siena.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056
  1. /****************************************************************************
  2. * Driver for Solarflare network controllers and boards
  3. * Copyright 2005-2006 Fen Systems Ltd.
  4. * Copyright 2006-2013 Solarflare Communications Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation, incorporated herein by reference.
  9. */
  10. #include <linux/bitops.h>
  11. #include <linux/delay.h>
  12. #include <linux/pci.h>
  13. #include <linux/module.h>
  14. #include <linux/slab.h>
  15. #include <linux/random.h>
  16. #include "net_driver.h"
  17. #include "bitfield.h"
  18. #include "efx.h"
  19. #include "nic.h"
  20. #include "farch_regs.h"
  21. #include "io.h"
  22. #include "phy.h"
  23. #include "workarounds.h"
  24. #include "mcdi.h"
  25. #include "mcdi_pcol.h"
  26. #include "selftest.h"
  27. #include "siena_sriov.h"
  28. /* Hardware control for SFC9000 family including SFL9021 (aka Siena). */
  29. static void siena_init_wol(struct efx_nic *efx);
  30. static void siena_push_irq_moderation(struct efx_channel *channel)
  31. {
  32. struct efx_nic *efx = channel->efx;
  33. efx_dword_t timer_cmd;
  34. if (channel->irq_moderation_us) {
  35. unsigned int ticks;
  36. ticks = efx_usecs_to_ticks(efx, channel->irq_moderation_us);
  37. EFX_POPULATE_DWORD_2(timer_cmd,
  38. FRF_CZ_TC_TIMER_MODE,
  39. FFE_CZ_TIMER_MODE_INT_HLDOFF,
  40. FRF_CZ_TC_TIMER_VAL,
  41. ticks - 1);
  42. } else {
  43. EFX_POPULATE_DWORD_2(timer_cmd,
  44. FRF_CZ_TC_TIMER_MODE,
  45. FFE_CZ_TIMER_MODE_DIS,
  46. FRF_CZ_TC_TIMER_VAL, 0);
  47. }
  48. efx_writed_page_locked(channel->efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
  49. channel->channel);
  50. }
  51. void siena_prepare_flush(struct efx_nic *efx)
  52. {
  53. if (efx->fc_disable++ == 0)
  54. efx_mcdi_set_mac(efx);
  55. }
  56. void siena_finish_flush(struct efx_nic *efx)
  57. {
  58. if (--efx->fc_disable == 0)
  59. efx_mcdi_set_mac(efx);
  60. }
  61. static const struct efx_farch_register_test siena_register_tests[] = {
  62. { FR_AZ_ADR_REGION,
  63. EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
  64. { FR_CZ_USR_EV_CFG,
  65. EFX_OWORD32(0x000103FF, 0x00000000, 0x00000000, 0x00000000) },
  66. { FR_AZ_RX_CFG,
  67. EFX_OWORD32(0xFFFFFFFE, 0xFFFFFFFF, 0x0003FFFF, 0x00000000) },
  68. { FR_AZ_TX_CFG,
  69. EFX_OWORD32(0x7FFF0037, 0xFFFF8000, 0xFFFFFFFF, 0x03FFFFFF) },
  70. { FR_AZ_TX_RESERVED,
  71. EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
  72. { FR_AZ_SRM_TX_DC_CFG,
  73. EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
  74. { FR_AZ_RX_DC_CFG,
  75. EFX_OWORD32(0x00000003, 0x00000000, 0x00000000, 0x00000000) },
  76. { FR_AZ_RX_DC_PF_WM,
  77. EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
  78. { FR_BZ_DP_CTRL,
  79. EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
  80. { FR_BZ_RX_RSS_TKEY,
  81. EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
  82. { FR_CZ_RX_RSS_IPV6_REG1,
  83. EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
  84. { FR_CZ_RX_RSS_IPV6_REG2,
  85. EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
  86. { FR_CZ_RX_RSS_IPV6_REG3,
  87. EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0x00000007, 0x00000000) },
  88. };
  89. static int siena_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
  90. {
  91. enum reset_type reset_method = RESET_TYPE_ALL;
  92. int rc, rc2;
  93. efx_reset_down(efx, reset_method);
  94. /* Reset the chip immediately so that it is completely
  95. * quiescent regardless of what any VF driver does.
  96. */
  97. rc = efx_mcdi_reset(efx, reset_method);
  98. if (rc)
  99. goto out;
  100. tests->registers =
  101. efx_farch_test_registers(efx, siena_register_tests,
  102. ARRAY_SIZE(siena_register_tests))
  103. ? -1 : 1;
  104. rc = efx_mcdi_reset(efx, reset_method);
  105. out:
  106. rc2 = efx_reset_up(efx, reset_method, rc == 0);
  107. return rc ? rc : rc2;
  108. }
  109. /**************************************************************************
  110. *
  111. * PTP
  112. *
  113. **************************************************************************
  114. */
  115. static void siena_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
  116. {
  117. _efx_writed(efx, cpu_to_le32(host_time),
  118. FR_CZ_MC_TREG_SMEM + MC_SMEM_P0_PTP_TIME_OFST);
  119. }
  120. static int siena_ptp_set_ts_config(struct efx_nic *efx,
  121. struct hwtstamp_config *init)
  122. {
  123. int rc;
  124. switch (init->rx_filter) {
  125. case HWTSTAMP_FILTER_NONE:
  126. /* if TX timestamping is still requested then leave PTP on */
  127. return efx_ptp_change_mode(efx,
  128. init->tx_type != HWTSTAMP_TX_OFF,
  129. efx_ptp_get_mode(efx));
  130. case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
  131. case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
  132. case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
  133. init->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
  134. return efx_ptp_change_mode(efx, true, MC_CMD_PTP_MODE_V1);
  135. case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
  136. case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
  137. case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
  138. init->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
  139. rc = efx_ptp_change_mode(efx, true,
  140. MC_CMD_PTP_MODE_V2_ENHANCED);
  141. /* bug 33070 - old versions of the firmware do not support the
  142. * improved UUID filtering option. Similarly old versions of the
  143. * application do not expect it to be enabled. If the firmware
  144. * does not accept the enhanced mode, fall back to the standard
  145. * PTP v2 UUID filtering. */
  146. if (rc != 0)
  147. rc = efx_ptp_change_mode(efx, true, MC_CMD_PTP_MODE_V2);
  148. return rc;
  149. default:
  150. return -ERANGE;
  151. }
  152. }
  153. /**************************************************************************
  154. *
  155. * Device reset
  156. *
  157. **************************************************************************
  158. */
  159. static int siena_map_reset_flags(u32 *flags)
  160. {
  161. enum {
  162. SIENA_RESET_PORT = (ETH_RESET_DMA | ETH_RESET_FILTER |
  163. ETH_RESET_OFFLOAD | ETH_RESET_MAC |
  164. ETH_RESET_PHY),
  165. SIENA_RESET_MC = (SIENA_RESET_PORT |
  166. ETH_RESET_MGMT << ETH_RESET_SHARED_SHIFT),
  167. };
  168. if ((*flags & SIENA_RESET_MC) == SIENA_RESET_MC) {
  169. *flags &= ~SIENA_RESET_MC;
  170. return RESET_TYPE_WORLD;
  171. }
  172. if ((*flags & SIENA_RESET_PORT) == SIENA_RESET_PORT) {
  173. *flags &= ~SIENA_RESET_PORT;
  174. return RESET_TYPE_ALL;
  175. }
  176. /* no invisible reset implemented */
  177. return -EINVAL;
  178. }
  179. #ifdef CONFIG_EEH
  180. /* When a PCI device is isolated from the bus, a subsequent MMIO read is
  181. * required for the kernel EEH mechanisms to notice. As the Solarflare driver
  182. * was written to minimise MMIO read (for latency) then a periodic call to check
  183. * the EEH status of the device is required so that device recovery can happen
  184. * in a timely fashion.
  185. */
  186. static void siena_monitor(struct efx_nic *efx)
  187. {
  188. struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
  189. eeh_dev_check_failure(eehdev);
  190. }
  191. #endif
  192. static int siena_probe_nvconfig(struct efx_nic *efx)
  193. {
  194. u32 caps = 0;
  195. int rc;
  196. rc = efx_mcdi_get_board_cfg(efx, efx->net_dev->perm_addr, NULL, &caps);
  197. efx->timer_quantum_ns =
  198. (caps & (1 << MC_CMD_CAPABILITIES_TURBO_ACTIVE_LBN)) ?
  199. 3072 : 6144; /* 768 cycles */
  200. efx->timer_max_ns = efx->type->timer_period_max *
  201. efx->timer_quantum_ns;
  202. return rc;
  203. }
  204. static int siena_dimension_resources(struct efx_nic *efx)
  205. {
  206. /* Each port has a small block of internal SRAM dedicated to
  207. * the buffer table and descriptor caches. In theory we can
  208. * map both blocks to one port, but we don't.
  209. */
  210. efx_farch_dimension_resources(efx, FR_CZ_BUF_FULL_TBL_ROWS / 2);
  211. return 0;
  212. }
  213. static unsigned int siena_mem_map_size(struct efx_nic *efx)
  214. {
  215. return FR_CZ_MC_TREG_SMEM +
  216. FR_CZ_MC_TREG_SMEM_STEP * FR_CZ_MC_TREG_SMEM_ROWS;
  217. }
  218. static int siena_probe_nic(struct efx_nic *efx)
  219. {
  220. struct siena_nic_data *nic_data;
  221. efx_oword_t reg;
  222. int rc;
  223. /* Allocate storage for hardware specific data */
  224. nic_data = kzalloc(sizeof(struct siena_nic_data), GFP_KERNEL);
  225. if (!nic_data)
  226. return -ENOMEM;
  227. nic_data->efx = efx;
  228. efx->nic_data = nic_data;
  229. if (efx_farch_fpga_ver(efx) != 0) {
  230. netif_err(efx, probe, efx->net_dev,
  231. "Siena FPGA not supported\n");
  232. rc = -ENODEV;
  233. goto fail1;
  234. }
  235. efx->max_channels = EFX_MAX_CHANNELS;
  236. efx->max_tx_channels = EFX_MAX_CHANNELS;
  237. efx_reado(efx, &reg, FR_AZ_CS_DEBUG);
  238. efx->port_num = EFX_OWORD_FIELD(reg, FRF_CZ_CS_PORT_NUM) - 1;
  239. rc = efx_mcdi_init(efx);
  240. if (rc)
  241. goto fail1;
  242. /* Now we can reset the NIC */
  243. rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
  244. if (rc) {
  245. netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
  246. goto fail3;
  247. }
  248. siena_init_wol(efx);
  249. /* Allocate memory for INT_KER */
  250. rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t),
  251. GFP_KERNEL);
  252. if (rc)
  253. goto fail4;
  254. BUG_ON(efx->irq_status.dma_addr & 0x0f);
  255. netif_dbg(efx, probe, efx->net_dev,
  256. "INT_KER at %llx (virt %p phys %llx)\n",
  257. (unsigned long long)efx->irq_status.dma_addr,
  258. efx->irq_status.addr,
  259. (unsigned long long)virt_to_phys(efx->irq_status.addr));
  260. /* Read in the non-volatile configuration */
  261. rc = siena_probe_nvconfig(efx);
  262. if (rc == -EINVAL) {
  263. netif_err(efx, probe, efx->net_dev,
  264. "NVRAM is invalid therefore using defaults\n");
  265. efx->phy_type = PHY_TYPE_NONE;
  266. efx->mdio.prtad = MDIO_PRTAD_NONE;
  267. } else if (rc) {
  268. goto fail5;
  269. }
  270. rc = efx_mcdi_mon_probe(efx);
  271. if (rc)
  272. goto fail5;
  273. #ifdef CONFIG_SFC_SRIOV
  274. efx_siena_sriov_probe(efx);
  275. #endif
  276. efx_ptp_defer_probe_with_channel(efx);
  277. return 0;
  278. fail5:
  279. efx_nic_free_buffer(efx, &efx->irq_status);
  280. fail4:
  281. fail3:
  282. efx_mcdi_fini(efx);
  283. fail1:
  284. kfree(efx->nic_data);
  285. return rc;
  286. }
  287. static int siena_rx_push_rss_config(struct efx_nic *efx, bool user,
  288. const u32 *rx_indir_table)
  289. {
  290. efx_oword_t temp;
  291. /* Set hash key for IPv4 */
  292. memcpy(&temp, efx->rx_hash_key, sizeof(temp));
  293. efx_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
  294. /* Enable IPv6 RSS */
  295. BUILD_BUG_ON(sizeof(efx->rx_hash_key) <
  296. 2 * sizeof(temp) + FRF_CZ_RX_RSS_IPV6_TKEY_HI_WIDTH / 8 ||
  297. FRF_CZ_RX_RSS_IPV6_TKEY_HI_LBN != 0);
  298. memcpy(&temp, efx->rx_hash_key, sizeof(temp));
  299. efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG1);
  300. memcpy(&temp, efx->rx_hash_key + sizeof(temp), sizeof(temp));
  301. efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG2);
  302. EFX_POPULATE_OWORD_2(temp, FRF_CZ_RX_RSS_IPV6_THASH_ENABLE, 1,
  303. FRF_CZ_RX_RSS_IPV6_IP_THASH_ENABLE, 1);
  304. memcpy(&temp, efx->rx_hash_key + 2 * sizeof(temp),
  305. FRF_CZ_RX_RSS_IPV6_TKEY_HI_WIDTH / 8);
  306. efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG3);
  307. memcpy(efx->rx_indir_table, rx_indir_table,
  308. sizeof(efx->rx_indir_table));
  309. efx_farch_rx_push_indir_table(efx);
  310. return 0;
  311. }
  312. /* This call performs hardware-specific global initialisation, such as
  313. * defining the descriptor cache sizes and number of RSS channels.
  314. * It does not set up any buffers, descriptor rings or event queues.
  315. */
  316. static int siena_init_nic(struct efx_nic *efx)
  317. {
  318. efx_oword_t temp;
  319. int rc;
  320. /* Recover from a failed assertion post-reset */
  321. rc = efx_mcdi_handle_assertion(efx);
  322. if (rc)
  323. return rc;
  324. /* Squash TX of packets of 16 bytes or less */
  325. efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
  326. EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
  327. efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
  328. /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
  329. * descriptors (which is bad).
  330. */
  331. efx_reado(efx, &temp, FR_AZ_TX_CFG);
  332. EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
  333. EFX_SET_OWORD_FIELD(temp, FRF_CZ_TX_FILTER_EN_BIT, 1);
  334. efx_writeo(efx, &temp, FR_AZ_TX_CFG);
  335. efx_reado(efx, &temp, FR_AZ_RX_CFG);
  336. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_DESC_PUSH_EN, 0);
  337. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_INGR_EN, 1);
  338. /* Enable hash insertion. This is broken for the 'Falcon' hash
  339. * if IPv6 hashing is also enabled, so also select Toeplitz
  340. * TCP/IPv4 and IPv4 hashes. */
  341. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_HASH_INSRT_HDR, 1);
  342. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_HASH_ALG, 1);
  343. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_IP_HASH, 1);
  344. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_USR_BUF_SIZE,
  345. EFX_RX_USR_BUF_SIZE >> 5);
  346. efx_writeo(efx, &temp, FR_AZ_RX_CFG);
  347. siena_rx_push_rss_config(efx, false, efx->rx_indir_table);
  348. /* Enable event logging */
  349. rc = efx_mcdi_log_ctrl(efx, true, false, 0);
  350. if (rc)
  351. return rc;
  352. /* Set destination of both TX and RX Flush events */
  353. EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
  354. efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
  355. EFX_POPULATE_OWORD_1(temp, FRF_CZ_USREV_DIS, 1);
  356. efx_writeo(efx, &temp, FR_CZ_USR_EV_CFG);
  357. efx_farch_init_common(efx);
  358. return 0;
  359. }
  360. static void siena_remove_nic(struct efx_nic *efx)
  361. {
  362. efx_mcdi_mon_remove(efx);
  363. efx_nic_free_buffer(efx, &efx->irq_status);
  364. efx_mcdi_reset(efx, RESET_TYPE_ALL);
  365. efx_mcdi_fini(efx);
  366. /* Tear down the private nic state */
  367. kfree(efx->nic_data);
  368. efx->nic_data = NULL;
  369. }
  370. #define SIENA_DMA_STAT(ext_name, mcdi_name) \
  371. [SIENA_STAT_ ## ext_name] = \
  372. { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
  373. #define SIENA_OTHER_STAT(ext_name) \
  374. [SIENA_STAT_ ## ext_name] = { #ext_name, 0, 0 }
  375. #define GENERIC_SW_STAT(ext_name) \
  376. [GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
  377. static const struct efx_hw_stat_desc siena_stat_desc[SIENA_STAT_COUNT] = {
  378. SIENA_DMA_STAT(tx_bytes, TX_BYTES),
  379. SIENA_OTHER_STAT(tx_good_bytes),
  380. SIENA_DMA_STAT(tx_bad_bytes, TX_BAD_BYTES),
  381. SIENA_DMA_STAT(tx_packets, TX_PKTS),
  382. SIENA_DMA_STAT(tx_bad, TX_BAD_FCS_PKTS),
  383. SIENA_DMA_STAT(tx_pause, TX_PAUSE_PKTS),
  384. SIENA_DMA_STAT(tx_control, TX_CONTROL_PKTS),
  385. SIENA_DMA_STAT(tx_unicast, TX_UNICAST_PKTS),
  386. SIENA_DMA_STAT(tx_multicast, TX_MULTICAST_PKTS),
  387. SIENA_DMA_STAT(tx_broadcast, TX_BROADCAST_PKTS),
  388. SIENA_DMA_STAT(tx_lt64, TX_LT64_PKTS),
  389. SIENA_DMA_STAT(tx_64, TX_64_PKTS),
  390. SIENA_DMA_STAT(tx_65_to_127, TX_65_TO_127_PKTS),
  391. SIENA_DMA_STAT(tx_128_to_255, TX_128_TO_255_PKTS),
  392. SIENA_DMA_STAT(tx_256_to_511, TX_256_TO_511_PKTS),
  393. SIENA_DMA_STAT(tx_512_to_1023, TX_512_TO_1023_PKTS),
  394. SIENA_DMA_STAT(tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
  395. SIENA_DMA_STAT(tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
  396. SIENA_DMA_STAT(tx_gtjumbo, TX_GTJUMBO_PKTS),
  397. SIENA_OTHER_STAT(tx_collision),
  398. SIENA_DMA_STAT(tx_single_collision, TX_SINGLE_COLLISION_PKTS),
  399. SIENA_DMA_STAT(tx_multiple_collision, TX_MULTIPLE_COLLISION_PKTS),
  400. SIENA_DMA_STAT(tx_excessive_collision, TX_EXCESSIVE_COLLISION_PKTS),
  401. SIENA_DMA_STAT(tx_deferred, TX_DEFERRED_PKTS),
  402. SIENA_DMA_STAT(tx_late_collision, TX_LATE_COLLISION_PKTS),
  403. SIENA_DMA_STAT(tx_excessive_deferred, TX_EXCESSIVE_DEFERRED_PKTS),
  404. SIENA_DMA_STAT(tx_non_tcpudp, TX_NON_TCPUDP_PKTS),
  405. SIENA_DMA_STAT(tx_mac_src_error, TX_MAC_SRC_ERR_PKTS),
  406. SIENA_DMA_STAT(tx_ip_src_error, TX_IP_SRC_ERR_PKTS),
  407. SIENA_DMA_STAT(rx_bytes, RX_BYTES),
  408. SIENA_OTHER_STAT(rx_good_bytes),
  409. SIENA_DMA_STAT(rx_bad_bytes, RX_BAD_BYTES),
  410. SIENA_DMA_STAT(rx_packets, RX_PKTS),
  411. SIENA_DMA_STAT(rx_good, RX_GOOD_PKTS),
  412. SIENA_DMA_STAT(rx_bad, RX_BAD_FCS_PKTS),
  413. SIENA_DMA_STAT(rx_pause, RX_PAUSE_PKTS),
  414. SIENA_DMA_STAT(rx_control, RX_CONTROL_PKTS),
  415. SIENA_DMA_STAT(rx_unicast, RX_UNICAST_PKTS),
  416. SIENA_DMA_STAT(rx_multicast, RX_MULTICAST_PKTS),
  417. SIENA_DMA_STAT(rx_broadcast, RX_BROADCAST_PKTS),
  418. SIENA_DMA_STAT(rx_lt64, RX_UNDERSIZE_PKTS),
  419. SIENA_DMA_STAT(rx_64, RX_64_PKTS),
  420. SIENA_DMA_STAT(rx_65_to_127, RX_65_TO_127_PKTS),
  421. SIENA_DMA_STAT(rx_128_to_255, RX_128_TO_255_PKTS),
  422. SIENA_DMA_STAT(rx_256_to_511, RX_256_TO_511_PKTS),
  423. SIENA_DMA_STAT(rx_512_to_1023, RX_512_TO_1023_PKTS),
  424. SIENA_DMA_STAT(rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
  425. SIENA_DMA_STAT(rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
  426. SIENA_DMA_STAT(rx_gtjumbo, RX_GTJUMBO_PKTS),
  427. SIENA_DMA_STAT(rx_bad_gtjumbo, RX_JABBER_PKTS),
  428. SIENA_DMA_STAT(rx_overflow, RX_OVERFLOW_PKTS),
  429. SIENA_DMA_STAT(rx_false_carrier, RX_FALSE_CARRIER_PKTS),
  430. SIENA_DMA_STAT(rx_symbol_error, RX_SYMBOL_ERROR_PKTS),
  431. SIENA_DMA_STAT(rx_align_error, RX_ALIGN_ERROR_PKTS),
  432. SIENA_DMA_STAT(rx_length_error, RX_LENGTH_ERROR_PKTS),
  433. SIENA_DMA_STAT(rx_internal_error, RX_INTERNAL_ERROR_PKTS),
  434. SIENA_DMA_STAT(rx_nodesc_drop_cnt, RX_NODESC_DROPS),
  435. GENERIC_SW_STAT(rx_nodesc_trunc),
  436. GENERIC_SW_STAT(rx_noskb_drops),
  437. };
  438. static const unsigned long siena_stat_mask[] = {
  439. [0 ... BITS_TO_LONGS(SIENA_STAT_COUNT) - 1] = ~0UL,
  440. };
  441. static size_t siena_describe_nic_stats(struct efx_nic *efx, u8 *names)
  442. {
  443. return efx_nic_describe_stats(siena_stat_desc, SIENA_STAT_COUNT,
  444. siena_stat_mask, names);
  445. }
  446. static int siena_try_update_nic_stats(struct efx_nic *efx)
  447. {
  448. struct siena_nic_data *nic_data = efx->nic_data;
  449. u64 *stats = nic_data->stats;
  450. __le64 *dma_stats;
  451. __le64 generation_start, generation_end;
  452. dma_stats = efx->stats_buffer.addr;
  453. generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
  454. if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
  455. return 0;
  456. rmb();
  457. efx_nic_update_stats(siena_stat_desc, SIENA_STAT_COUNT, siena_stat_mask,
  458. stats, efx->stats_buffer.addr, false);
  459. rmb();
  460. generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
  461. if (generation_end != generation_start)
  462. return -EAGAIN;
  463. /* Update derived statistics */
  464. efx_nic_fix_nodesc_drop_stat(efx,
  465. &stats[SIENA_STAT_rx_nodesc_drop_cnt]);
  466. efx_update_diff_stat(&stats[SIENA_STAT_tx_good_bytes],
  467. stats[SIENA_STAT_tx_bytes] -
  468. stats[SIENA_STAT_tx_bad_bytes]);
  469. stats[SIENA_STAT_tx_collision] =
  470. stats[SIENA_STAT_tx_single_collision] +
  471. stats[SIENA_STAT_tx_multiple_collision] +
  472. stats[SIENA_STAT_tx_excessive_collision] +
  473. stats[SIENA_STAT_tx_late_collision];
  474. efx_update_diff_stat(&stats[SIENA_STAT_rx_good_bytes],
  475. stats[SIENA_STAT_rx_bytes] -
  476. stats[SIENA_STAT_rx_bad_bytes]);
  477. efx_update_sw_stats(efx, stats);
  478. return 0;
  479. }
  480. static size_t siena_update_nic_stats(struct efx_nic *efx, u64 *full_stats,
  481. struct rtnl_link_stats64 *core_stats)
  482. {
  483. struct siena_nic_data *nic_data = efx->nic_data;
  484. u64 *stats = nic_data->stats;
  485. int retry;
  486. /* If we're unlucky enough to read statistics wduring the DMA, wait
  487. * up to 10ms for it to finish (typically takes <500us) */
  488. for (retry = 0; retry < 100; ++retry) {
  489. if (siena_try_update_nic_stats(efx) == 0)
  490. break;
  491. udelay(100);
  492. }
  493. if (full_stats)
  494. memcpy(full_stats, stats, sizeof(u64) * SIENA_STAT_COUNT);
  495. if (core_stats) {
  496. core_stats->rx_packets = stats[SIENA_STAT_rx_packets];
  497. core_stats->tx_packets = stats[SIENA_STAT_tx_packets];
  498. core_stats->rx_bytes = stats[SIENA_STAT_rx_bytes];
  499. core_stats->tx_bytes = stats[SIENA_STAT_tx_bytes];
  500. core_stats->rx_dropped = stats[SIENA_STAT_rx_nodesc_drop_cnt] +
  501. stats[GENERIC_STAT_rx_nodesc_trunc] +
  502. stats[GENERIC_STAT_rx_noskb_drops];
  503. core_stats->multicast = stats[SIENA_STAT_rx_multicast];
  504. core_stats->collisions = stats[SIENA_STAT_tx_collision];
  505. core_stats->rx_length_errors =
  506. stats[SIENA_STAT_rx_gtjumbo] +
  507. stats[SIENA_STAT_rx_length_error];
  508. core_stats->rx_crc_errors = stats[SIENA_STAT_rx_bad];
  509. core_stats->rx_frame_errors = stats[SIENA_STAT_rx_align_error];
  510. core_stats->rx_fifo_errors = stats[SIENA_STAT_rx_overflow];
  511. core_stats->tx_window_errors =
  512. stats[SIENA_STAT_tx_late_collision];
  513. core_stats->rx_errors = (core_stats->rx_length_errors +
  514. core_stats->rx_crc_errors +
  515. core_stats->rx_frame_errors +
  516. stats[SIENA_STAT_rx_symbol_error]);
  517. core_stats->tx_errors = (core_stats->tx_window_errors +
  518. stats[SIENA_STAT_tx_bad]);
  519. }
  520. return SIENA_STAT_COUNT;
  521. }
  522. static int siena_mac_reconfigure(struct efx_nic *efx)
  523. {
  524. MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_MCAST_HASH_IN_LEN);
  525. int rc;
  526. BUILD_BUG_ON(MC_CMD_SET_MCAST_HASH_IN_LEN !=
  527. MC_CMD_SET_MCAST_HASH_IN_HASH0_OFST +
  528. sizeof(efx->multicast_hash));
  529. efx_farch_filter_sync_rx_mode(efx);
  530. WARN_ON(!mutex_is_locked(&efx->mac_lock));
  531. rc = efx_mcdi_set_mac(efx);
  532. if (rc != 0)
  533. return rc;
  534. memcpy(MCDI_PTR(inbuf, SET_MCAST_HASH_IN_HASH0),
  535. efx->multicast_hash.byte, sizeof(efx->multicast_hash));
  536. return efx_mcdi_rpc(efx, MC_CMD_SET_MCAST_HASH,
  537. inbuf, sizeof(inbuf), NULL, 0, NULL);
  538. }
  539. /**************************************************************************
  540. *
  541. * Wake on LAN
  542. *
  543. **************************************************************************
  544. */
  545. static void siena_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
  546. {
  547. struct siena_nic_data *nic_data = efx->nic_data;
  548. wol->supported = WAKE_MAGIC;
  549. if (nic_data->wol_filter_id != -1)
  550. wol->wolopts = WAKE_MAGIC;
  551. else
  552. wol->wolopts = 0;
  553. memset(&wol->sopass, 0, sizeof(wol->sopass));
  554. }
  555. static int siena_set_wol(struct efx_nic *efx, u32 type)
  556. {
  557. struct siena_nic_data *nic_data = efx->nic_data;
  558. int rc;
  559. if (type & ~WAKE_MAGIC)
  560. return -EINVAL;
  561. if (type & WAKE_MAGIC) {
  562. if (nic_data->wol_filter_id != -1)
  563. efx_mcdi_wol_filter_remove(efx,
  564. nic_data->wol_filter_id);
  565. rc = efx_mcdi_wol_filter_set_magic(efx, efx->net_dev->dev_addr,
  566. &nic_data->wol_filter_id);
  567. if (rc)
  568. goto fail;
  569. pci_wake_from_d3(efx->pci_dev, true);
  570. } else {
  571. rc = efx_mcdi_wol_filter_reset(efx);
  572. nic_data->wol_filter_id = -1;
  573. pci_wake_from_d3(efx->pci_dev, false);
  574. if (rc)
  575. goto fail;
  576. }
  577. return 0;
  578. fail:
  579. netif_err(efx, hw, efx->net_dev, "%s failed: type=%d rc=%d\n",
  580. __func__, type, rc);
  581. return rc;
  582. }
  583. static void siena_init_wol(struct efx_nic *efx)
  584. {
  585. struct siena_nic_data *nic_data = efx->nic_data;
  586. int rc;
  587. rc = efx_mcdi_wol_filter_get_magic(efx, &nic_data->wol_filter_id);
  588. if (rc != 0) {
  589. /* If it failed, attempt to get into a synchronised
  590. * state with MC by resetting any set WoL filters */
  591. efx_mcdi_wol_filter_reset(efx);
  592. nic_data->wol_filter_id = -1;
  593. } else if (nic_data->wol_filter_id != -1) {
  594. pci_wake_from_d3(efx->pci_dev, true);
  595. }
  596. }
  597. /**************************************************************************
  598. *
  599. * MCDI
  600. *
  601. **************************************************************************
  602. */
  603. #define MCDI_PDU(efx) \
  604. (efx_port_num(efx) ? MC_SMEM_P1_PDU_OFST : MC_SMEM_P0_PDU_OFST)
  605. #define MCDI_DOORBELL(efx) \
  606. (efx_port_num(efx) ? MC_SMEM_P1_DOORBELL_OFST : MC_SMEM_P0_DOORBELL_OFST)
  607. #define MCDI_STATUS(efx) \
  608. (efx_port_num(efx) ? MC_SMEM_P1_STATUS_OFST : MC_SMEM_P0_STATUS_OFST)
  609. static void siena_mcdi_request(struct efx_nic *efx,
  610. const efx_dword_t *hdr, size_t hdr_len,
  611. const efx_dword_t *sdu, size_t sdu_len)
  612. {
  613. unsigned pdu = FR_CZ_MC_TREG_SMEM + MCDI_PDU(efx);
  614. unsigned doorbell = FR_CZ_MC_TREG_SMEM + MCDI_DOORBELL(efx);
  615. unsigned int i;
  616. unsigned int inlen_dw = DIV_ROUND_UP(sdu_len, 4);
  617. EFX_BUG_ON_PARANOID(hdr_len != 4);
  618. efx_writed(efx, hdr, pdu);
  619. for (i = 0; i < inlen_dw; i++)
  620. efx_writed(efx, &sdu[i], pdu + hdr_len + 4 * i);
  621. /* Ensure the request is written out before the doorbell */
  622. wmb();
  623. /* ring the doorbell with a distinctive value */
  624. _efx_writed(efx, (__force __le32) 0x45789abc, doorbell);
  625. }
  626. static bool siena_mcdi_poll_response(struct efx_nic *efx)
  627. {
  628. unsigned int pdu = FR_CZ_MC_TREG_SMEM + MCDI_PDU(efx);
  629. efx_dword_t hdr;
  630. efx_readd(efx, &hdr, pdu);
  631. /* All 1's indicates that shared memory is in reset (and is
  632. * not a valid hdr). Wait for it to come out reset before
  633. * completing the command
  634. */
  635. return EFX_DWORD_FIELD(hdr, EFX_DWORD_0) != 0xffffffff &&
  636. EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
  637. }
  638. static void siena_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
  639. size_t offset, size_t outlen)
  640. {
  641. unsigned int pdu = FR_CZ_MC_TREG_SMEM + MCDI_PDU(efx);
  642. unsigned int outlen_dw = DIV_ROUND_UP(outlen, 4);
  643. int i;
  644. for (i = 0; i < outlen_dw; i++)
  645. efx_readd(efx, &outbuf[i], pdu + offset + 4 * i);
  646. }
  647. static int siena_mcdi_poll_reboot(struct efx_nic *efx)
  648. {
  649. struct siena_nic_data *nic_data = efx->nic_data;
  650. unsigned int addr = FR_CZ_MC_TREG_SMEM + MCDI_STATUS(efx);
  651. efx_dword_t reg;
  652. u32 value;
  653. efx_readd(efx, &reg, addr);
  654. value = EFX_DWORD_FIELD(reg, EFX_DWORD_0);
  655. if (value == 0)
  656. return 0;
  657. EFX_ZERO_DWORD(reg);
  658. efx_writed(efx, &reg, addr);
  659. /* MAC statistics have been cleared on the NIC; clear the local
  660. * copies that we update with efx_update_diff_stat().
  661. */
  662. nic_data->stats[SIENA_STAT_tx_good_bytes] = 0;
  663. nic_data->stats[SIENA_STAT_rx_good_bytes] = 0;
  664. if (value == MC_STATUS_DWORD_ASSERT)
  665. return -EINTR;
  666. else
  667. return -EIO;
  668. }
  669. /**************************************************************************
  670. *
  671. * MTD
  672. *
  673. **************************************************************************
  674. */
  675. #ifdef CONFIG_SFC_MTD
  676. struct siena_nvram_type_info {
  677. int port;
  678. const char *name;
  679. };
  680. static const struct siena_nvram_type_info siena_nvram_types[] = {
  681. [MC_CMD_NVRAM_TYPE_DISABLED_CALLISTO] = { 0, "sfc_dummy_phy" },
  682. [MC_CMD_NVRAM_TYPE_MC_FW] = { 0, "sfc_mcfw" },
  683. [MC_CMD_NVRAM_TYPE_MC_FW_BACKUP] = { 0, "sfc_mcfw_backup" },
  684. [MC_CMD_NVRAM_TYPE_STATIC_CFG_PORT0] = { 0, "sfc_static_cfg" },
  685. [MC_CMD_NVRAM_TYPE_STATIC_CFG_PORT1] = { 1, "sfc_static_cfg" },
  686. [MC_CMD_NVRAM_TYPE_DYNAMIC_CFG_PORT0] = { 0, "sfc_dynamic_cfg" },
  687. [MC_CMD_NVRAM_TYPE_DYNAMIC_CFG_PORT1] = { 1, "sfc_dynamic_cfg" },
  688. [MC_CMD_NVRAM_TYPE_EXP_ROM] = { 0, "sfc_exp_rom" },
  689. [MC_CMD_NVRAM_TYPE_EXP_ROM_CFG_PORT0] = { 0, "sfc_exp_rom_cfg" },
  690. [MC_CMD_NVRAM_TYPE_EXP_ROM_CFG_PORT1] = { 1, "sfc_exp_rom_cfg" },
  691. [MC_CMD_NVRAM_TYPE_PHY_PORT0] = { 0, "sfc_phy_fw" },
  692. [MC_CMD_NVRAM_TYPE_PHY_PORT1] = { 1, "sfc_phy_fw" },
  693. [MC_CMD_NVRAM_TYPE_FPGA] = { 0, "sfc_fpga" },
  694. };
  695. static int siena_mtd_probe_partition(struct efx_nic *efx,
  696. struct efx_mcdi_mtd_partition *part,
  697. unsigned int type)
  698. {
  699. const struct siena_nvram_type_info *info;
  700. size_t size, erase_size;
  701. bool protected;
  702. int rc;
  703. if (type >= ARRAY_SIZE(siena_nvram_types) ||
  704. siena_nvram_types[type].name == NULL)
  705. return -ENODEV;
  706. info = &siena_nvram_types[type];
  707. if (info->port != efx_port_num(efx))
  708. return -ENODEV;
  709. rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
  710. if (rc)
  711. return rc;
  712. if (protected)
  713. return -ENODEV; /* hide it */
  714. part->nvram_type = type;
  715. part->common.dev_type_name = "Siena NVRAM manager";
  716. part->common.type_name = info->name;
  717. part->common.mtd.type = MTD_NORFLASH;
  718. part->common.mtd.flags = MTD_CAP_NORFLASH;
  719. part->common.mtd.size = size;
  720. part->common.mtd.erasesize = erase_size;
  721. return 0;
  722. }
  723. static int siena_mtd_get_fw_subtypes(struct efx_nic *efx,
  724. struct efx_mcdi_mtd_partition *parts,
  725. size_t n_parts)
  726. {
  727. uint16_t fw_subtype_list[
  728. MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM];
  729. size_t i;
  730. int rc;
  731. rc = efx_mcdi_get_board_cfg(efx, NULL, fw_subtype_list, NULL);
  732. if (rc)
  733. return rc;
  734. for (i = 0; i < n_parts; i++)
  735. parts[i].fw_subtype = fw_subtype_list[parts[i].nvram_type];
  736. return 0;
  737. }
  738. static int siena_mtd_probe(struct efx_nic *efx)
  739. {
  740. struct efx_mcdi_mtd_partition *parts;
  741. u32 nvram_types;
  742. unsigned int type;
  743. size_t n_parts;
  744. int rc;
  745. ASSERT_RTNL();
  746. rc = efx_mcdi_nvram_types(efx, &nvram_types);
  747. if (rc)
  748. return rc;
  749. parts = kcalloc(hweight32(nvram_types), sizeof(*parts), GFP_KERNEL);
  750. if (!parts)
  751. return -ENOMEM;
  752. type = 0;
  753. n_parts = 0;
  754. while (nvram_types != 0) {
  755. if (nvram_types & 1) {
  756. rc = siena_mtd_probe_partition(efx, &parts[n_parts],
  757. type);
  758. if (rc == 0)
  759. n_parts++;
  760. else if (rc != -ENODEV)
  761. goto fail;
  762. }
  763. type++;
  764. nvram_types >>= 1;
  765. }
  766. rc = siena_mtd_get_fw_subtypes(efx, parts, n_parts);
  767. if (rc)
  768. goto fail;
  769. rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
  770. fail:
  771. if (rc)
  772. kfree(parts);
  773. return rc;
  774. }
  775. #endif /* CONFIG_SFC_MTD */
  776. /**************************************************************************
  777. *
  778. * Revision-dependent attributes used by efx.c and nic.c
  779. *
  780. **************************************************************************
  781. */
  782. const struct efx_nic_type siena_a0_nic_type = {
  783. .is_vf = false,
  784. .mem_bar = EFX_MEM_BAR,
  785. .mem_map_size = siena_mem_map_size,
  786. .probe = siena_probe_nic,
  787. .remove = siena_remove_nic,
  788. .init = siena_init_nic,
  789. .dimension_resources = siena_dimension_resources,
  790. .fini = efx_port_dummy_op_void,
  791. #ifdef CONFIG_EEH
  792. .monitor = siena_monitor,
  793. #else
  794. .monitor = NULL,
  795. #endif
  796. .map_reset_reason = efx_mcdi_map_reset_reason,
  797. .map_reset_flags = siena_map_reset_flags,
  798. .reset = efx_mcdi_reset,
  799. .probe_port = efx_mcdi_port_probe,
  800. .remove_port = efx_mcdi_port_remove,
  801. .fini_dmaq = efx_farch_fini_dmaq,
  802. .prepare_flush = siena_prepare_flush,
  803. .finish_flush = siena_finish_flush,
  804. .prepare_flr = efx_port_dummy_op_void,
  805. .finish_flr = efx_farch_finish_flr,
  806. .describe_stats = siena_describe_nic_stats,
  807. .update_stats = siena_update_nic_stats,
  808. .start_stats = efx_mcdi_mac_start_stats,
  809. .pull_stats = efx_mcdi_mac_pull_stats,
  810. .stop_stats = efx_mcdi_mac_stop_stats,
  811. .set_id_led = efx_mcdi_set_id_led,
  812. .push_irq_moderation = siena_push_irq_moderation,
  813. .reconfigure_mac = siena_mac_reconfigure,
  814. .check_mac_fault = efx_mcdi_mac_check_fault,
  815. .reconfigure_port = efx_mcdi_port_reconfigure,
  816. .get_wol = siena_get_wol,
  817. .set_wol = siena_set_wol,
  818. .resume_wol = siena_init_wol,
  819. .test_chip = siena_test_chip,
  820. .test_nvram = efx_mcdi_nvram_test_all,
  821. .mcdi_request = siena_mcdi_request,
  822. .mcdi_poll_response = siena_mcdi_poll_response,
  823. .mcdi_read_response = siena_mcdi_read_response,
  824. .mcdi_poll_reboot = siena_mcdi_poll_reboot,
  825. .irq_enable_master = efx_farch_irq_enable_master,
  826. .irq_test_generate = efx_farch_irq_test_generate,
  827. .irq_disable_non_ev = efx_farch_irq_disable_master,
  828. .irq_handle_msi = efx_farch_msi_interrupt,
  829. .irq_handle_legacy = efx_farch_legacy_interrupt,
  830. .tx_probe = efx_farch_tx_probe,
  831. .tx_init = efx_farch_tx_init,
  832. .tx_remove = efx_farch_tx_remove,
  833. .tx_write = efx_farch_tx_write,
  834. .rx_push_rss_config = siena_rx_push_rss_config,
  835. .rx_probe = efx_farch_rx_probe,
  836. .rx_init = efx_farch_rx_init,
  837. .rx_remove = efx_farch_rx_remove,
  838. .rx_write = efx_farch_rx_write,
  839. .rx_defer_refill = efx_farch_rx_defer_refill,
  840. .ev_probe = efx_farch_ev_probe,
  841. .ev_init = efx_farch_ev_init,
  842. .ev_fini = efx_farch_ev_fini,
  843. .ev_remove = efx_farch_ev_remove,
  844. .ev_process = efx_farch_ev_process,
  845. .ev_read_ack = efx_farch_ev_read_ack,
  846. .ev_test_generate = efx_farch_ev_test_generate,
  847. .filter_table_probe = efx_farch_filter_table_probe,
  848. .filter_table_restore = efx_farch_filter_table_restore,
  849. .filter_table_remove = efx_farch_filter_table_remove,
  850. .filter_update_rx_scatter = efx_farch_filter_update_rx_scatter,
  851. .filter_insert = efx_farch_filter_insert,
  852. .filter_remove_safe = efx_farch_filter_remove_safe,
  853. .filter_get_safe = efx_farch_filter_get_safe,
  854. .filter_clear_rx = efx_farch_filter_clear_rx,
  855. .filter_count_rx_used = efx_farch_filter_count_rx_used,
  856. .filter_get_rx_id_limit = efx_farch_filter_get_rx_id_limit,
  857. .filter_get_rx_ids = efx_farch_filter_get_rx_ids,
  858. #ifdef CONFIG_RFS_ACCEL
  859. .filter_rfs_insert = efx_farch_filter_rfs_insert,
  860. .filter_rfs_expire_one = efx_farch_filter_rfs_expire_one,
  861. #endif
  862. #ifdef CONFIG_SFC_MTD
  863. .mtd_probe = siena_mtd_probe,
  864. .mtd_rename = efx_mcdi_mtd_rename,
  865. .mtd_read = efx_mcdi_mtd_read,
  866. .mtd_erase = efx_mcdi_mtd_erase,
  867. .mtd_write = efx_mcdi_mtd_write,
  868. .mtd_sync = efx_mcdi_mtd_sync,
  869. #endif
  870. .ptp_write_host_time = siena_ptp_write_host_time,
  871. .ptp_set_ts_config = siena_ptp_set_ts_config,
  872. #ifdef CONFIG_SFC_SRIOV
  873. .sriov_configure = efx_siena_sriov_configure,
  874. .sriov_init = efx_siena_sriov_init,
  875. .sriov_fini = efx_siena_sriov_fini,
  876. .sriov_wanted = efx_siena_sriov_wanted,
  877. .sriov_reset = efx_siena_sriov_reset,
  878. .sriov_flr = efx_siena_sriov_flr,
  879. .sriov_set_vf_mac = efx_siena_sriov_set_vf_mac,
  880. .sriov_set_vf_vlan = efx_siena_sriov_set_vf_vlan,
  881. .sriov_set_vf_spoofchk = efx_siena_sriov_set_vf_spoofchk,
  882. .sriov_get_vf_config = efx_siena_sriov_get_vf_config,
  883. .vswitching_probe = efx_port_dummy_op_int,
  884. .vswitching_restore = efx_port_dummy_op_int,
  885. .vswitching_remove = efx_port_dummy_op_void,
  886. .set_mac_address = efx_siena_sriov_mac_address_changed,
  887. #endif
  888. .revision = EFX_REV_SIENA_A0,
  889. .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
  890. .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
  891. .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
  892. .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
  893. .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
  894. .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
  895. .rx_prefix_size = FS_BZ_RX_PREFIX_SIZE,
  896. .rx_hash_offset = FS_BZ_RX_PREFIX_HASH_OFST,
  897. .rx_buffer_padding = 0,
  898. .can_rx_scatter = true,
  899. .max_interrupt_mode = EFX_INT_MODE_MSIX,
  900. .timer_period_max = 1 << FRF_CZ_TC_TIMER_VAL_WIDTH,
  901. .offload_features = (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
  902. NETIF_F_RXHASH | NETIF_F_NTUPLE),
  903. .mcdi_max_ver = 1,
  904. .max_rx_ip_filters = FR_BZ_RX_FILTER_TBL0_ROWS,
  905. .hwtstamp_filters = (1 << HWTSTAMP_FILTER_NONE |
  906. 1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT |
  907. 1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT),
  908. };