  1932. }
  1933. static int gem_close(struct net_device *dev)
  1934. {
  1935. if (netif_device_present(dev))
  1936. gem_do_stop(dev, 0);
  1937. return 0;
  1938. }
  1939. #ifdef CONFIG_PM
  1940. static int gem_suspend(struct pci_dev *pdev, pm_message_t state)
  1941. {
  1942. struct net_device *dev = pci_get_drvdata(pdev);
  1943. struct gem *gp = netdev_priv(dev);
  1944. /* Lock the network stack first to avoid racing with open/close,
  1945. * reset task and setting calls
  1946. */
  1947. rtnl_lock();
  1948. /* Not running, mark ourselves non-present, no need for
  1949. * a lock here
  1950. */
  1951. if (!netif_running(dev)) {
  1952. netif_device_detach(dev);
  1953. rtnl_unlock();
  1954. return 0;
  1955. }
  1956. netdev_info(dev, "suspending, WakeOnLan %s\n",
  1957. (gp->wake_on_lan && netif_running(dev)) ?
  1958. "enabled" : "disabled");
  1959. /* Tell the network stack we're gone. gem_do_stop() below will
  1960. * synchronize with TX, stop NAPI etc...
  1961. */
  1962. netif_device_detach(dev);
  1963. /* Switch off chip, remember WOL setting */
  1964. gp->asleep_wol = !!gp->wake_on_lan;
  1965. gem_do_stop(dev, gp->asleep_wol);
  1966. /* Unlock the network stack */
  1967. rtnl_unlock();
  1968. return 0;
  1969. }
  1970. static int gem_resume(struct pci_dev *pdev)
  1971. {
  1972. struct net_device *dev = pci_get_drvdata(pdev);
  1973. struct gem *gp = netdev_priv(dev);
  1974. /* See locking comment in gem_suspend */
  1975. rtnl_lock();
  1976. /* Not running, mark ourselves present, no need for
  1977. * a lock here
  1978. */
  1979. if (!netif_running(dev)) {
  1980. netif_device_attach(dev);
  1981. rtnl_unlock();
  1982. return 0;
  1983. }
  1984. /* Restart chip. If that fails there isn't much we can do, we
  1985. * leave things stopped.
  1986. */
  1987. gem_do_start(dev);
  1988. /* If we had WOL enabled, the cell clock was never turned off during
  1989. * sleep, so we end up beeing unbalanced. Fix that here
  1990. */
  1991. if (gp->asleep_wol)
  1992. gem_put_cell(gp);
  1993. /* Unlock the network stack */
  1994. rtnl_unlock();
  1995. return 0;
  1996. }
  1997. #endif /* CONFIG_PM */
  1998. static struct net_device_stats *gem_get_stats(struct net_device *dev)
  1999. {
  2000. struct gem *gp = netdev_priv(dev);
  2001. /* I have seen this being called while the PM was in progress,
  2002. * so we shield against this. Let's also not poke at registers
  2003. * while the reset task is going on.
  2004. *
  2005. * TODO: Move stats collection elsewhere (link timer ?) and
  2006. * make this a nop to avoid all those synchro issues
  2007. */
  2008. if (!netif_device_present(dev) || !netif_running(dev))
  2009. goto bail;
  2010. /* Better safe than sorry... */
  2011. if (WARN_ON(!gp->cell_enabled))
  2012. goto bail;
  2013. dev->stats.rx_crc_errors += readl(gp->regs + MAC_FCSERR);
  2014. writel(0, gp->regs + MAC_FCSERR);
  2015. dev->stats.rx_frame_errors += readl(gp->regs + MAC_AERR);
  2016. writel(0, gp->regs + MAC_AERR);
  2017. dev->stats.rx_length_errors += readl(gp->regs + MAC_LERR);
  2018. writel(0, gp->regs + MAC_LERR);
  2019. dev->stats.tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
  2020. dev->stats.collisions +=
  2021. (readl(gp->regs + MAC_ECOLL) + readl(gp->regs + MAC_LCOLL));
  2022. writel(0, gp->regs + MAC_ECOLL);
  2023. writel(0, gp->regs + MAC_LCOLL);
  2024. bail:
  2025. return &dev->stats;
  2026. }
  2027. static int gem_set_mac_address(struct net_device *dev, void *addr)
  2028. {
  2029. struct sockaddr *macaddr = (struct sockaddr *) addr;
  2030. struct gem *gp = netdev_priv(dev);
  2031. unsigned char *e = &dev->dev_addr[0];
  2032. if (!is_valid_ether_addr(macaddr->sa_data))
  2033. return -EADDRNOTAVAIL;
  2034. memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
  2035. /* We'll just catch it later when the device is up'd or resumed */
  2036. if (!netif_running(dev) || !netif_device_present(dev))
  2037. return 0;
  2038. /* Better safe than sorry... */
  2039. if (WARN_ON(!gp->cell_enabled))
  2040. return 0;
  2041. writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
  2042. writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
  2043. writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
  2044. return 0;
  2045. }
  2046. static void gem_set_multicast(struct net_device *dev)
  2047. {
  2048. struct gem *gp = netdev_priv(dev);
  2049. u32 rxcfg, rxcfg_new;
  2050. int limit = 10000;
  2051. if (!netif_running(dev) || !netif_device_present(dev))
  2052. return;
  2053. /* Better safe than sorry... */
  2054. if (gp->reset_task_pending || WARN_ON(!gp->cell_enabled))
  2055. return;
  2056. rxcfg = readl(gp->regs + MAC_RXCFG);
  2057. rxcfg_new = gem_setup_multicast(gp);
  2058. #ifdef STRIP_FCS
  2059. rxcfg_new |= MAC_RXCFG_SFCS;
  2060. #endif
  2061. gp->mac_rx_cfg = rxcfg_new;
  2062. writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  2063. while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
  2064. if (!limit--)
  2065. break;
  2066. udelay(10);
  2067. }
  2068. rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
  2069. rxcfg |= rxcfg_new;
  2070. writel(rxcfg, gp->regs + MAC_RXCFG);
  2071. }
  2072. /* Jumbo-grams don't seem to work :-( */
  2073. #define GEM_MIN_MTU 68
  2074. #if 1
  2075. #define GEM_MAX_MTU 1500
  2076. #else
  2077. #define GEM_MAX_MTU 9000
  2078. #endif
  2079. static int gem_change_mtu(struct net_device *dev, int new_mtu)
  2080. {
  2081. struct gem *gp = netdev_priv(dev);
  2082. if (new_mtu < GEM_MIN_MTU || new_mtu > GEM_MAX_MTU)
  2083. return -EINVAL;
  2084. dev->mtu = new_mtu;
  2085. /* We'll just catch it later when the device is up'd or resumed */
  2086. if (!netif_running(dev) || !netif_device_present(dev))
  2087. return 0;
  2088. /* Better safe than sorry... */
  2089. if (WARN_ON(!gp->cell_enabled))
  2090. return 0;
  2091. gem_netif_stop(gp);
  2092. gem_reinit_chip(gp);
  2093. if (gp->lstate == link_up)
  2094. gem_set_link_modes(gp);
  2095. gem_netif_start(gp);
  2096. return 0;
  2097. }
  2098. static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  2099. {
  2100. struct gem *gp = netdev_priv(dev);
  2101. strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
  2102. strlcpy(info->version, DRV_VERSION, sizeof(info->version));
  2103. strlcpy(info->bus_info, pci_name(gp->pdev), sizeof(info->bus_info));
  2104. }
  2105. static int gem_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  2106. {
  2107. struct gem *gp = netdev_priv(dev);
  2108. if (gp->phy_type == phy_mii_mdio0 ||
  2109. gp->phy_type == phy_mii_mdio1) {
  2110. if (gp->phy_mii.def)
  2111. cmd->supported = gp->phy_mii.def->features;
  2112. else
  2113. cmd->supported = (SUPPORTED_10baseT_Half |
  2114. SUPPORTED_10baseT_Full);
  2115. /* XXX hardcoded stuff for now */
  2116. cmd->port = PORT_MII;
  2117. cmd->transceiver = XCVR_EXTERNAL;
  2118. cmd->phy_address = 0; /* XXX fixed PHYAD */
  2119. /* Return current PHY settings */
  2120. cmd->autoneg = gp->want_autoneg;
  2121. ethtool_cmd_speed_set(cmd, gp->phy_mii.speed);
  2122. cmd->duplex = gp->phy_mii.duplex;
  2123. cmd->advertising = gp->phy_mii.advertising;
  2124. /* If we started with a forced mode, we don't have a default
  2125. * advertise set, we need to return something sensible so
  2126. * userland can re-enable autoneg properly.
  2127. */
  2128. if (cmd->advertising == 0)
  2129. cmd->advertising = cmd->supported;
  2130. } else { // XXX PCS ?
  2131. cmd->supported =
  2132. (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  2133. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  2134. SUPPORTED_Autoneg);
  2135. cmd->advertising = cmd->supported;
  2136. ethtool_cmd_speed_set(cmd, 0);
  2137. cmd->duplex = cmd->port = cmd->phy_address =
  2138. cmd->transceiver = cmd->autoneg = 0;
  2139. /* serdes means usually a Fibre connector, with most fixed */
  2140. if (gp->phy_type == phy_serdes) {
  2141. cmd->port = PORT_FIBRE;
  2142. cmd->supported = (SUPPORTED_1000baseT_Half |
  2143. SUPPORTED_1000baseT_Full |
  2144. SUPPORTED_FIBRE | SUPPORTED_Autoneg |
  2145. SUPPORTED_Pause | SUPPORTED_Asym_Pause);
  2146. cmd->advertising = cmd->supported;
  2147. cmd->transceiver = XCVR_INTERNAL;
  2148. if (gp->lstate == link_up)
  2149. ethtool_cmd_speed_set(cmd, SPEED_1000);
  2150. cmd->duplex = DUPLEX_FULL;
  2151. cmd->autoneg = 1;
  2152. }
  2153. }
  2154. cmd->maxtxpkt = cmd->maxrxpkt = 0;
  2155. return 0;
  2156. }
  2157. static int gem_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  2158. {
  2159. struct gem *gp = netdev_priv(dev);
  2160. u32 speed = ethtool_cmd_speed(cmd);
  2161. /* Verify the settings we care about. */
  2162. if (cmd->autoneg != AUTONEG_ENABLE &&
  2163. cmd->autoneg != AUTONEG_DISABLE)
  2164. return -EINVAL;
  2165. if (cmd->autoneg == AUTONEG_ENABLE &&
  2166. cmd->advertising == 0)
  2167. return -EINVAL;
  2168. if (cmd->autoneg == AUTONEG_DISABLE &&
  2169. ((speed != SPEED_1000 &&
  2170. speed != SPEED_100 &&
  2171. speed != SPEED_10) ||
  2172. (cmd->duplex != DUPLEX_HALF &&
  2173. cmd->duplex != DUPLEX_FULL)))
  2174. return -EINVAL;
  2175. /* Apply settings and restart link process. */
  2176. if (netif_device_present(gp->dev)) {
  2177. del_timer_sync(&gp->link_timer);
  2178. gem_begin_auto_negotiation(gp, cmd);
  2179. }
  2180. return 0;
  2181. }
  2182. static int gem_nway_reset(struct net_device *dev)
  2183. {
  2184. struct gem *gp = netdev_priv(dev);
  2185. if (!gp->want_autoneg)
  2186. return -EINVAL;
  2187. /* Restart link process */
  2188. if (netif_device_present(gp->dev)) {
  2189. del_timer_sync(&gp->link_timer);
  2190. gem_begin_auto_negotiation(gp, NULL);
  2191. }
  2192. return 0;
  2193. }
  2194. static u32 gem_get_msglevel(struct net_device *dev)
  2195. {
  2196. struct gem *gp = netdev_priv(dev);
  2197. return gp->msg_enable;
  2198. }
  2199. static void gem_set_msglevel(struct net_device *dev, u32 value)
  2200. {
  2201. struct gem *gp = netdev_priv(dev);
  2202. gp->msg_enable = value;
  2203. }
  2204. /* Add more when I understand how to program the chip */
  2205. /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
  2206. #define WOL_SUPPORTED_MASK (WAKE_MAGIC)
  2207. static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  2208. {
  2209. struct gem *gp = netdev_priv(dev);
  2210. /* Add more when I understand how to program the chip */
  2211. if (gp->has_wol) {
  2212. wol->supported = WOL_SUPPORTED_MASK;
  2213. wol->wolopts = gp->wake_on_lan;
  2214. } else {
  2215. wol->supported = 0;
  2216. wol->wolopts = 0;
  2217. }
  2218. }
  2219. static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  2220. {
  2221. struct gem *gp = netdev_priv(dev);
  2222. if (!gp->has_wol)
  2223. return -EOPNOTSUPP;
  2224. gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
  2225. return 0;
  2226. }
  2227. static const struct ethtool_ops gem_ethtool_ops = {
  2228. .get_drvinfo = gem_get_drvinfo,
  2229. .get_link = ethtool_op_get_link,
  2230. .get_settings = gem_get_settings,
  2231. .set_settings = gem_set_settings,
  2232. .nway_reset = gem_nway_reset,
  2233. .get_msglevel = gem_get_msglevel,
  2234. .set_msglevel = gem_set_msglevel,
  2235. .get_wol = gem_get_wol,
  2236. .set_wol = gem_set_wol,
  2237. };
  2238. static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  2239. {
  2240. struct gem *gp = netdev_priv(dev);
  2241. struct mii_ioctl_data *data = if_mii(ifr);
  2242. int rc = -EOPNOTSUPP;
  2243. /* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that
  2244. * netif_device_present() is true and holds rtnl_lock for us
  2245. * so we have nothing to worry about
  2246. */
  2247. switch (cmd) {
  2248. case SIOCGMIIPHY: /* Get address of MII PHY in use. */
  2249. data->phy_id = gp->mii_phy_addr;
  2250. /* Fallthrough... */
  2251. case SIOCGMIIREG: /* Read MII PHY register. */
  2252. data->val_out = __sungem_phy_read(gp, data->phy_id & 0x1f,
  2253. data->reg_num & 0x1f);
  2254. rc = 0;
  2255. break;
  2256. case SIOCSMIIREG: /* Write MII PHY register. */
  2257. __sungem_phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
  2258. data->val_in);
  2259. rc = 0;
  2260. break;
  2261. }
  2262. return rc;
  2263. }
  2264. #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
  2265. /* Fetch MAC address from vital product data of PCI ROM. */
  2266. static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
  2267. {
  2268. int this_offset;
  2269. for (this_offset = 0x20; this_offset < len; this_offset++) {
  2270. void __iomem *p = rom_base + this_offset;
  2271. int i;
  2272. if (readb(p + 0) != 0x90 ||
  2273. readb(p + 1) != 0x00 ||
  2274. readb(p + 2) != 0x09 ||
  2275. readb(p + 3) != 0x4e ||
  2276. readb(p + 4) != 0x41 ||
  2277. readb(p + 5) != 0x06)
  2278. continue;
  2279. this_offset += 6;
  2280. p += 6;
  2281. for (i = 0; i < 6; i++)
  2282. dev_addr[i] = readb(p + i);
  2283. return 1;
  2284. }
  2285. return 0;
  2286. }
  2287. static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
  2288. {
  2289. size_t size;
  2290. void __iomem *p = pci_map_rom(pdev, &size);
  2291. if (p) {
  2292. int found;
  2293. found = readb(p) == 0x55 &&
  2294. readb(p + 1) == 0xaa &&
  2295. find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
  2296. pci_unmap_rom(pdev, p);
  2297. if (found)
  2298. return;
  2299. }
  2300. /* Sun MAC prefix then 3 random bytes. */
  2301. dev_addr[0] = 0x08;
  2302. dev_addr[1] = 0x00;
  2303. dev_addr[2] = 0x20;
  2304. get_random_bytes(dev_addr + 3, 3);
  2305. }
  2306. #endif /* not Sparc and not PPC */
  2307. static int gem_get_device_address(struct gem *gp)
  2308. {
  2309. #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
  2310. struct net_device *dev = gp->dev;
  2311. const unsigned char *addr;
  2312. addr = of_get_property(gp->of_node, "local-mac-address", NULL);
  2313. if (addr == NULL) {
  2314. #ifdef CONFIG_SPARC
  2315. addr = idprom->id_ethaddr;
  2316. #else
  2317. printk("\n");
  2318. pr_err("%s: can't get mac-address\n", dev->name);
  2319. return -1;
  2320. #endif
  2321. }
  2322. memcpy(dev->dev_addr, addr, ETH_ALEN);
  2323. #else
  2324. get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr);
  2325. #endif
  2326. return 0;
  2327. }
  2328. static void gem_remove_one(struct pci_dev *pdev)
  2329. {
  2330. struct net_device *dev = pci_get_drvdata(pdev);
  2331. if (dev) {
  2332. struct gem *gp = netdev_priv(dev);
  2333. unregister_netdev(dev);
  2334. /* Ensure reset task is truly gone */
  2335. cancel_work_sync(&gp->reset_task);
  2336. /* Free resources */
  2337. pci_free_consistent(pdev,
  2338. sizeof(struct gem_init_block),
  2339. gp->init_block,
  2340. gp->gblock_dvma);
  2341. iounmap(gp->regs);
  2342. pci_release_regions(pdev);
  2343. free_netdev(dev);
  2344. }
  2345. }
  2346. static const struct net_device_ops gem_netdev_ops = {
  2347. .ndo_open = gem_open,
  2348. .ndo_stop = gem_close,
  2349. .ndo_start_xmit = gem_start_xmit,
  2350. .ndo_get_stats = gem_get_stats,
  2351. .ndo_set_rx_mode = gem_set_multicast,
  2352. .ndo_do_ioctl = gem_ioctl,
  2353. .ndo_tx_timeout = gem_tx_timeout,
  2354. .ndo_change_mtu = gem_change_mtu,
  2355. .ndo_validate_addr = eth_validate_addr,
  2356. .ndo_set_mac_address = gem_set_mac_address,
  2357. #ifdef CONFIG_NET_POLL_CONTROLLER
  2358. .ndo_poll_controller = gem_poll_controller,
  2359. #endif
  2360. };
  2361. static int gem_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  2362. {
  2363. unsigned long gemreg_base, gemreg_len;
  2364. struct net_device *dev;
  2365. struct gem *gp;
  2366. int err, pci_using_dac;
  2367. printk_once(KERN_INFO "%s", version);
  2368. /* Apple gmac note: during probe, the chip is powered up by
  2369. * the arch code to allow the code below to work (and to let
  2370. * the chip be probed on the config space. It won't stay powered
  2371. * up until the interface is brought up however, so we can't rely
  2372. * on register configuration done at this point.
  2373. */
  2374. err = pci_enable_device(pdev);
  2375. if (err) {
  2376. pr_err("Cannot enable MMIO operation, aborting\n");
  2377. return err;
  2378. }
  2379. pci_set_master(pdev);
  2380. /* Configure DMA attributes. */
  2381. /* All of the GEM documentation states that 64-bit DMA addressing
  2382. * is fully supported and should work just fine. However the
  2383. * front end for RIO based GEMs is different and only supports
  2384. * 32-bit addressing.
  2385. *
  2386. * For now we assume the various PPC GEMs are 32-bit only as well.
  2387. */
  2388. if (pdev->vendor == PCI_VENDOR_ID_SUN &&
  2389. pdev->device == PCI_DEVICE_ID_SUN_GEM &&
  2390. !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  2391. pci_using_dac = 1;
  2392. } else {
  2393. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  2394. if (err) {
  2395. pr_err("No usable DMA configuration, aborting\n");
  2396. goto err_disable_device;
  2397. }
  2398. pci_using_dac = 0;
  2399. }
  2400. gemreg_base = pci_resource_start(pdev, 0);
  2401. gemreg_len = pci_resource_len(pdev, 0);
  2402. if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
  2403. pr_err("Cannot find proper PCI device base address, aborting\n");
  2404. err = -ENODEV;
  2405. goto err_disable_device;
  2406. }
  2407. dev = alloc_etherdev(sizeof(*gp));
  2408. if (!dev) {
  2409. err = -ENOMEM;
  2410. goto err_disable_device;
  2411. }
  2412. SET_NETDEV_DEV(dev, &pdev->dev);
  2413. gp = netdev_priv(dev);
  2414. err = pci_request_regions(pdev, DRV_NAME);
  2415. if (err) {
  2416. pr_err("Cannot obtain PCI resources, aborting\n");
  2417. goto err_out_free_netdev;
  2418. }
  2419. gp->pdev = pdev;
  2420. gp->dev = dev;
  2421. gp->msg_enable = DEFAULT_MSG;
  2422. init_timer(&gp->link_timer);
  2423. gp->link_timer.function = gem_link_timer;
  2424. gp->link_timer.data = (unsigned long) gp;
  2425. INIT_WORK(&gp->reset_task, gem_reset_task);
  2426. gp->lstate = link_down;
  2427. gp->timer_ticks = 0;
  2428. netif_carrier_off(dev);
  2429. gp->regs = ioremap(gemreg_base, gemreg_len);
  2430. if (!gp->regs) {
  2431. pr_err("Cannot map device registers, aborting\n");
  2432. err = -EIO;
  2433. goto err_out_free_res;
  2434. }
  2435. /* On Apple, we want a reference to the Open Firmware device-tree
  2436. * node. We use it for clock control.
  2437. */
  2438. #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
  2439. gp->of_node = pci_device_to_OF_node(pdev);
  2440. #endif
  2441. /* Only Apple version supports WOL afaik */
  2442. if (pdev->vendor == PCI_VENDOR_ID_APPLE)
  2443. gp->has_wol = 1;
  2444. /* Make sure cell is enabled */
  2445. gem_get_cell(gp);
  2446. /* Make sure everything is stopped and in init state */
  2447. gem_reset(gp);
  2448. /* Fill up the mii_phy structure (even if we won't use it) */
  2449. gp->phy_mii.dev = dev;
  2450. gp->phy_mii.mdio_read = _sungem_phy_read;
  2451. gp->phy_mii.mdio_write = _sungem_phy_write;
  2452. #ifdef CONFIG_PPC_PMAC
  2453. gp->phy_mii.platform_data = gp->of_node;
  2454. #endif
  2455. /* By default, we start with autoneg */
  2456. gp->want_autoneg = 1;
  2457. /* Check fifo sizes, PHY type, etc... */
  2458. if (gem_check_invariants(gp)) {
  2459. err = -ENODEV;
  2460. goto err_out_iounmap;
  2461. }
  2462. /* It is guaranteed that the returned buffer will be at least
  2463. * PAGE_SIZE aligned.
  2464. */
  2465. gp->init_block = (struct gem_init_block *)
  2466. pci_alloc_consistent(pdev, sizeof(struct gem_init_block),
  2467. &gp->gblock_dvma);
  2468. if (!gp->init_block) {
  2469. pr_err("Cannot allocate init block, aborting\n");
  2470. err = -ENOMEM;
  2471. goto err_out_iounmap;
  2472. }
  2473. err = gem_get_device_address(gp);
  2474. if (err)
  2475. goto err_out_free_consistent;
  2476. dev->netdev_ops = &gem_netdev_ops;
  2477. netif_napi_add(dev, &gp->napi, gem_poll, 64);
  2478. dev->ethtool_ops = &gem_ethtool_ops;
  2479. dev->watchdog_timeo = 5 * HZ;
  2480. dev->dma = 0;
  2481. /* Set that now, in case PM kicks in now */
  2482. pci_set_drvdata(pdev, dev);
  2483. /* We can do scatter/gather and HW checksum */
  2484. dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_RXCSUM;
  2485. dev->features = dev->hw_features;
  2486. if (pci_using_dac)
  2487. dev->features |= NETIF_F_HIGHDMA;
  2488. /* Register with kernel */
  2489. if (register_netdev(dev)) {
  2490. pr_err("Cannot register net device, aborting\n");
  2491. err = -ENOMEM;
  2492. goto err_out_free_consistent;
  2493. }
  2494. /* Undo the get_cell with appropriate locking (we could use
  2495. * ndo_init/uninit but that would be even more clumsy imho)
  2496. */
  2497. rtnl_lock();
  2498. gem_put_cell(gp);
  2499. rtnl_unlock();
  2500. netdev_info(dev, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
  2501. dev->dev_addr);
  2502. return 0;
  2503. err_out_free_consistent:
  2504. gem_remove_one(pdev);
  2505. err_out_iounmap:
  2506. gem_put_cell(gp);
  2507. iounmap(gp->regs);
  2508. err_out_free_res:
  2509. pci_release_regions(pdev);
  2510. err_out_free_netdev:
  2511. free_netdev(dev);
  2512. err_disable_device:
  2513. pci_disable_device(pdev);
  2514. return err;
  2515. }
  2516. static struct pci_driver gem_driver = {
  2517. .name = GEM_MODULE_NAME,
  2518. .id_table = gem_pci_tbl,
  2519. .probe = gem_init_one,
  2520. .remove = gem_remove_one,
  2521. #ifdef CONFIG_PM
  2522. .suspend = gem_suspend,
  2523. .resume = gem_resume,
  2524. #endif /* CONFIG_PM */
  2525. };
  2526. module_pci_driver(gem_driver);