123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682 |
- /*******************************************************************************
- *
- Intel PRO/1000 Linux driver
- Copyright(c) 1999 - 2006 Intel Corporation.
- This program is free software; you can redistribute it and/or modify it
- under the terms and conditions of the GNU General Public License,
- version 2, as published by the Free Software Foundation.
- This program is distributed in the hope it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- more details.
- You should have received a copy of the GNU General Public License along with
- this program; if not, write to the Free Software Foundation, Inc.,
- 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
- The full GNU General Public License is included in this distribution in
- the file called "COPYING".
- Contact Information:
- Linux NICS <linux.nics@intel.com>
- e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
- Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
- */
- /* e1000_hw.c
- * Shared functions for accessing and configuring the MAC
- */
- #include "e1000.h"
- static s32 e1000_check_downshift(struct e1000_hw *hw);
- static s32 e1000_check_polarity(struct e1000_hw *hw,
- e1000_rev_polarity *polarity);
- static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
- static void e1000_clear_vfta(struct e1000_hw *hw);
- static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw,
- bool link_up);
- static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw);
- static s32 e1000_detect_gig_phy(struct e1000_hw *hw);
- static s32 e1000_get_auto_rd_done(struct e1000_hw *hw);
- static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
- u16 *max_length);
- static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
- static s32 e1000_id_led_init(struct e1000_hw *hw);
- static void e1000_init_rx_addrs(struct e1000_hw *hw);
- static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
- struct e1000_phy_info *phy_info);
- static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
- struct e1000_phy_info *phy_info);
- static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
- static s32 e1000_wait_autoneg(struct e1000_hw *hw);
- static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value);
- static s32 e1000_set_phy_type(struct e1000_hw *hw);
- static void e1000_phy_init_script(struct e1000_hw *hw);
- static s32 e1000_setup_copper_link(struct e1000_hw *hw);
- static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
- static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
- static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
- static s32 e1000_config_mac_to_phy(struct e1000_hw *hw);
- static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
- static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
- static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count);
- static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw);
- static s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
- static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset,
- u16 words, u16 *data);
- static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
- u16 words, u16 *data);
- static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw);
- static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd);
- static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd);
- static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count);
- static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
- u16 phy_data);
- static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
- u16 *phy_data);
- static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count);
- static s32 e1000_acquire_eeprom(struct e1000_hw *hw);
- static void e1000_release_eeprom(struct e1000_hw *hw);
- static void e1000_standby_eeprom(struct e1000_hw *hw);
- static s32 e1000_set_vco_speed(struct e1000_hw *hw);
- static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw);
- static s32 e1000_set_phy_mode(struct e1000_hw *hw);
- static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data);
- static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data);
- /* IGP cable length table */
- static const
- u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = {
- 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
- 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
- 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
- 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
- 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
- 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100,
- 100,
- 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
- 110, 110,
- 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120,
- 120, 120
- };
- static DEFINE_MUTEX(e1000_eeprom_lock);
- static DEFINE_SPINLOCK(e1000_phy_lock);
- /**
- * e1000_set_phy_type - Set the phy type member in the hw struct.
- * @hw: Struct containing variables accessed by shared code
- */
- static s32 e1000_set_phy_type(struct e1000_hw *hw)
- {
- if (hw->mac_type == e1000_undefined)
- return -E1000_ERR_PHY_TYPE;
- switch (hw->phy_id) {
- case M88E1000_E_PHY_ID:
- case M88E1000_I_PHY_ID:
- case M88E1011_I_PHY_ID:
- case M88E1111_I_PHY_ID:
- case M88E1118_E_PHY_ID:
- hw->phy_type = e1000_phy_m88;
- break;
- case IGP01E1000_I_PHY_ID:
- if (hw->mac_type == e1000_82541 ||
- hw->mac_type == e1000_82541_rev_2 ||
- hw->mac_type == e1000_82547 ||
- hw->mac_type == e1000_82547_rev_2)
- hw->phy_type = e1000_phy_igp;
- break;
- case RTL8211B_PHY_ID:
- hw->phy_type = e1000_phy_8211;
- break;
- case RTL8201N_PHY_ID:
- hw->phy_type = e1000_phy_8201;
- break;
- default:
- /* Should never have loaded on this device */
- hw->phy_type = e1000_phy_undefined;
- return -E1000_ERR_PHY_TYPE;
- }
- return E1000_SUCCESS;
- }
- /**
- * e1000_phy_init_script - IGP phy init script - initializes the GbE PHY
- * @hw: Struct containing variables accessed by shared code
- */
- static void e1000_phy_init_script(struct e1000_hw *hw)
- {
- u32 ret_val;
- u16 phy_saved_data;
- if (hw->phy_init_script) {
- msleep(20);
- /* Save off the current value of register 0x2F5B to be restored
- * at the end of this routine.
- */
- ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
- /* Disabled the PHY transmitter */
- e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
- msleep(20);
- e1000_write_phy_reg(hw, 0x0000, 0x0140);
- msleep(5);
- switch (hw->mac_type) {
- case e1000_82541:
- case e1000_82547:
- e1000_write_phy_reg(hw, 0x1F95, 0x0001);
- e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
- e1000_write_phy_reg(hw, 0x1F79, 0x0018);
- e1000_write_phy_reg(hw, 0x1F30, 0x1600);
- e1000_write_phy_reg(hw, 0x1F31, 0x0014);
- e1000_write_phy_reg(hw, 0x1F32, 0x161C);
- e1000_write_phy_reg(hw, 0x1F94, 0x0003);
- e1000_write_phy_reg(hw, 0x1F96, 0x003F);
- e1000_write_phy_reg(hw, 0x2010, 0x0008);
- break;
- case e1000_82541_rev_2:
- case e1000_82547_rev_2:
- e1000_write_phy_reg(hw, 0x1F73, 0x0099);
- break;
- default:
- break;
- }
- e1000_write_phy_reg(hw, 0x0000, 0x3300);
- msleep(20);
- /* Now enable the transmitter */
- e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
- if (hw->mac_type == e1000_82547) {
- u16 fused, fine, coarse;
- /* Move to analog registers page */
- e1000_read_phy_reg(hw,
- IGP01E1000_ANALOG_SPARE_FUSE_STATUS,
- &fused);
- if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
- e1000_read_phy_reg(hw,
- IGP01E1000_ANALOG_FUSE_STATUS,
- &fused);
- fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
- coarse =
- fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
- if (coarse >
- IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
- coarse -=
- IGP01E1000_ANALOG_FUSE_COARSE_10;
- fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
- } else if (coarse ==
- IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
- fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
- fused =
- (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
- (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
- (coarse &
- IGP01E1000_ANALOG_FUSE_COARSE_MASK);
- e1000_write_phy_reg(hw,
- IGP01E1000_ANALOG_FUSE_CONTROL,
- fused);
- e1000_write_phy_reg(hw,
- IGP01E1000_ANALOG_FUSE_BYPASS,
- IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
- }
- }
- }
- }
- /**
- * e1000_set_mac_type - Set the mac type member in the hw struct.
- * @hw: Struct containing variables accessed by shared code
- */
- s32 e1000_set_mac_type(struct e1000_hw *hw)
- {
- switch (hw->device_id) {
- case E1000_DEV_ID_82542:
- switch (hw->revision_id) {
- case E1000_82542_2_0_REV_ID:
- hw->mac_type = e1000_82542_rev2_0;
- break;
- case E1000_82542_2_1_REV_ID:
- hw->mac_type = e1000_82542_rev2_1;
- break;
- default:
- /* Invalid 82542 revision ID */
- return -E1000_ERR_MAC_TYPE;
- }
- break;
- case E1000_DEV_ID_82543GC_FIBER:
- case E1000_DEV_ID_82543GC_COPPER:
- hw->mac_type = e1000_82543;
- break;
- case E1000_DEV_ID_82544EI_COPPER:
- case E1000_DEV_ID_82544EI_FIBER:
- case E1000_DEV_ID_82544GC_COPPER:
- case E1000_DEV_ID_82544GC_LOM:
- hw->mac_type = e1000_82544;
- break;
- case E1000_DEV_ID_82540EM:
- case E1000_DEV_ID_82540EM_LOM:
- case E1000_DEV_ID_82540EP:
- case E1000_DEV_ID_82540EP_LOM:
- case E1000_DEV_ID_82540EP_LP:
- hw->mac_type = e1000_82540;
- break;
- case E1000_DEV_ID_82545EM_COPPER:
- case E1000_DEV_ID_82545EM_FIBER:
- hw->mac_type = e1000_82545;
- break;
- case E1000_DEV_ID_82545GM_COPPER:
- case E1000_DEV_ID_82545GM_FIBER:
- case E1000_DEV_ID_82545GM_SERDES:
- hw->mac_type = e1000_82545_rev_3;
- break;
- case E1000_DEV_ID_82546EB_COPPER:
- case E1000_DEV_ID_82546EB_FIBER:
- case E1000_DEV_ID_82546EB_QUAD_COPPER:
- hw->mac_type = e1000_82546;
- break;
- case E1000_DEV_ID_82546GB_COPPER:
- case E1000_DEV_ID_82546GB_FIBER:
- case E1000_DEV_ID_82546GB_SERDES:
- case E1000_DEV_ID_82546GB_PCIE:
- case E1000_DEV_ID_82546GB_QUAD_COPPER:
- case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
- hw->mac_type = e1000_82546_rev_3;
- break;
- case E1000_DEV_ID_82541EI:
- case E1000_DEV_ID_82541EI_MOBILE:
- case E1000_DEV_ID_82541ER_LOM:
- hw->mac_type = e1000_82541;
- break;
- case E1000_DEV_ID_82541ER:
- case E1000_DEV_ID_82541GI:
- case E1000_DEV_ID_82541GI_LF:
- case E1000_DEV_ID_82541GI_MOBILE:
- hw->mac_type = e1000_82541_rev_2;
- break;
- case E1000_DEV_ID_82547EI:
- case E1000_DEV_ID_82547EI_MOBILE:
- hw->mac_type = e1000_82547;
- break;
- case E1000_DEV_ID_82547GI:
- hw->mac_type = e1000_82547_rev_2;
- break;
- case E1000_DEV_ID_INTEL_CE4100_GBE:
- hw->mac_type = e1000_ce4100;
- break;
- default:
- /* Should never have loaded on this device */
- return -E1000_ERR_MAC_TYPE;
- }
- switch (hw->mac_type) {
- case e1000_82541:
- case e1000_82547:
- case e1000_82541_rev_2:
- case e1000_82547_rev_2:
- hw->asf_firmware_present = true;
- break;
- default:
- break;
- }
- /* The 82543 chip does not count tx_carrier_errors properly in
- * FD mode
- */
- if (hw->mac_type == e1000_82543)
- hw->bad_tx_carr_stats_fd = true;
- if (hw->mac_type > e1000_82544)
- hw->has_smbus = true;
- return E1000_SUCCESS;
- }
- /**
- * e1000_set_media_type - Set media type and TBI compatibility.
- * @hw: Struct containing variables accessed by shared code
- */
- void e1000_set_media_type(struct e1000_hw *hw)
- {
- u32 status;
- if (hw->mac_type != e1000_82543) {
- /* tbi_compatibility is only valid on 82543 */
- hw->tbi_compatibility_en = false;
- }
- switch (hw->device_id) {
- case E1000_DEV_ID_82545GM_SERDES:
- case E1000_DEV_ID_82546GB_SERDES:
- hw->media_type = e1000_media_type_internal_serdes;
- break;
- default:
- switch (hw->mac_type) {
- case e1000_82542_rev2_0:
- case e1000_82542_rev2_1:
- hw->media_type = e1000_media_type_fiber;
- break;
- case e1000_ce4100:
- hw->media_type = e1000_media_type_copper;
- break;
- default:
- status = er32(STATUS);
- if (status & E1000_STATUS_TBIMODE) {
- hw->media_type = e1000_media_type_fiber;
- /* tbi_compatibility not valid on fiber */
- hw->tbi_compatibility_en = false;
- } else {
- hw->media_type = e1000_media_type_copper;
- }
- break;
- }
- }
- }
- /**
- * e1000_reset_hw - reset the hardware completely
- * @hw: Struct containing variables accessed by shared code
- *
- * Reset the transmit and receive units; mask and clear all interrupts.
- */
- s32 e1000_reset_hw(struct e1000_hw *hw)
- {
- u32 ctrl;
- u32 ctrl_ext;
- u32 icr;
- u32 manc;
- u32 led_ctrl;
- s32 ret_val;
- /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
- if (hw->mac_type == e1000_82542_rev2_0) {
- e_dbg("Disabling MWI on 82542 rev 2.0\n");
- e1000_pci_clear_mwi(hw);
- }
- /* Clear interrupt mask to stop board from generating interrupts */
- e_dbg("Masking off all interrupts\n");
- ew32(IMC, 0xffffffff);
- /* Disable the Transmit and Receive units. Then delay to allow
- * any pending transactions to complete before we hit the MAC with
- * the global reset.
- */
- ew32(RCTL, 0);
- ew32(TCTL, E1000_TCTL_PSP);
- E1000_WRITE_FLUSH();
- /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
- hw->tbi_compatibility_on = false;
- /* Delay to allow any outstanding PCI transactions to complete before
- * resetting the device
- */
- msleep(10);
- ctrl = er32(CTRL);
- /* Must reset the PHY before resetting the MAC */
- if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
- ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST));
- E1000_WRITE_FLUSH();
- msleep(5);
- }
- /* Issue a global reset to the MAC. This will reset the chip's
- * transmit, receive, DMA, and link units. It will not effect
- * the current PCI configuration. The global reset bit is self-
- * clearing, and should clear within a microsecond.
- */
- e_dbg("Issuing a global reset to MAC\n");
- switch (hw->mac_type) {
- case e1000_82544:
- case e1000_82540:
- case e1000_82545:
- case e1000_82546:
- case e1000_82541:
- case e1000_82541_rev_2:
- /* These controllers can't ack the 64-bit write when issuing the
- * reset, so use IO-mapping as a workaround to issue the reset
- */
- E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
- break;
- case e1000_82545_rev_3:
- case e1000_82546_rev_3:
- /* Reset is performed on a shadow of the control register */
- ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST));
- break;
- case e1000_ce4100:
- default:
- ew32(CTRL, (ctrl | E1000_CTRL_RST));
- break;
- }
- /* After MAC reset, force reload of EEPROM to restore power-on settings
- * to device. Later controllers reload the EEPROM automatically, so
- * just wait for reload to complete.
- */
- switch (hw->mac_type) {
- case e1000_82542_rev2_0:
- case e1000_82542_rev2_1:
- case e1000_82543:
- case e1000_82544:
- /* Wait for reset to complete */
- udelay(10);
- ctrl_ext = er32(CTRL_EXT);
- ctrl_ext |= E1000_CTRL_EXT_EE_RST;
- ew32(CTRL_EXT, ctrl_ext);
- E1000_WRITE_FLUSH();
- /* Wait for EEPROM reload */
- msleep(2);
- break;
- case e1000_82541:
- case e1000_82541_rev_2:
- case e1000_82547:
- case e1000_82547_rev_2:
- /* Wait for EEPROM reload */
- msleep(20);
- break;
- default:
- /* Auto read done will delay 5ms or poll based on mac type */
- ret_val = e1000_get_auto_rd_done(hw);
- if (ret_val)
- return ret_val;
- break;
- }
- /* Disable HW ARPs on ASF enabled adapters */
- if (hw->mac_type >= e1000_82540) {
- manc = er32(MANC);
- manc &= ~(E1000_MANC_ARP_EN);
- ew32(MANC, manc);
- }
- if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
- e1000_phy_init_script(hw);
- /* Configure activity LED after PHY reset */
- led_ctrl = er32(LEDCTL);
- led_ctrl &= IGP_ACTIVITY_LED_MASK;
- led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
- ew32(LEDCTL, led_ctrl);
- }
- /* Clear interrupt mask to stop board from generating interrupts */
- e_dbg("Masking off all interrupts\n");
- ew32(IMC, 0xffffffff);
- /* Clear any pending interrupt events. */
- icr = er32(ICR);
- /* If MWI was previously enabled, reenable it. */
- if (hw->mac_type == e1000_82542_rev2_0) {
- if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
- e1000_pci_set_mwi(hw);
- }
- return E1000_SUCCESS;
- }
- /**
- * e1000_init_hw - Performs basic configuration of the adapter.
- * @hw: Struct containing variables accessed by shared code
- *
- * Assumes that the controller has previously been reset and is in a
- * post-reset uninitialized state. Initializes the receive address registers,
- * multicast table, and VLAN filter table. Calls routines to setup link
- * configuration and flow control settings. Clears all on-chip counters. Leaves
- * the transmit and receive units disabled and uninitialized.
- */
- s32 e1000_init_hw(struct e1000_hw *hw)
- {
- u32 ctrl;
- u32 i;
- s32 ret_val;
- u32 mta_size;
- u32 ctrl_ext;
- /* Initialize Identification LED */
- ret_val = e1000_id_led_init(hw);
- if (ret_val) {
- e_dbg("Error Initializing Identification LED\n");
- return ret_val;
- }
- /* Set the media type and TBI compatibility */
- e1000_set_media_type(hw);
- /* Disabling VLAN filtering. */
- e_dbg("Initializing the IEEE VLAN\n");
- if (hw->mac_type < e1000_82545_rev_3)
- ew32(VET, 0);
- e1000_clear_vfta(hw);
- /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
- if (hw->mac_type == e1000_82542_rev2_0) {
- e_dbg("Disabling MWI on 82542 rev 2.0\n");
- e1000_pci_clear_mwi(hw);
- ew32(RCTL, E1000_RCTL_RST);
- E1000_WRITE_FLUSH();
- msleep(5);
- }
- /* Setup the receive address. This involves initializing all of the
- * Receive Address Registers (RARs 0 - 15).
- */
- e1000_init_rx_addrs(hw);
- /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
- if (hw->mac_type == e1000_82542_rev2_0) {
- ew32(RCTL, 0);
- E1000_WRITE_FLUSH();
- msleep(1);
- if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
- e1000_pci_set_mwi(hw);
- }
- /* Zero out the Multicast HASH table */
- e_dbg("Zeroing the MTA\n");
- mta_size = E1000_MC_TBL_SIZE;
- for (i = 0; i < mta_size; i++) {
- E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
- /* use write flush to prevent Memory Write Block (MWB) from
- * occurring when accessing our register space
- */
- E1000_WRITE_FLUSH();
- }
- /* Set the PCI priority bit correctly in the CTRL register. This
- * determines if the adapter gives priority to receives, or if it
- * gives equal priority to transmits and receives. Valid only on
- * 82542 and 82543 silicon.
- */
- if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
- ctrl = er32(CTRL);
- ew32(CTRL, ctrl | E1000_CTRL_PRIOR);
- }
- switch (hw->mac_type) {
- case e1000_82545_rev_3:
- case e1000_82546_rev_3:
- break;
- default:
- /* Workaround for PCI-X problem when BIOS sets MMRBC
- * incorrectly.
- */
- if (hw->bus_type == e1000_bus_type_pcix &&
- e1000_pcix_get_mmrbc(hw) > 2048)
- e1000_pcix_set_mmrbc(hw, 2048);
- break;
- }
- /* Call a subroutine to configure the link and setup flow control. */
- ret_val = e1000_setup_link(hw);
- /* Set the transmit descriptor write-back policy */
- if (hw->mac_type > e1000_82544) {
- ctrl = er32(TXDCTL);
- ctrl =
- (ctrl & ~E1000_TXDCTL_WTHRESH) |
- E1000_TXDCTL_FULL_TX_DESC_WB;
- ew32(TXDCTL, ctrl);
- }
- /* Clear all of the statistics registers (clear on read). It is
- * important that we do this after we have tried to establish link
- * because the symbol error count will increment wildly if there
- * is no link.
- */
- e1000_clear_hw_cntrs(hw);
- if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
- hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
- ctrl_ext = er32(CTRL_EXT);
- /* Relaxed ordering must be disabled to avoid a parity
- * error crash in a PCI slot.
- */
- ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
- ew32(CTRL_EXT, ctrl_ext);
- }
- return ret_val;
- }
- /**
- * e1000_adjust_serdes_amplitude - Adjust SERDES output amplitude based on EEPROM setting.
- * @hw: Struct containing variables accessed by shared code.
- */
- static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
- {
- u16 eeprom_data;
- s32 ret_val;
- if (hw->media_type != e1000_media_type_internal_serdes)
- return E1000_SUCCESS;
- switch (hw->mac_type) {
- case e1000_82545_rev_3:
- case e1000_82546_rev_3:
- break;
- default:
- return E1000_SUCCESS;
- }
- ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1,
- &eeprom_data);
- if (ret_val)
- return ret_val;
- if (eeprom_data != EEPROM_RESERVED_WORD) {
- /* Adjust SERDES output amplitude only. */
- eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
- ret_val =
- e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
- if (ret_val)
- return ret_val;
- }
- return E1000_SUCCESS;
- }
- /**
- * e1000_setup_link - Configures flow control and link settings.
- * @hw: Struct containing variables accessed by shared code
- *
- * Determines which flow control settings to use. Calls the appropriate media-
- * specific link configuration function. Configures the flow control settings.
- * Assuming the adapter has a valid link partner, a valid link should be
- * established. Assumes the hardware has previously been reset and the
- * transmitter and receiver are not enabled.
- */
- s32 e1000_setup_link(struct e1000_hw *hw)
- {
- u32 ctrl_ext;
- s32 ret_val;
- u16 eeprom_data;
- /* Read and store word 0x0F of the EEPROM. This word contains bits
- * that determine the hardware's default PAUSE (flow control) mode,
- * a bit that determines whether the HW defaults to enabling or
- * disabling auto-negotiation, and the direction of the
- * SW defined pins. If there is no SW over-ride of the flow
- * control setting, then the variable hw->fc will
- * be initialized based on a value in the EEPROM.
- */
- if (hw->fc == E1000_FC_DEFAULT) {
- ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
- 1, &eeprom_data);
- if (ret_val) {
- e_dbg("EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
- if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
- hw->fc = E1000_FC_NONE;
- else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
- EEPROM_WORD0F_ASM_DIR)
- hw->fc = E1000_FC_TX_PAUSE;
- else
- hw->fc = E1000_FC_FULL;
- }
- /* We want to save off the original Flow Control configuration just
- * in case we get disconnected and then reconnected into a different
- * hub or switch with different Flow Control capabilities.
- */
- if (hw->mac_type == e1000_82542_rev2_0)
- hw->fc &= (~E1000_FC_TX_PAUSE);
- if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
- hw->fc &= (~E1000_FC_RX_PAUSE);
- hw->original_fc = hw->fc;
- e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc);
- /* Take the 4 bits from EEPROM word 0x0F that determine the initial
- * polarity value for the SW controlled pins, and setup the
- * Extended Device Control reg with that info.
- * This is needed because one of the SW controlled pins is used for
- * signal detection. So this should be done before e1000_setup_pcs_link()
- * or e1000_phy_setup() is called.
- */
- if (hw->mac_type == e1000_82543) {
- ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
- 1, &eeprom_data);
- if (ret_val) {
- e_dbg("EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
- ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
- SWDPIO__EXT_SHIFT);
- ew32(CTRL_EXT, ctrl_ext);
- }
- /* Call the necessary subroutine to configure the link. */
- ret_val = (hw->media_type == e1000_media_type_copper) ?
- e1000_setup_copper_link(hw) : e1000_setup_fiber_serdes_link(hw);
- /* Initialize the flow control address, type, and PAUSE timer
- * registers to their default values. This is done even if flow
- * control is disabled, because it does not hurt anything to
- * initialize these registers.
- */
- e_dbg("Initializing the Flow Control address, type and timer regs\n");
- ew32(FCT, FLOW_CONTROL_TYPE);
- ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
- ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
- ew32(FCTTV, hw->fc_pause_time);
- /* Set the flow control receive threshold registers. Normally,
- * these registers will be set to a default threshold that may be
- * adjusted later by the driver's runtime code. However, if the
- * ability to transmit pause frames in not enabled, then these
- * registers will be set to 0.
- */
- if (!(hw->fc & E1000_FC_TX_PAUSE)) {
- ew32(FCRTL, 0);
- ew32(FCRTH, 0);
- } else {
- /* We need to set up the Receive Threshold high and low water
- * marks as well as (optionally) enabling the transmission of
- * XON frames.
- */
- if (hw->fc_send_xon) {
- ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
- ew32(FCRTH, hw->fc_high_water);
- } else {
- ew32(FCRTL, hw->fc_low_water);
- ew32(FCRTH, hw->fc_high_water);
- }
- }
- return ret_val;
- }
- /**
- * e1000_setup_fiber_serdes_link - prepare fiber or serdes link
- * @hw: Struct containing variables accessed by shared code
- *
- * Manipulates Physical Coding Sublayer functions in order to configure
- * link. Assumes the hardware has been previously reset and the transmitter
- * and receiver are not enabled.
- */
- static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
- {
- u32 ctrl;
- u32 status;
- u32 txcw = 0;
- u32 i;
- u32 signal = 0;
- s32 ret_val;
- /* On adapters with a MAC newer than 82544, SWDP 1 will be
- * set when the optics detect a signal. On older adapters, it will be
- * cleared when there is a signal. This applies to fiber media only.
- * If we're on serdes media, adjust the output amplitude to value
- * set in the EEPROM.
- */
- ctrl = er32(CTRL);
- if (hw->media_type == e1000_media_type_fiber)
- signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
- ret_val = e1000_adjust_serdes_amplitude(hw);
- if (ret_val)
- return ret_val;
- /* Take the link out of reset */
- ctrl &= ~(E1000_CTRL_LRST);
- /* Adjust VCO speed to improve BER performance */
- ret_val = e1000_set_vco_speed(hw);
- if (ret_val)
- return ret_val;
- e1000_config_collision_dist(hw);
- /* Check for a software override of the flow control settings, and setup
- * the device accordingly. If auto-negotiation is enabled, then
- * software will have to set the "PAUSE" bits to the correct value in
- * the Tranmsit Config Word Register (TXCW) and re-start
- * auto-negotiation. However, if auto-negotiation is disabled, then
- * software will have to manually configure the two flow control enable
- * bits in the CTRL register.
- *
- * The possible values of the "fc" parameter are:
- * 0: Flow control is completely disabled
- * 1: Rx flow control is enabled (we can receive pause frames, but
- * not send pause frames).
- * 2: Tx flow control is enabled (we can send pause frames but we do
- * not support receiving pause frames).
- * 3: Both Rx and TX flow control (symmetric) are enabled.
- */
- switch (hw->fc) {
- case E1000_FC_NONE:
- /* Flow ctrl is completely disabled by a software over-ride */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
- break;
- case E1000_FC_RX_PAUSE:
- /* Rx Flow control is enabled and Tx Flow control is disabled by
- * a software over-ride. Since there really isn't a way to
- * advertise that we are capable of Rx Pause ONLY, we will
- * advertise that we support both symmetric and asymmetric Rx
- * PAUSE. Later, we will disable the adapter's ability to send
- * PAUSE frames.
- */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
- break;
- case E1000_FC_TX_PAUSE:
- /* Tx Flow control is enabled, and Rx Flow control is disabled,
- * by a software over-ride.
- */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
- break;
- case E1000_FC_FULL:
- /* Flow control (both Rx and Tx) is enabled by a software
- * over-ride.
- */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
- break;
- default:
- e_dbg("Flow control param set incorrectly\n");
- return -E1000_ERR_CONFIG;
- }
- /* Since auto-negotiation is enabled, take the link out of reset (the
- * link will be in reset, because we previously reset the chip). This
- * will restart auto-negotiation. If auto-negotiation is successful
- * then the link-up status bit will be set and the flow control enable
- * bits (RFCE and TFCE) will be set according to their negotiated value.
- */
- e_dbg("Auto-negotiation enabled\n");
- ew32(TXCW, txcw);
- ew32(CTRL, ctrl);
- E1000_WRITE_FLUSH();
- hw->txcw = txcw;
- msleep(1);
- /* If we have a signal (the cable is plugged in) then poll for a
- * "Link-Up" indication in the Device Status Register. Time-out if a
- * link isn't seen in 500 milliseconds seconds (Auto-negotiation should
- * complete in less than 500 milliseconds even if the other end is doing
- * it in SW). For internal serdes, we just assume a signal is present,
- * then poll.
- */
- if (hw->media_type == e1000_media_type_internal_serdes ||
- (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) {
- e_dbg("Looking for Link\n");
- for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
- msleep(10);
- status = er32(STATUS);
- if (status & E1000_STATUS_LU)
- break;
- }
- if (i == (LINK_UP_TIMEOUT / 10)) {
- e_dbg("Never got a valid link from auto-neg!!!\n");
- hw->autoneg_failed = 1;
- /* AutoNeg failed to achieve a link, so we'll call
- * e1000_check_for_link. This routine will force the
- * link up if we detect a signal. This will allow us to
- * communicate with non-autonegotiating link partners.
- */
- ret_val = e1000_check_for_link(hw);
- if (ret_val) {
- e_dbg("Error while checking for link\n");
- return ret_val;
- }
- hw->autoneg_failed = 0;
- } else {
- hw->autoneg_failed = 0;
- e_dbg("Valid Link Found\n");
- }
- } else {
- e_dbg("No Signal Detected\n");
- }
- return E1000_SUCCESS;
- }
- /**
- * e1000_copper_link_rtl_setup - Copper link setup for e1000_phy_rtl series.
- * @hw: Struct containing variables accessed by shared code
- *
- * Commits changes to PHY configuration by calling e1000_phy_reset().
- */
- static s32 e1000_copper_link_rtl_setup(struct e1000_hw *hw)
- {
- s32 ret_val;
- /* SW reset the PHY so all changes take effect */
- ret_val = e1000_phy_reset(hw);
- if (ret_val) {
- e_dbg("Error Resetting the PHY\n");
- return ret_val;
- }
- return E1000_SUCCESS;
- }
- static s32 gbe_dhg_phy_setup(struct e1000_hw *hw)
- {
- s32 ret_val;
- u32 ctrl_aux;
- switch (hw->phy_type) {
- case e1000_phy_8211:
- ret_val = e1000_copper_link_rtl_setup(hw);
- if (ret_val) {
- e_dbg("e1000_copper_link_rtl_setup failed!\n");
- return ret_val;
- }
- break;
- case e1000_phy_8201:
- /* Set RMII mode */
- ctrl_aux = er32(CTL_AUX);
- ctrl_aux |= E1000_CTL_AUX_RMII;
- ew32(CTL_AUX, ctrl_aux);
- E1000_WRITE_FLUSH();
- /* Disable the J/K bits required for receive */
- ctrl_aux = er32(CTL_AUX);
- ctrl_aux |= 0x4;
- ctrl_aux &= ~0x2;
- ew32(CTL_AUX, ctrl_aux);
- E1000_WRITE_FLUSH();
- ret_val = e1000_copper_link_rtl_setup(hw);
- if (ret_val) {
- e_dbg("e1000_copper_link_rtl_setup failed!\n");
- return ret_val;
- }
- break;
- default:
- e_dbg("Error Resetting the PHY\n");
- return E1000_ERR_PHY_TYPE;
- }
- return E1000_SUCCESS;
- }
- /**
- * e1000_copper_link_preconfig - early configuration for copper
- * @hw: Struct containing variables accessed by shared code
- *
- * Make sure we have a valid PHY and change PHY mode before link setup.
- */
- static s32 e1000_copper_link_preconfig(struct e1000_hw *hw)
- {
- u32 ctrl;
- s32 ret_val;
- u16 phy_data;
- ctrl = er32(CTRL);
- /* With 82543, we need to force speed and duplex on the MAC equal to
- * what the PHY speed and duplex configuration is. In addition, we need
- * to perform a hardware reset on the PHY to take it out of reset.
- */
- if (hw->mac_type > e1000_82543) {
- ctrl |= E1000_CTRL_SLU;
- ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
- ew32(CTRL, ctrl);
- } else {
- ctrl |=
- (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
- ew32(CTRL, ctrl);
- ret_val = e1000_phy_hw_reset(hw);
- if (ret_val)
- return ret_val;
- }
- /* Make sure we have a valid PHY */
- ret_val = e1000_detect_gig_phy(hw);
- if (ret_val) {
- e_dbg("Error, did not detect valid phy.\n");
- return ret_val;
- }
- e_dbg("Phy ID = %x\n", hw->phy_id);
- /* Set PHY to class A mode (if necessary) */
- ret_val = e1000_set_phy_mode(hw);
- if (ret_val)
- return ret_val;
- if ((hw->mac_type == e1000_82545_rev_3) ||
- (hw->mac_type == e1000_82546_rev_3)) {
- ret_val =
- e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- phy_data |= 0x00000008;
- ret_val =
- e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- }
- if (hw->mac_type <= e1000_82543 ||
- hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
- hw->mac_type == e1000_82541_rev_2 ||
- hw->mac_type == e1000_82547_rev_2)
- hw->phy_reset_disable = false;
- return E1000_SUCCESS;
- }
- /**
- * e1000_copper_link_igp_setup - Copper link setup for e1000_phy_igp series.
- * @hw: Struct containing variables accessed by shared code
- */
- static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw)
- {
- u32 led_ctrl;
- s32 ret_val;
- u16 phy_data;
- if (hw->phy_reset_disable)
- return E1000_SUCCESS;
- ret_val = e1000_phy_reset(hw);
- if (ret_val) {
- e_dbg("Error Resetting the PHY\n");
- return ret_val;
- }
- /* Wait 15ms for MAC to configure PHY from eeprom settings */
- msleep(15);
- /* Configure activity LED after PHY reset */
- led_ctrl = er32(LEDCTL);
- led_ctrl &= IGP_ACTIVITY_LED_MASK;
- led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
- ew32(LEDCTL, led_ctrl);
- /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
- if (hw->phy_type == e1000_phy_igp) {
- /* disable lplu d3 during driver init */
- ret_val = e1000_set_d3_lplu_state(hw, false);
- if (ret_val) {
- e_dbg("Error Disabling LPLU D3\n");
- return ret_val;
- }
- }
- /* Configure mdi-mdix settings */
- ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
- if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
- hw->dsp_config_state = e1000_dsp_config_disabled;
- /* Force MDI for earlier revs of the IGP PHY */
- phy_data &=
- ~(IGP01E1000_PSCR_AUTO_MDIX |
- IGP01E1000_PSCR_FORCE_MDI_MDIX);
- hw->mdix = 1;
- } else {
- hw->dsp_config_state = e1000_dsp_config_enabled;
- phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
- switch (hw->mdix) {
- case 1:
- phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
- break;
- case 2:
- phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
- break;
- case 0:
- default:
- phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
- break;
- }
- }
- ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
- if (ret_val)
- return ret_val;
- /* set auto-master slave resolution settings */
- if (hw->autoneg) {
- e1000_ms_type phy_ms_setting = hw->master_slave;
- if (hw->ffe_config_state == e1000_ffe_config_active)
- hw->ffe_config_state = e1000_ffe_config_enabled;
- if (hw->dsp_config_state == e1000_dsp_config_activated)
- hw->dsp_config_state = e1000_dsp_config_enabled;
- /* when autonegotiation advertisement is only 1000Mbps then we
- * should disable SmartSpeed and enable Auto MasterSlave
- * resolution as hardware default.
- */
- if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
- /* Disable SmartSpeed */
- ret_val =
- e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- &phy_data);
- if (ret_val)
- return ret_val;
- phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val =
- e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- phy_data);
- if (ret_val)
- return ret_val;
- /* Set auto Master/Slave resolution process */
- ret_val =
- e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
- phy_data &= ~CR_1000T_MS_ENABLE;
- ret_val =
- e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
- if (ret_val)
- return ret_val;
- }
- ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
- /* load defaults for future use */
- hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
- ((phy_data & CR_1000T_MS_VALUE) ?
- e1000_ms_force_master :
- e1000_ms_force_slave) : e1000_ms_auto;
- switch (phy_ms_setting) {
- case e1000_ms_force_master:
- phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
- break;
- case e1000_ms_force_slave:
- phy_data |= CR_1000T_MS_ENABLE;
- phy_data &= ~(CR_1000T_MS_VALUE);
- break;
- case e1000_ms_auto:
- phy_data &= ~CR_1000T_MS_ENABLE;
- default:
- break;
- }
- ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
- if (ret_val)
- return ret_val;
- }
- return E1000_SUCCESS;
- }
- /**
- * e1000_copper_link_mgp_setup - Copper link setup for e1000_phy_m88 series.
- * @hw: Struct containing variables accessed by shared code
- */
- static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
- {
- s32 ret_val;
- u16 phy_data;
- if (hw->phy_reset_disable)
- return E1000_SUCCESS;
- /* Enable CRS on TX. This must be set for half-duplex operation. */
- ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
- phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
- /* Options:
- * MDI/MDI-X = 0 (default)
- * 0 - Auto for all speeds
- * 1 - MDI mode
- * 2 - MDI-X mode
- * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
- */
- phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
- switch (hw->mdix) {
- case 1:
- phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
- break;
- case 2:
- phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
- break;
- case 3:
- phy_data |= M88E1000_PSCR_AUTO_X_1000T;
- break;
- case 0:
- default:
- phy_data |= M88E1000_PSCR_AUTO_X_MODE;
- break;
- }
- /* Options:
- * disable_polarity_correction = 0 (default)
- * Automatic Correction for Reversed Cable Polarity
- * 0 - Disabled
- * 1 - Enabled
- */
- phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
- if (hw->disable_polarity_correction == 1)
- phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
- if (hw->phy_revision < M88E1011_I_REV_4) {
- /* Force TX_CLK in the Extended PHY Specific Control Register
- * to 25MHz clock.
- */
- ret_val =
- e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
- &phy_data);
- if (ret_val)
- return ret_val;
- phy_data |= M88E1000_EPSCR_TX_CLK_25;
- if ((hw->phy_revision == E1000_REVISION_2) &&
- (hw->phy_id == M88E1111_I_PHY_ID)) {
- /* Vidalia Phy, set the downshift counter to 5x */
- phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
- phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
- ret_val = e1000_write_phy_reg(hw,
- M88E1000_EXT_PHY_SPEC_CTRL,
- phy_data);
- if (ret_val)
- return ret_val;
- } else {
- /* Configure Master and Slave downshift values */
- phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
- M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
- phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
- M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
- ret_val = e1000_write_phy_reg(hw,
- M88E1000_EXT_PHY_SPEC_CTRL,
- phy_data);
- if (ret_val)
- return ret_val;
- }
- }
- /* SW Reset the PHY so all changes take effect */
- ret_val = e1000_phy_reset(hw);
- if (ret_val) {
- e_dbg("Error Resetting the PHY\n");
- return ret_val;
- }
- return E1000_SUCCESS;
- }
- /**
- * e1000_copper_link_autoneg - setup auto-neg
- * @hw: Struct containing variables accessed by shared code
- *
- * Setup auto-negotiation and flow control advertisements,
- * and then perform auto-negotiation.
- */
- static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
- {
- s32 ret_val;
- u16 phy_data;
- /* Perform some bounds checking on the hw->autoneg_advertised
- * parameter. If this variable is zero, then set it to the default.
- */
- hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
- /* If autoneg_advertised is zero, we assume it was not defaulted
- * by the calling code so we set to advertise full capability.
- */
- if (hw->autoneg_advertised == 0)
- hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
- /* IFE/RTL8201N PHY only supports 10/100 */
- if (hw->phy_type == e1000_phy_8201)
- hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
- e_dbg("Reconfiguring auto-neg advertisement params\n");
- ret_val = e1000_phy_setup_autoneg(hw);
- if (ret_val) {
- e_dbg("Error Setting up Auto-Negotiation\n");
- return ret_val;
- }
- e_dbg("Restarting Auto-Neg\n");
- /* Restart auto-negotiation by setting the Auto Neg Enable bit and
- * the Auto Neg Restart bit in the PHY control register.
- */
- ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
- phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
- ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
- if (ret_val)
- return ret_val;
- /* Does the user want to wait for Auto-Neg to complete here, or
- * check at a later time (for example, callback routine).
- */
- if (hw->wait_autoneg_complete) {
- ret_val = e1000_wait_autoneg(hw);
- if (ret_val) {
- e_dbg
- ("Error while waiting for autoneg to complete\n");
- return ret_val;
- }
- }
- hw->get_link_status = true;
- return E1000_SUCCESS;
- }
- /**
- * e1000_copper_link_postconfig - post link setup
- * @hw: Struct containing variables accessed by shared code
- *
- * Config the MAC and the PHY after link is up.
- * 1) Set up the MAC to the current PHY speed/duplex
- * if we are on 82543. If we
- * are on newer silicon, we only need to configure
- * collision distance in the Transmit Control Register.
- * 2) Set up flow control on the MAC to that established with
- * the link partner.
- * 3) Config DSP to improve Gigabit link quality for some PHY revisions.
- */
- static s32 e1000_copper_link_postconfig(struct e1000_hw *hw)
- {
- s32 ret_val;
- if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100)) {
- e1000_config_collision_dist(hw);
- } else {
- ret_val = e1000_config_mac_to_phy(hw);
- if (ret_val) {
- e_dbg("Error configuring MAC to PHY settings\n");
- return ret_val;
- }
- }
- ret_val = e1000_config_fc_after_link_up(hw);
- if (ret_val) {
- e_dbg("Error Configuring Flow Control\n");
- return ret_val;
- }
- /* Config DSP to improve Giga link quality */
- if (hw->phy_type == e1000_phy_igp) {
- ret_val = e1000_config_dsp_after_link_change(hw, true);
- if (ret_val) {
- e_dbg("Error Configuring DSP after link up\n");
- return ret_val;
- }
- }
- return E1000_SUCCESS;
- }
- /**
- * e1000_setup_copper_link - phy/speed/duplex setting
- * @hw: Struct containing variables accessed by shared code
- *
- * Detects which PHY is present and sets up the speed and duplex
- */
- static s32 e1000_setup_copper_link(struct e1000_hw *hw)
- {
- s32 ret_val;
- u16 i;
- u16 phy_data;
- /* Check if it is a valid PHY and set PHY mode if necessary. */
- ret_val = e1000_copper_link_preconfig(hw);
- if (ret_val)
- return ret_val;
- if (hw->phy_type == e1000_phy_igp) {
- ret_val = e1000_copper_link_igp_setup(hw);
- if (ret_val)
- return ret_val;
- } else if (hw->phy_type == e1000_phy_m88) {
- ret_val = e1000_copper_link_mgp_setup(hw);
- if (ret_val)
- return ret_val;
- } else {
- ret_val = gbe_dhg_phy_setup(hw);
- if (ret_val) {
- e_dbg("gbe_dhg_phy_setup failed!\n");
- return ret_val;
- }
- }
- if (hw->autoneg) {
- /* Setup autoneg and flow control advertisement
- * and perform autonegotiation
- */
- ret_val = e1000_copper_link_autoneg(hw);
- if (ret_val)
- return ret_val;
- } else {
- /* PHY will be set to 10H, 10F, 100H,or 100F
- * depending on value from forced_speed_duplex.
- */
- e_dbg("Forcing speed and duplex\n");
- ret_val = e1000_phy_force_speed_duplex(hw);
- if (ret_val) {
- e_dbg("Error Forcing Speed and Duplex\n");
- return ret_val;
- }
- }
- /* Check link status. Wait up to 100 microseconds for link to become
- * valid.
- */
- for (i = 0; i < 10; i++) {
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
- if (phy_data & MII_SR_LINK_STATUS) {
- /* Config the MAC and PHY after link is up */
- ret_val = e1000_copper_link_postconfig(hw);
- if (ret_val)
- return ret_val;
- e_dbg("Valid link established!!!\n");
- return E1000_SUCCESS;
- }
- udelay(10);
- }
- e_dbg("Unable to establish link!!!\n");
- return E1000_SUCCESS;
- }
- /**
- * e1000_phy_setup_autoneg - phy settings
- * @hw: Struct containing variables accessed by shared code
- *
- * Configures PHY autoneg and flow control advertisement settings
- */
- s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
- {
- s32 ret_val;
- u16 mii_autoneg_adv_reg;
- u16 mii_1000t_ctrl_reg;
- /* Read the MII Auto-Neg Advertisement Register (Address 4). */
- ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
- if (ret_val)
- return ret_val;
- /* Read the MII 1000Base-T Control Register (Address 9). */
- ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
- if (ret_val)
- return ret_val;
- else if (hw->phy_type == e1000_phy_8201)
- mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
- /* Need to parse both autoneg_advertised and fc and set up
- * the appropriate PHY registers. First we will parse for
- * autoneg_advertised software override. Since we can advertise
- * a plethora of combinations, we need to check each bit
- * individually.
- */
- /* First we clear all the 10/100 mb speed bits in the Auto-Neg
- * Advertisement Register (Address 4) and the 1000 mb speed bits in
- * the 1000Base-T Control Register (Address 9).
- */
- mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
- mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
- e_dbg("autoneg_advertised %x\n", hw->autoneg_advertised);
- /* Do we want to advertise 10 Mb Half Duplex? */
- if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
- e_dbg("Advertise 10mb Half duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
- }
- /* Do we want to advertise 10 Mb Full Duplex? */
- if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
- e_dbg("Advertise 10mb Full duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
- }
- /* Do we want to advertise 100 Mb Half Duplex? */
- if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
- e_dbg("Advertise 100mb Half duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
- }
- /* Do we want to advertise 100 Mb Full Duplex? */
- if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
- e_dbg("Advertise 100mb Full duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
- }
- /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
- if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
- e_dbg
- ("Advertise 1000mb Half duplex requested, request denied!\n");
- }
- /* Do we want to advertise 1000 Mb Full Duplex? */
- if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
- e_dbg("Advertise 1000mb Full duplex\n");
- mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
- }
- /* Check for a software override of the flow control settings, and
- * setup the PHY advertisement registers accordingly. If
- * auto-negotiation is enabled, then software will have to set the
- * "PAUSE" bits to the correct value in the Auto-Negotiation
- * Advertisement Register (PHY_AUTONEG_ADV) and re-start
- * auto-negotiation.
- *
- * The possible values of the "fc" parameter are:
- * 0: Flow control is completely disabled
- * 1: Rx flow control is enabled (we can receive pause frames
- * but not send pause frames).
- * 2: Tx flow control is enabled (we can send pause frames
- * but we do not support receiving pause frames).
- * 3: Both Rx and TX flow control (symmetric) are enabled.
- * other: No software override. The flow control configuration
- * in the EEPROM is used.
- */
- switch (hw->fc) {
- case E1000_FC_NONE: /* 0 */
- /* Flow control (RX & TX) is completely disabled by a
- * software over-ride.
- */
- mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
- break;
- case E1000_FC_RX_PAUSE: /* 1 */
- /* RX Flow control is enabled, and TX Flow control is
- * disabled, by a software over-ride.
- */
- /* Since there really isn't a way to advertise that we are
- * capable of RX Pause ONLY, we will advertise that we
- * support both symmetric and asymmetric RX PAUSE. Later
- * (in e1000_config_fc_after_link_up) we will disable the
- * hw's ability to send PAUSE frames.
- */
- mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
- break;
- case E1000_FC_TX_PAUSE: /* 2 */
- /* TX Flow control is enabled, and RX Flow control is
- * disabled, by a software over-ride.
- */
- mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
- mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
- break;
- case E1000_FC_FULL: /* 3 */
- /* Flow control (both RX and TX) is enabled by a software
- * over-ride.
- */
- mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
- break;
- default:
- e_dbg("Flow control param set incorrectly\n");
- return -E1000_ERR_CONFIG;
- }
- ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
- if (ret_val)
- return ret_val;
- e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
- if (hw->phy_type == e1000_phy_8201) {
- mii_1000t_ctrl_reg = 0;
- } else {
- ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
- mii_1000t_ctrl_reg);
- if (ret_val)
- return ret_val;
- }
- return E1000_SUCCESS;
- }
- /**
- * e1000_phy_force_speed_duplex - force link settings
- * @hw: Struct containing variables accessed by shared code
- *
- * Force PHY speed and duplex settings to hw->forced_speed_duplex
- */
- static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
- {
- u32 ctrl;
- s32 ret_val;
- u16 mii_ctrl_reg;
- u16 mii_status_reg;
- u16 phy_data;
- u16 i;
- /* Turn off Flow control if we are forcing speed and duplex. */
- hw->fc = E1000_FC_NONE;
- e_dbg("hw->fc = %d\n", hw->fc);
- /* Read the Device Control Register. */
- ctrl = er32(CTRL);
- /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
- ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
- ctrl &= ~(DEVICE_SPEED_MASK);
- /* Clear the Auto Speed Detect Enable bit. */
- ctrl &= ~E1000_CTRL_ASDE;
- /* Read the MII Control Register. */
- ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
- if (ret_val)
- return ret_val;
- /* We need to disable autoneg in order to force link and duplex. */
- mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
- /* Are we forcing Full or Half Duplex? */
- if (hw->forced_speed_duplex == e1000_100_full ||
- hw->forced_speed_duplex == e1000_10_full) {
- /* We want to force full duplex so we SET the full duplex bits
- * in the Device and MII Control Registers.
- */
- ctrl |= E1000_CTRL_FD;
- mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
- e_dbg("Full Duplex\n");
- } else {
- /* We want to force half duplex so we CLEAR the full duplex bits
- * in the Device and MII Control Registers.
- */
- ctrl &= ~E1000_CTRL_FD;
- mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
- e_dbg("Half Duplex\n");
- }
- /* Are we forcing 100Mbps??? */
- if (hw->forced_speed_duplex == e1000_100_full ||
- hw->forced_speed_duplex == e1000_100_half) {
- /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
- ctrl |= E1000_CTRL_SPD_100;
- mii_ctrl_reg |= MII_CR_SPEED_100;
- mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
- e_dbg("Forcing 100mb ");
- } else {
- /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
- ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
- mii_ctrl_reg |= MII_CR_SPEED_10;
- mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
- e_dbg("Forcing 10mb ");
- }
- e1000_config_collision_dist(hw);
- /* Write the configured values back to the Device Control Reg. */
- ew32(CTRL, ctrl);
- if (hw->phy_type == e1000_phy_m88) {
- ret_val =
- e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
- /* Clear Auto-Crossover to force MDI manually. M88E1000 requires
- * MDI forced whenever speed are duplex are forced.
- */
- phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
- ret_val =
- e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
- e_dbg("M88E1000 PSCR: %x\n", phy_data);
- /* Need to reset the PHY or these changes will be ignored */
- mii_ctrl_reg |= MII_CR_RESET;
- /* Disable MDI-X support for 10/100 */
- } else {
- /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
- * forced whenever speed or duplex are forced.
- */
- ret_val =
- e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
- phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
- phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
- ret_val =
- e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
- if (ret_val)
- return ret_val;
- }
- /* Write back the modified PHY MII control register. */
- ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
- if (ret_val)
- return ret_val;
- udelay(1);
- /* The wait_autoneg_complete flag may be a little misleading here.
- * Since we are forcing speed and duplex, Auto-Neg is not enabled.
- * But we do want to delay for a period while forcing only so we
- * don't generate false No Link messages. So we will wait here
- * only if the user has set wait_autoneg_complete to 1, which is
- * the default.
- */
- if (hw->wait_autoneg_complete) {
- /* We will wait for autoneg to complete. */
- e_dbg("Waiting for forced speed/duplex link.\n");
- mii_status_reg = 0;
- /* Wait for autoneg to complete or 4.5 seconds to expire */
- for (i = PHY_FORCE_TIME; i > 0; i--) {
- /* Read the MII Status Register and wait for Auto-Neg
- * Complete bit to be set.
- */
- ret_val =
- e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
- ret_val =
- e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
- if (mii_status_reg & MII_SR_LINK_STATUS)
- break;
- msleep(100);
- }
- if ((i == 0) && (hw->phy_type == e1000_phy_m88)) {
- /* We didn't get link. Reset the DSP and wait again
- * for link.
- */
- ret_val = e1000_phy_reset_dsp(hw);
- if (ret_val) {
- e_dbg("Error Resetting PHY DSP\n");
- return ret_val;
- }
- }
- /* This loop will early-out if the link condition has been
- * met
- */
- for (i = PHY_FORCE_TIME; i > 0; i--) {
- if (mii_status_reg & MII_SR_LINK_STATUS)
- break;
- msleep(100);
- /* Read the MII Status Register and wait for Auto-Neg
- * Complete bit to be set.
- */
- ret_val =
- e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
- ret_val =
- e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
- }
- }
- if (hw->phy_type == e1000_phy_m88) {
- /* Because we reset the PHY above, we need to re-force TX_CLK in
- * the Extended PHY Specific Control Register to 25MHz clock.
- * This value defaults back to a 2.5MHz clock when the PHY is
- * reset.
- */
- ret_val =
- e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
- &phy_data);
- if (ret_val)
- return ret_val;
- phy_data |= M88E1000_EPSCR_TX_CLK_25;
- ret_val =
- e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
- phy_data);
- if (ret_val)
- return ret_val;
- /* In addition, because of the s/w reset above, we need to
- * enable CRS on Tx. This must be set for both full and half
- * duplex operation.
- */
- ret_val =
- e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
- phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
- ret_val =
- e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
- if ((hw->mac_type == e1000_82544 ||
- hw->mac_type == e1000_82543) &&
- (!hw->autoneg) &&
- (hw->forced_speed_duplex == e1000_10_full ||
- hw->forced_speed_duplex == e1000_10_half)) {
- ret_val = e1000_polarity_reversal_workaround(hw);
- if (ret_val)
- return ret_val;
- }
- }
- return E1000_SUCCESS;
- }
- /**
- * e1000_config_collision_dist - set collision distance register
- * @hw: Struct containing variables accessed by shared code
- *
- * Sets the collision distance in the Transmit Control register.
- * Link should have been established previously. Reads the speed and duplex
- * information from the Device Status register.
- */
- void e1000_config_collision_dist(struct e1000_hw *hw)
- {
- u32 tctl, coll_dist;
- if (hw->mac_type < e1000_82543)
- coll_dist = E1000_COLLISION_DISTANCE_82542;
- else
- coll_dist = E1000_COLLISION_DISTANCE;
- tctl = er32(TCTL);
- tctl &= ~E1000_TCTL_COLD;
- tctl |= coll_dist << E1000_COLD_SHIFT;
- ew32(TCTL, tctl);
- E1000_WRITE_FLUSH();
- }
- /**
- * e1000_config_mac_to_phy - sync phy and mac settings
- * @hw: Struct containing variables accessed by shared code
- * @mii_reg: data to write to the MII control register
- *
- * Sets MAC speed and duplex settings to reflect the those in the PHY
- * The contents of the PHY register containing the needed information need to
- * be passed in.
- */
- static s32 e1000_config_mac_to_phy(struct e1000_hw *hw)
- {
- u32 ctrl;
- s32 ret_val;
- u16 phy_data;
- /* 82544 or newer MAC, Auto Speed Detection takes care of
- * MAC speed/duplex configuration.
- */
- if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100))
- return E1000_SUCCESS;
- /* Read the Device Control Register and set the bits to Force Speed
- * and Duplex.
- */
- ctrl = er32(CTRL);
- ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
- ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
- switch (hw->phy_type) {
- case e1000_phy_8201:
- ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
- if (phy_data & RTL_PHY_CTRL_FD)
- ctrl |= E1000_CTRL_FD;
- else
- ctrl &= ~E1000_CTRL_FD;
- if (phy_data & RTL_PHY_CTRL_SPD_100)
- ctrl |= E1000_CTRL_SPD_100;
- else
- ctrl |= E1000_CTRL_SPD_10;
- e1000_config_collision_dist(hw);
- break;
- default:
- /* Set up duplex in the Device Control and Transmit Control
- * registers depending on negotiated values.
- */
- ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
- &phy_data);
- if (ret_val)
- return ret_val;
- if (phy_data & M88E1000_PSSR_DPLX)
- ctrl |= E1000_CTRL_FD;
- else
- ctrl &= ~E1000_CTRL_FD;
- e1000_config_collision_dist(hw);
- /* Set up speed in the Device Control register depending on
- * negotiated values.
- */
- if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
- ctrl |= E1000_CTRL_SPD_1000;
- else if ((phy_data & M88E1000_PSSR_SPEED) ==
- M88E1000_PSSR_100MBS)
- ctrl |= E1000_CTRL_SPD_100;
- }
- /* Write the configured values back to the Device Control Reg. */
- ew32(CTRL, ctrl);
- return E1000_SUCCESS;
- }
- /**
- * e1000_force_mac_fc - force flow control settings
- * @hw: Struct containing variables accessed by shared code
- *
- * Forces the MAC's flow control settings.
- * Sets the TFCE and RFCE bits in the device control register to reflect
- * the adapter settings. TFCE and RFCE need to be explicitly set by
- * software when a Copper PHY is used because autonegotiation is managed
- * by the PHY rather than the MAC. Software must also configure these
- * bits when link is forced on a fiber connection.
- */
- s32 e1000_force_mac_fc(struct e1000_hw *hw)
- {
- u32 ctrl;
- /* Get the current configuration of the Device Control Register */
- ctrl = er32(CTRL);
- /* Because we didn't get link via the internal auto-negotiation
- * mechanism (we either forced link or we got link via PHY
- * auto-neg), we have to manually enable/disable transmit an
- * receive flow control.
- *
- * The "Case" statement below enables/disable flow control
- * according to the "hw->fc" parameter.
- *
- * The possible values of the "fc" parameter are:
- * 0: Flow control is completely disabled
- * 1: Rx flow control is enabled (we can receive pause
- * frames but not send pause frames).
- * 2: Tx flow control is enabled (we can send pause frames
- * frames but we do not receive pause frames).
- * 3: Both Rx and TX flow control (symmetric) is enabled.
- * other: No other values should be possible at this point.
- */
- switch (hw->fc) {
- case E1000_FC_NONE:
- ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
- break;
- case E1000_FC_RX_PAUSE:
- ctrl &= (~E1000_CTRL_TFCE);
- ctrl |= E1000_CTRL_RFCE;
- break;
- case E1000_FC_TX_PAUSE:
- ctrl &= (~E1000_CTRL_RFCE);
- ctrl |= E1000_CTRL_TFCE;
- break;
- case E1000_FC_FULL:
- ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
- break;
- default:
- e_dbg("Flow control param set incorrectly\n");
- return -E1000_ERR_CONFIG;
- }
- /* Disable TX Flow Control for 82542 (rev 2.0) */
- if (hw->mac_type == e1000_82542_rev2_0)
- ctrl &= (~E1000_CTRL_TFCE);
- ew32(CTRL, ctrl);
- return E1000_SUCCESS;
- }
- /**
- * e1000_config_fc_after_link_up - configure flow control after autoneg
- * @hw: Struct containing variables accessed by shared code
- *
- * Configures flow control settings after link is established
- * Should be called immediately after a valid link has been established.
- * Forces MAC flow control settings if link was forced. When in MII/GMII mode
- * and autonegotiation is enabled, the MAC flow control settings will be set
- * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
- * and RFCE bits will be automatically set to the negotiated flow control mode.
- */
- static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
- {
- s32 ret_val;
- u16 mii_status_reg;
- u16 mii_nway_adv_reg;
- u16 mii_nway_lp_ability_reg;
- u16 speed;
- u16 duplex;
- /* Check for the case where we have fiber media and auto-neg failed
- * so we had to force link. In this case, we need to force the
- * configuration of the MAC to match the "fc" parameter.
- */
- if (((hw->media_type == e1000_media_type_fiber) &&
- (hw->autoneg_failed)) ||
- ((hw->media_type == e1000_media_type_internal_serdes) &&
- (hw->autoneg_failed)) ||
- ((hw->media_type == e1000_media_type_copper) &&
- (!hw->autoneg))) {
- ret_val = e1000_force_mac_fc(hw);
- if (ret_val) {
- e_dbg("Error forcing flow control settings\n");
- return ret_val;
- }
- }
- /* Check for the case where we have copper media and auto-neg is
- * enabled. In this case, we need to check and see if Auto-Neg
- * has completed, and if so, how the PHY and link partner has
- * flow control configured.
- */
- if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
- /* Read the MII Status Register and check to see if AutoNeg
- * has completed. We read this twice because this reg has
- * some "sticky" (latched) bits.
- */
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
- if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
- /* The AutoNeg process has completed, so we now need to
- * read both the Auto Negotiation Advertisement Register
- * (Address 4) and the Auto_Negotiation Base Page
- * Ability Register (Address 5) to determine how flow
- * control was negotiated.
- */
- ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
- &mii_nway_adv_reg);
- if (ret_val)
- return ret_val;
- ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
- &mii_nway_lp_ability_reg);
- if (ret_val)
- return ret_val;
- /* Two bits in the Auto Negotiation Advertisement
- * Register (Address 4) and two bits in the Auto
- * Negotiation Base Page Ability Register (Address 5)
- * determine flow control for both the PHY and the link
- * partner. The following table, taken out of the IEEE
- * 802.3ab/D6.0 dated March 25, 1999, describes these
- * PAUSE resolution bits and how flow control is
- * determined based upon these settings.
- * NOTE: DC = Don't Care
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
- *-------|---------|-------|---------|------------------
- * 0 | 0 | DC | DC | E1000_FC_NONE
- * 0 | 1 | 0 | DC | E1000_FC_NONE
- * 0 | 1 | 1 | 0 | E1000_FC_NONE
- * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE
- * 1 | 0 | 0 | DC | E1000_FC_NONE
- * 1 | DC | 1 | DC | E1000_FC_FULL
- * 1 | 1 | 0 | 0 | E1000_FC_NONE
- * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE
- *
- */
- /* Are both PAUSE bits set to 1? If so, this implies
- * Symmetric Flow Control is enabled at both ends. The
- * ASM_DIR bits are irrelevant per the spec.
- *
- * For Symmetric Flow Control:
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|------------------
- * 1 | DC | 1 | DC | E1000_FC_FULL
- *
- */
- if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
- /* Now we need to check if the user selected Rx
- * ONLY of pause frames. In this case, we had
- * to advertise FULL flow control because we
- * could not advertise Rx ONLY. Hence, we must
- * now check to see if we need to turn OFF the
- * TRANSMISSION of PAUSE frames.
- */
- if (hw->original_fc == E1000_FC_FULL) {
- hw->fc = E1000_FC_FULL;
- e_dbg("Flow Control = FULL.\n");
- } else {
- hw->fc = E1000_FC_RX_PAUSE;
- e_dbg
- ("Flow Control = RX PAUSE frames only.\n");
- }
- }
- /* For receiving PAUSE frames ONLY.
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|------------------
- * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE
- *
- */
- else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
- hw->fc = E1000_FC_TX_PAUSE;
- e_dbg
- ("Flow Control = TX PAUSE frames only.\n");
- }
- /* For transmitting PAUSE frames ONLY.
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|------------------
- * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE
- *
- */
- else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
- !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
- hw->fc = E1000_FC_RX_PAUSE;
- e_dbg
- ("Flow Control = RX PAUSE frames only.\n");
- }
- /* Per the IEEE spec, at this point flow control should
- * be disabled. However, we want to consider that we
- * could be connected to a legacy switch that doesn't
- * advertise desired flow control, but can be forced on
- * the link partner. So if we advertised no flow
- * control, that is what we will resolve to. If we
- * advertised some kind of receive capability (Rx Pause
- * Only or Full Flow Control) and the link partner
- * advertised none, we will configure ourselves to
- * enable Rx Flow Control only. We can do this safely
- * for two reasons: If the link partner really
- * didn't want flow control enabled, and we enable Rx,
- * no harm done since we won't be receiving any PAUSE
- * frames anyway. If the intent on the link partner was
- * to have flow control enabled, then by us enabling Rx
- * only, we can at least receive pause frames and
- * process them. This is a good idea because in most
- * cases, since we are predominantly a server NIC, more
- * times than not we will be asked to delay transmission
- * of packets than asking our link partner to pause
- * transmission of frames.
- */
- else if ((hw->original_fc == E1000_FC_NONE ||
- hw->original_fc == E1000_FC_TX_PAUSE) ||
- hw->fc_strict_ieee) {
- hw->fc = E1000_FC_NONE;
- e_dbg("Flow Control = NONE.\n");
- } else {
- hw->fc = E1000_FC_RX_PAUSE;
- e_dbg
- ("Flow Control = RX PAUSE frames only.\n");
- }
- /* Now we need to do one last check... If we auto-
- * negotiated to HALF DUPLEX, flow control should not be
- * enabled per IEEE 802.3 spec.
- */
- ret_val =
- e1000_get_speed_and_duplex(hw, &speed, &duplex);
- if (ret_val) {
- e_dbg
- ("Error getting link speed and duplex\n");
- return ret_val;
- }
- if (duplex == HALF_DUPLEX)
- hw->fc = E1000_FC_NONE;
- /* Now we call a subroutine to actually force the MAC
- * controller to use the correct flow control settings.
- */
- ret_val = e1000_force_mac_fc(hw);
- if (ret_val) {
- e_dbg
- ("Error forcing flow control settings\n");
- return ret_val;
- }
- } else {
- e_dbg
- ("Copper PHY and Auto Neg has not completed.\n");
- }
- }
- return E1000_SUCCESS;
- }
- /**
- * e1000_check_for_serdes_link_generic - Check for link (Serdes)
- * @hw: pointer to the HW structure
- *
- * Checks for link up on the hardware. If link is not up and we have
- * a signal, then we need to force link up.
- */
- static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
- {
- u32 rxcw;
- u32 ctrl;
- u32 status;
- s32 ret_val = E1000_SUCCESS;
- ctrl = er32(CTRL);
- status = er32(STATUS);
- rxcw = er32(RXCW);
- /* If we don't have link (auto-negotiation failed or link partner
- * cannot auto-negotiate), and our link partner is not trying to
- * auto-negotiate with us (we are receiving idles or data),
- * we need to force link up. We also need to give auto-negotiation
- * time to complete.
- */
- /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
- if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
- if (hw->autoneg_failed == 0) {
- hw->autoneg_failed = 1;
- goto out;
- }
- e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
- /* Disable auto-negotiation in the TXCW register */
- ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE));
- /* Force link-up and also force full-duplex. */
- ctrl = er32(CTRL);
- ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
- ew32(CTRL, ctrl);
- /* Configure Flow Control after forcing link up. */
- ret_val = e1000_config_fc_after_link_up(hw);
- if (ret_val) {
- e_dbg("Error configuring flow control\n");
- goto out;
- }
- } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
- /* If we are forcing link and we are receiving /C/ ordered
- * sets, re-enable auto-negotiation in the TXCW register
- * and disable forced link in the Device Control register
- * in an attempt to auto-negotiate with our link partner.
- */
- e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
- ew32(TXCW, hw->txcw);
- ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
- hw->serdes_has_link = true;
- } else if (!(E1000_TXCW_ANE & er32(TXCW))) {
- /* If we force link for non-auto-negotiation switch, check
- * link status based on MAC synchronization for internal
- * serdes media type.
- */
- /* SYNCH bit and IV bit are sticky. */
- udelay(10);
- rxcw = er32(RXCW);
- if (rxcw & E1000_RXCW_SYNCH) {
- if (!(rxcw & E1000_RXCW_IV)) {
- hw->serdes_has_link = true;
- e_dbg("SERDES: Link up - forced.\n");
- }
- } else {
- hw->serdes_has_link = false;
- e_dbg("SERDES: Link down - force failed.\n");
- }
- }
- if (E1000_TXCW_ANE & er32(TXCW)) {
- status = er32(STATUS);
- if (status & E1000_STATUS_LU) {
- /* SYNCH bit and IV bit are sticky, so reread rxcw. */
- udelay(10);
- rxcw = er32(RXCW);
- if (rxcw & E1000_RXCW_SYNCH) {
- if (!(rxcw & E1000_RXCW_IV)) {
- hw->serdes_has_link = true;
- e_dbg("SERDES: Link up - autoneg "
- "completed successfully.\n");
- } else {
- hw->serdes_has_link = false;
- e_dbg("SERDES: Link down - invalid"
- "codewords detected in autoneg.\n");
- }
- } else {
- hw->serdes_has_link = false;
- e_dbg("SERDES: Link down - no sync.\n");
- }
- } else {
- hw->serdes_has_link = false;
- e_dbg("SERDES: Link down - autoneg failed\n");
- }
- }
- out:
- return ret_val;
- }
- /**
- * e1000_check_for_link
- * @hw: Struct containing variables accessed by shared code
- *
- * Checks to see if the link status of the hardware has changed.
- * Called by any function that needs to check the link status of the adapter.
- */
- s32 e1000_check_for_link(struct e1000_hw *hw)
- {
- u32 rxcw = 0;
- u32 ctrl;
- u32 status;
- u32 rctl;
- u32 icr;
- u32 signal = 0;
- s32 ret_val;
- u16 phy_data;
- ctrl = er32(CTRL);
- status = er32(STATUS);
- /* On adapters with a MAC newer than 82544, SW Definable pin 1 will be
- * set when the optics detect a signal. On older adapters, it will be
- * cleared when there is a signal. This applies to fiber media only.
- */
- if ((hw->media_type == e1000_media_type_fiber) ||
- (hw->media_type == e1000_media_type_internal_serdes)) {
- rxcw = er32(RXCW);
- if (hw->media_type == e1000_media_type_fiber) {
- signal =
- (hw->mac_type >
- e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
- if (status & E1000_STATUS_LU)
- hw->get_link_status = false;
- }
- }
- /* If we have a copper PHY then we only want to go out to the PHY
- * registers to see if Auto-Neg has completed and/or if our link
- * status has changed. The get_link_status flag will be set if we
- * receive a Link Status Change interrupt or we have Rx Sequence
- * Errors.
- */
- if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
- /* First we want to see if the MII Status Register reports
- * link. If so, then we want to get the current speed/duplex
- * of the PHY.
- * Read the register twice since the link bit is sticky.
- */
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
- if (phy_data & MII_SR_LINK_STATUS) {
- hw->get_link_status = false;
- /* Check if there was DownShift, must be checked
- * immediately after link-up
- */
- e1000_check_downshift(hw);
- /* If we are on 82544 or 82543 silicon and speed/duplex
- * are forced to 10H or 10F, then we will implement the
- * polarity reversal workaround. We disable interrupts
- * first, and upon returning, place the devices
- * interrupt state to its previous value except for the
- * link status change interrupt which will
- * happen due to the execution of this workaround.
- */
- if ((hw->mac_type == e1000_82544 ||
- hw->mac_type == e1000_82543) &&
- (!hw->autoneg) &&
- (hw->forced_speed_duplex == e1000_10_full ||
- hw->forced_speed_duplex == e1000_10_half)) {
- ew32(IMC, 0xffffffff);
- ret_val =
- e1000_polarity_reversal_workaround(hw);
- icr = er32(ICR);
- ew32(ICS, (icr & ~E1000_ICS_LSC));
- ew32(IMS, IMS_ENABLE_MASK);
- }
- } else {
- /* No link detected */
- e1000_config_dsp_after_link_change(hw, false);
- return 0;
- }
- /* If we are forcing speed/duplex, then we simply return since
- * we have already determined whether we have link or not.
- */
- if (!hw->autoneg)
- return -E1000_ERR_CONFIG;
- /* optimize the dsp settings for the igp phy */
- e1000_config_dsp_after_link_change(hw, true);
- /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
- * have Si on board that is 82544 or newer, Auto
- * Speed Detection takes care of MAC speed/duplex
- * configuration. So we only need to configure Collision
- * Distance in the MAC. Otherwise, we need to force
- * speed/duplex on the MAC to the current PHY speed/duplex
- * settings.
- */
- if ((hw->mac_type >= e1000_82544) &&
- (hw->mac_type != e1000_ce4100))
- e1000_config_collision_dist(hw);
- else {
- ret_val = e1000_config_mac_to_phy(hw);
- if (ret_val) {
- e_dbg
- ("Error configuring MAC to PHY settings\n");
- return ret_val;
- }
- }
- /* Configure Flow Control now that Auto-Neg has completed.
- * First, we need to restore the desired flow control settings
- * because we may have had to re-autoneg with a different link
- * partner.
- */
- ret_val = e1000_config_fc_after_link_up(hw);
- if (ret_val) {
- e_dbg("Error configuring flow control\n");
- return ret_val;
- }
- /* At this point we know that we are on copper and we have
- * auto-negotiated link. These are conditions for checking the
- * link partner capability register. We use the link speed to
- * determine if TBI compatibility needs to be turned on or off.
- * If the link is not at gigabit speed, then TBI compatibility
- * is not needed. If we are at gigabit speed, we turn on TBI
- * compatibility.
- */
- if (hw->tbi_compatibility_en) {
- u16 speed, duplex;
- ret_val =
- e1000_get_speed_and_duplex(hw, &speed, &duplex);
- if (ret_val) {
- e_dbg
- ("Error getting link speed and duplex\n");
- return ret_val;
- }
- if (speed != SPEED_1000) {
- /* If link speed is not set to gigabit speed, we
- * do not need to enable TBI compatibility.
- */
- if (hw->tbi_compatibility_on) {
- /* If we previously were in the mode,
- * turn it off.
- */
- rctl = er32(RCTL);
- rctl &= ~E1000_RCTL_SBP;
- ew32(RCTL, rctl);
- hw->tbi_compatibility_on = false;
- }
- } else {
- /* If TBI compatibility is was previously off,
- * turn it on. For compatibility with a TBI link
- * partner, we will store bad packets. Some
- * frames have an additional byte on the end and
- * will look like CRC errors to to the hardware.
- */
- if (!hw->tbi_compatibility_on) {
- hw->tbi_compatibility_on = true;
- rctl = er32(RCTL);
- rctl |= E1000_RCTL_SBP;
- ew32(RCTL, rctl);
- }
- }
- }
- }
- if ((hw->media_type == e1000_media_type_fiber) ||
- (hw->media_type == e1000_media_type_internal_serdes))
- e1000_check_for_serdes_link_generic(hw);
- return E1000_SUCCESS;
- }
- /**
- * e1000_get_speed_and_duplex
- * @hw: Struct containing variables accessed by shared code
- * @speed: Speed of the connection
- * @duplex: Duplex setting of the connection
- *
- * Detects the current speed and duplex settings of the hardware.
- */
- s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
- {
- u32 status;
- s32 ret_val;
- u16 phy_data;
- if (hw->mac_type >= e1000_82543) {
- status = er32(STATUS);
- if (status & E1000_STATUS_SPEED_1000) {
- *speed = SPEED_1000;
- e_dbg("1000 Mbs, ");
- } else if (status & E1000_STATUS_SPEED_100) {
- *speed = SPEED_100;
- e_dbg("100 Mbs, ");
- } else {
- *speed = SPEED_10;
- e_dbg("10 Mbs, ");
- }
- if (status & E1000_STATUS_FD) {
- *duplex = FULL_DUPLEX;
- e_dbg("Full Duplex\n");
- } else {
- *duplex = HALF_DUPLEX;
- e_dbg(" Half Duplex\n");
- }
- } else {
- e_dbg("1000 Mbs, Full Duplex\n");
- *speed = SPEED_1000;
- *duplex = FULL_DUPLEX;
- }
- /* IGP01 PHY may advertise full duplex operation after speed downgrade
- * even if it is operating at half duplex. Here we set the duplex
- * settings to match the duplex in the link partner's capabilities.
- */
- if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
- ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
- if (ret_val)
- return ret_val;
- if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
- *duplex = HALF_DUPLEX;
- else {
- ret_val =
- e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
- if (ret_val)
- return ret_val;
- if ((*speed == SPEED_100 &&
- !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
- (*speed == SPEED_10 &&
- !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
- *duplex = HALF_DUPLEX;
- }
- }
- return E1000_SUCCESS;
- }
- /**
- * e1000_wait_autoneg
- * @hw: Struct containing variables accessed by shared code
- *
- * Blocks until autoneg completes or times out (~4.5 seconds)
- */
- static s32 e1000_wait_autoneg(struct e1000_hw *hw)
- {
- s32 ret_val;
- u16 i;
- u16 phy_data;
- e_dbg("Waiting for Auto-Neg to complete.\n");
- /* We will wait for autoneg to complete or 4.5 seconds to expire. */
- for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
- /* Read the MII Status Register and wait for Auto-Neg
- * Complete bit to be set.
- */
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
- if (phy_data & MII_SR_AUTONEG_COMPLETE)
- return E1000_SUCCESS;
- msleep(100);
- }
- return E1000_SUCCESS;
- }
- /**
- * e1000_raise_mdi_clk - Raises the Management Data Clock
- * @hw: Struct containing variables accessed by shared code
- * @ctrl: Device control register's current value
- */
- static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
- {
- /* Raise the clock input to the Management Data Clock (by setting the
- * MDC bit), and then delay 10 microseconds.
- */
- ew32(CTRL, (*ctrl | E1000_CTRL_MDC));
- E1000_WRITE_FLUSH();
- udelay(10);
- }
- /**
- * e1000_lower_mdi_clk - Lowers the Management Data Clock
- * @hw: Struct containing variables accessed by shared code
- * @ctrl: Device control register's current value
- */
- static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
- {
- /* Lower the clock input to the Management Data Clock (by clearing the
- * MDC bit), and then delay 10 microseconds.
- */
- ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC));
- E1000_WRITE_FLUSH();
- udelay(10);
- }
- /**
- * e1000_shift_out_mdi_bits - Shifts data bits out to the PHY
- * @hw: Struct containing variables accessed by shared code
- * @data: Data to send out to the PHY
- * @count: Number of bits to shift out
- *
- * Bits are shifted out in MSB to LSB order.
- */
- static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count)
- {
- u32 ctrl;
- u32 mask;
- /* We need to shift "count" number of bits out to the PHY. So, the value
- * in the "data" parameter will be shifted out to the PHY one bit at a
- * time. In order to do this, "data" must be broken down into bits.
- */
- mask = 0x01;
- mask <<= (count - 1);
- ctrl = er32(CTRL);
- /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
- ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
- while (mask) {
- /* A "1" is shifted out to the PHY by setting the MDIO bit to
- * "1" and then raising and lowering the Management Data Clock.
- * A "0" is shifted out to the PHY by setting the MDIO bit to
- * "0" and then raising and lowering the clock.
- */
- if (data & mask)
- ctrl |= E1000_CTRL_MDIO;
- else
- ctrl &= ~E1000_CTRL_MDIO;
- ew32(CTRL, ctrl);
- E1000_WRITE_FLUSH();
- udelay(10);
- e1000_raise_mdi_clk(hw, &ctrl);
- e1000_lower_mdi_clk(hw, &ctrl);
- mask = mask >> 1;
- }
- }
- /**
- * e1000_shift_in_mdi_bits - Shifts data bits in from the PHY
- * @hw: Struct containing variables accessed by shared code
- *
- * Bits are shifted in in MSB to LSB order.
- */
- static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
- {
- u32 ctrl;
- u16 data = 0;
- u8 i;
- /* In order to read a register from the PHY, we need to shift in a total
- * of 18 bits from the PHY. The first two bit (turnaround) times are
- * used to avoid contention on the MDIO pin when a read operation is
- * performed. These two bits are ignored by us and thrown away. Bits are
- * "shifted in" by raising the input to the Management Data Clock
- * (setting the MDC bit), and then reading the value of the MDIO bit.
- */
- ctrl = er32(CTRL);
- /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as
- * input.
- */
- ctrl &= ~E1000_CTRL_MDIO_DIR;
- ctrl &= ~E1000_CTRL_MDIO;
- ew32(CTRL, ctrl);
- E1000_WRITE_FLUSH();
- /* Raise and Lower the clock before reading in the data. This accounts
- * for the turnaround bits. The first clock occurred when we clocked out
- * the last bit of the Register Address.
- */
- e1000_raise_mdi_clk(hw, &ctrl);
- e1000_lower_mdi_clk(hw, &ctrl);
- for (data = 0, i = 0; i < 16; i++) {
- data = data << 1;
- e1000_raise_mdi_clk(hw, &ctrl);
- ctrl = er32(CTRL);
- /* Check to see if we shifted in a "1". */
- if (ctrl & E1000_CTRL_MDIO)
- data |= 1;
- e1000_lower_mdi_clk(hw, &ctrl);
- }
- e1000_raise_mdi_clk(hw, &ctrl);
- e1000_lower_mdi_clk(hw, &ctrl);
- return data;
- }
- /**
- * e1000_read_phy_reg - read a phy register
- * @hw: Struct containing variables accessed by shared code
- * @reg_addr: address of the PHY register to read
- * @phy_data: pointer to the value on the PHY register
- *
- * Reads the value from a PHY register, if the value is on a specific non zero
- * page, sets the page first.
- */
- s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data)
- {
- u32 ret_val;
- unsigned long flags;
- spin_lock_irqsave(&e1000_phy_lock, flags);
- if ((hw->phy_type == e1000_phy_igp) &&
- (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
- ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
- (u16) reg_addr);
- if (ret_val)
- goto out;
- }
- ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
- phy_data);
- out:
- spin_unlock_irqrestore(&e1000_phy_lock, flags);
- return ret_val;
- }
- static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
- u16 *phy_data)
- {
- u32 i;
- u32 mdic = 0;
- const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
- if (reg_addr > MAX_PHY_REG_ADDRESS) {
- e_dbg("PHY Address %d is out of range\n", reg_addr);
- return -E1000_ERR_PARAM;
- }
- if (hw->mac_type > e1000_82543) {
- /* Set up Op-code, Phy Address, and register address in the MDI
- * Control register. The MAC will take care of interfacing with
- * the PHY to retrieve the desired data.
- */
- if (hw->mac_type == e1000_ce4100) {
- mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
- (phy_addr << E1000_MDIC_PHY_SHIFT) |
- (INTEL_CE_GBE_MDIC_OP_READ) |
- (INTEL_CE_GBE_MDIC_GO));
- writel(mdic, E1000_MDIO_CMD);
- /* Poll the ready bit to see if the MDI read
- * completed
- */
- for (i = 0; i < 64; i++) {
- udelay(50);
- mdic = readl(E1000_MDIO_CMD);
- if (!(mdic & INTEL_CE_GBE_MDIC_GO))
- break;
- }
- if (mdic & INTEL_CE_GBE_MDIC_GO) {
- e_dbg("MDI Read did not complete\n");
- return -E1000_ERR_PHY;
- }
- mdic = readl(E1000_MDIO_STS);
- if (mdic & INTEL_CE_GBE_MDIC_READ_ERROR) {
- e_dbg("MDI Read Error\n");
- return -E1000_ERR_PHY;
- }
- *phy_data = (u16)mdic;
- } else {
- mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
- (phy_addr << E1000_MDIC_PHY_SHIFT) |
- (E1000_MDIC_OP_READ));
- ew32(MDIC, mdic);
- /* Poll the ready bit to see if the MDI read
- * completed
- */
- for (i = 0; i < 64; i++) {
- udelay(50);
- mdic = er32(MDIC);
- if (mdic & E1000_MDIC_READY)
- break;
- }
- if (!(mdic & E1000_MDIC_READY)) {
- e_dbg("MDI Read did not complete\n");
- return -E1000_ERR_PHY;
- }
- if (mdic & E1000_MDIC_ERROR) {
- e_dbg("MDI Error\n");
- return -E1000_ERR_PHY;
- }
- *phy_data = (u16)mdic;
- }
- } else {
- /* We must first send a preamble through the MDIO pin to signal
- * the beginning of an MII instruction. This is done by sending
- * 32 consecutive "1" bits.
- */
- e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
- /* Now combine the next few fields that are required for a read
- * operation. We use this method instead of calling the
- * e1000_shift_out_mdi_bits routine five different times. The
- * format of a MII read instruction consists of a shift out of
- * 14 bits and is defined as follows:
- * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
- * followed by a shift in of 18 bits. This first two bits
- * shifted in are TurnAround bits used to avoid contention on
- * the MDIO pin when a READ operation is performed. These two
- * bits are thrown away followed by a shift in of 16 bits which
- * contains the desired data.
- */
- mdic = ((reg_addr) | (phy_addr << 5) |
- (PHY_OP_READ << 10) | (PHY_SOF << 12));
- e1000_shift_out_mdi_bits(hw, mdic, 14);
- /* Now that we've shifted out the read command to the MII, we
- * need to "shift in" the 16-bit value (18 total bits) of the
- * requested PHY register address.
- */
- *phy_data = e1000_shift_in_mdi_bits(hw);
- }
- return E1000_SUCCESS;
- }
- /**
- * e1000_write_phy_reg - write a phy register
- *
- * @hw: Struct containing variables accessed by shared code
- * @reg_addr: address of the PHY register to write
- * @data: data to write to the PHY
- *
- * Writes a value to a PHY register
- */
- s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data)
- {
- u32 ret_val;
- unsigned long flags;
- spin_lock_irqsave(&e1000_phy_lock, flags);
- if ((hw->phy_type == e1000_phy_igp) &&
- (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
- ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
- (u16)reg_addr);
- if (ret_val) {
- spin_unlock_irqrestore(&e1000_phy_lock, flags);
- return ret_val;
- }
- }
- ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
- phy_data);
- spin_unlock_irqrestore(&e1000_phy_lock, flags);
- return ret_val;
- }
- static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
- u16 phy_data)
- {
- u32 i;
- u32 mdic = 0;
- const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
- if (reg_addr > MAX_PHY_REG_ADDRESS) {
- e_dbg("PHY Address %d is out of range\n", reg_addr);
- return -E1000_ERR_PARAM;
- }
- if (hw->mac_type > e1000_82543) {
- /* Set up Op-code, Phy Address, register address, and data
- * intended for the PHY register in the MDI Control register.
- * The MAC will take care of interfacing with the PHY to send
- * the desired data.
- */
- if (hw->mac_type == e1000_ce4100) {
- mdic = (((u32)phy_data) |
- (reg_addr << E1000_MDIC_REG_SHIFT) |
- (phy_addr << E1000_MDIC_PHY_SHIFT) |
- (INTEL_CE_GBE_MDIC_OP_WRITE) |
- (INTEL_CE_GBE_MDIC_GO));
- writel(mdic, E1000_MDIO_CMD);
- /* Poll the ready bit to see if the MDI read
- * completed
- */
- for (i = 0; i < 640; i++) {
- udelay(5);
- mdic = readl(E1000_MDIO_CMD);
- if (!(mdic & INTEL_CE_GBE_MDIC_GO))
- break;
- }
- if (mdic & INTEL_CE_GBE_MDIC_GO) {
- e_dbg("MDI Write did not complete\n");
- return -E1000_ERR_PHY;
- }
- } else {
- mdic = (((u32)phy_data) |
- (reg_addr << E1000_MDIC_REG_SHIFT) |
- (phy_addr << E1000_MDIC_PHY_SHIFT) |
- (E1000_MDIC_OP_WRITE));
- ew32(MDIC, mdic);
- /* Poll the ready bit to see if the MDI read
- * completed
- */
- for (i = 0; i < 641; i++) {
- udelay(5);
- mdic = er32(MDIC);
- if (mdic & E1000_MDIC_READY)
- break;
- }
- if (!(mdic & E1000_MDIC_READY)) {
- e_dbg("MDI Write did not complete\n");
- return -E1000_ERR_PHY;
- }
- }
- } else {
- /* We'll need to use the SW defined pins to shift the write
- * command out to the PHY. We first send a preamble to the PHY
- * to signal the beginning of the MII instruction. This is done
- * by sending 32 consecutive "1" bits.
- */
- e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
- /* Now combine the remaining required fields that will indicate
- * a write operation. We use this method instead of calling the
- * e1000_shift_out_mdi_bits routine for each field in the
- * command. The format of a MII write instruction is as follows:
- * <Preamble><SOF><OpCode><PhyAddr><RegAddr><Turnaround><Data>.
- */
- mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
- (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
- mdic <<= 16;
- mdic |= (u32)phy_data;
- e1000_shift_out_mdi_bits(hw, mdic, 32);
- }
- return E1000_SUCCESS;
- }
- /**
- * e1000_phy_hw_reset - reset the phy, hardware style
- * @hw: Struct containing variables accessed by shared code
- *
- * Returns the PHY to the power-on reset state
- */
- s32 e1000_phy_hw_reset(struct e1000_hw *hw)
- {
- u32 ctrl, ctrl_ext;
- u32 led_ctrl;
- e_dbg("Resetting Phy...\n");
- if (hw->mac_type > e1000_82543) {
- /* Read the device control register and assert the
- * E1000_CTRL_PHY_RST bit. Then, take it out of reset.
- * For e1000 hardware, we delay for 10ms between the assert
- * and de-assert.
- */
- ctrl = er32(CTRL);
- ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
- E1000_WRITE_FLUSH();
- msleep(10);
- ew32(CTRL, ctrl);
- E1000_WRITE_FLUSH();
- } else {
- /* Read the Extended Device Control Register, assert the
- * PHY_RESET_DIR bit to put the PHY into reset. Then, take it
- * out of reset.
- */
- ctrl_ext = er32(CTRL_EXT);
- ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
- ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
- ew32(CTRL_EXT, ctrl_ext);
- E1000_WRITE_FLUSH();
- msleep(10);
- ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
- ew32(CTRL_EXT, ctrl_ext);
- E1000_WRITE_FLUSH();
- }
- udelay(150);
- if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
- /* Configure activity LED after PHY reset */
- led_ctrl = er32(LEDCTL);
- led_ctrl &= IGP_ACTIVITY_LED_MASK;
- led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
- ew32(LEDCTL, led_ctrl);
- }
- /* Wait for FW to finish PHY configuration. */
- return e1000_get_phy_cfg_done(hw);
- }
- /**
- * e1000_phy_reset - reset the phy to commit settings
- * @hw: Struct containing variables accessed by shared code
- *
- * Resets the PHY
- * Sets bit 15 of the MII Control register
- */
- s32 e1000_phy_reset(struct e1000_hw *hw)
- {
- s32 ret_val;
- u16 phy_data;
- switch (hw->phy_type) {
- case e1000_phy_igp:
- ret_val = e1000_phy_hw_reset(hw);
- if (ret_val)
- return ret_val;
- break;
- default:
- ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
- phy_data |= MII_CR_RESET;
- ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
- if (ret_val)
- return ret_val;
- udelay(1);
- break;
- }
- if (hw->phy_type == e1000_phy_igp)
- e1000_phy_init_script(hw);
- return E1000_SUCCESS;
- }
- /**
- * e1000_detect_gig_phy - check the phy type
- * @hw: Struct containing variables accessed by shared code
- *
- * Probes the expected PHY address for known PHY IDs
- */
- static s32 e1000_detect_gig_phy(struct e1000_hw *hw)
- {
- s32 phy_init_status, ret_val;
- u16 phy_id_high, phy_id_low;
- bool match = false;
- if (hw->phy_id != 0)
- return E1000_SUCCESS;
- /* Read the PHY ID Registers to identify which PHY is onboard. */
- ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
- if (ret_val)
- return ret_val;
- hw->phy_id = (u32)(phy_id_high << 16);
- udelay(20);
- ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
- if (ret_val)
- return ret_val;
- hw->phy_id |= (u32)(phy_id_low & PHY_REVISION_MASK);
- hw->phy_revision = (u32)phy_id_low & ~PHY_REVISION_MASK;
- switch (hw->mac_type) {
- case e1000_82543:
- if (hw->phy_id == M88E1000_E_PHY_ID)
- match = true;
- break;
- case e1000_82544:
- if (hw->phy_id == M88E1000_I_PHY_ID)
- match = true;
- break;
- case e1000_82540:
- case e1000_82545:
- case e1000_82545_rev_3:
- case e1000_82546:
- case e1000_82546_rev_3:
- if (hw->phy_id == M88E1011_I_PHY_ID)
- match = true;
- break;
- case e1000_ce4100:
- if ((hw->phy_id == RTL8211B_PHY_ID) ||
- (hw->phy_id == RTL8201N_PHY_ID) ||
- (hw->phy_id == M88E1118_E_PHY_ID))
- match = true;
- break;
- case e1000_82541:
- case e1000_82541_rev_2:
- case e1000_82547:
- case e1000_82547_rev_2:
- if (hw->phy_id == IGP01E1000_I_PHY_ID)
- match = true;
- break;
- default:
- e_dbg("Invalid MAC type %d\n", hw->mac_type);
- return -E1000_ERR_CONFIG;
- }
- phy_init_status = e1000_set_phy_type(hw);
- if ((match) && (phy_init_status == E1000_SUCCESS)) {
- e_dbg("PHY ID 0x%X detected\n", hw->phy_id);
- return E1000_SUCCESS;
- }
- e_dbg("Invalid PHY ID 0x%X\n", hw->phy_id);
- return -E1000_ERR_PHY;
- }
- /**
- * e1000_phy_reset_dsp - reset DSP
- * @hw: Struct containing variables accessed by shared code
- *
- * Resets the PHY's DSP
- */
- static s32 e1000_phy_reset_dsp(struct e1000_hw *hw)
- {
- s32 ret_val;
- do {
- ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
- if (ret_val)
- break;
- ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
- if (ret_val)
- break;
- ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
- if (ret_val)
- break;
- ret_val = E1000_SUCCESS;
- } while (0);
- return ret_val;
- }
- /**
- * e1000_phy_igp_get_info - get igp specific registers
- * @hw: Struct containing variables accessed by shared code
- * @phy_info: PHY information structure
- *
- * Get PHY information from various PHY registers for igp PHY only.
- */
- static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
- struct e1000_phy_info *phy_info)
- {
- s32 ret_val;
- u16 phy_data, min_length, max_length, average;
- e1000_rev_polarity polarity;
- /* The downshift status is checked only once, after link is established,
- * and it stored in the hw->speed_downgraded parameter.
- */
- phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
- /* IGP01E1000 does not need to support it. */
- phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
- /* IGP01E1000 always correct polarity reversal */
- phy_info->polarity_correction = e1000_polarity_reversal_enabled;
- /* Check polarity status */
- ret_val = e1000_check_polarity(hw, &polarity);
- if (ret_val)
- return ret_val;
- phy_info->cable_polarity = polarity;
- ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
- phy_info->mdix_mode =
- (e1000_auto_x_mode) ((phy_data & IGP01E1000_PSSR_MDIX) >>
- IGP01E1000_PSSR_MDIX_SHIFT);
- if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
- IGP01E1000_PSSR_SPEED_1000MBPS) {
- /* Local/Remote Receiver Information are only valid @ 1000
- * Mbps
- */
- ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
- phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
- SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
- e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
- phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
- SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
- e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
- /* Get cable length */
- ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
- if (ret_val)
- return ret_val;
- /* Translate to old method */
- average = (max_length + min_length) / 2;
- if (average <= e1000_igp_cable_length_50)
- phy_info->cable_length = e1000_cable_length_50;
- else if (average <= e1000_igp_cable_length_80)
- phy_info->cable_length = e1000_cable_length_50_80;
- else if (average <= e1000_igp_cable_length_110)
- phy_info->cable_length = e1000_cable_length_80_110;
- else if (average <= e1000_igp_cable_length_140)
- phy_info->cable_length = e1000_cable_length_110_140;
- else
- phy_info->cable_length = e1000_cable_length_140;
- }
- return E1000_SUCCESS;
- }
- /**
- * e1000_phy_m88_get_info - get m88 specific registers
- * @hw: Struct containing variables accessed by shared code
- * @phy_info: PHY information structure
- *
- * Get PHY information from various PHY registers for m88 PHY only.
- */
- static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
- struct e1000_phy_info *phy_info)
- {
- s32 ret_val;
- u16 phy_data;
- e1000_rev_polarity polarity;
- /* The downshift status is checked only once, after link is established,
- * and it stored in the hw->speed_downgraded parameter.
- */
- phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
- ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
- phy_info->extended_10bt_distance =
- ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
- M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ?
- e1000_10bt_ext_dist_enable_lower :
- e1000_10bt_ext_dist_enable_normal;
- phy_info->polarity_correction =
- ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
- M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ?
- e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
- /* Check polarity status */
- ret_val = e1000_check_polarity(hw, &polarity);
- if (ret_val)
- return ret_val;
- phy_info->cable_polarity = polarity;
- ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
- phy_info->mdix_mode =
- (e1000_auto_x_mode) ((phy_data & M88E1000_PSSR_MDIX) >>
- M88E1000_PSSR_MDIX_SHIFT);
- if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
- /* Cable Length Estimation and Local/Remote Receiver Information
- * are only valid at 1000 Mbps.
- */
- phy_info->cable_length =
- (e1000_cable_length) ((phy_data &
- M88E1000_PSSR_CABLE_LENGTH) >>
- M88E1000_PSSR_CABLE_LENGTH_SHIFT);
- ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
- phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
- SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
- e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
- phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
- SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
- e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
- }
- return E1000_SUCCESS;
- }
- /**
- * e1000_phy_get_info - request phy info
- * @hw: Struct containing variables accessed by shared code
- * @phy_info: PHY information structure
- *
- * Get PHY information from various PHY registers
- */
- s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info)
- {
- s32 ret_val;
- u16 phy_data;
- phy_info->cable_length = e1000_cable_length_undefined;
- phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
- phy_info->cable_polarity = e1000_rev_polarity_undefined;
- phy_info->downshift = e1000_downshift_undefined;
- phy_info->polarity_correction = e1000_polarity_reversal_undefined;
- phy_info->mdix_mode = e1000_auto_x_mode_undefined;
- phy_info->local_rx = e1000_1000t_rx_status_undefined;
- phy_info->remote_rx = e1000_1000t_rx_status_undefined;
- if (hw->media_type != e1000_media_type_copper) {
- e_dbg("PHY info is only valid for copper media\n");
- return -E1000_ERR_CONFIG;
- }
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
- if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
- e_dbg("PHY info is only valid if link is up\n");
- return -E1000_ERR_CONFIG;
- }
- if (hw->phy_type == e1000_phy_igp)
- return e1000_phy_igp_get_info(hw, phy_info);
- else if ((hw->phy_type == e1000_phy_8211) ||
- (hw->phy_type == e1000_phy_8201))
- return E1000_SUCCESS;
- else
- return e1000_phy_m88_get_info(hw, phy_info);
- }
- s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
- {
- if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
- e_dbg("Invalid MDI setting detected\n");
- hw->mdix = 1;
- return -E1000_ERR_CONFIG;
- }
- return E1000_SUCCESS;
- }
- /**
- * e1000_init_eeprom_params - initialize sw eeprom vars
- * @hw: Struct containing variables accessed by shared code
- *
- * Sets up eeprom variables in the hw struct. Must be called after mac_type
- * is configured.
- */
- s32 e1000_init_eeprom_params(struct e1000_hw *hw)
- {
- struct e1000_eeprom_info *eeprom = &hw->eeprom;
- u32 eecd = er32(EECD);
- s32 ret_val = E1000_SUCCESS;
- u16 eeprom_size;
- switch (hw->mac_type) {
- case e1000_82542_rev2_0:
- case e1000_82542_rev2_1:
- case e1000_82543:
- case e1000_82544:
- eeprom->type = e1000_eeprom_microwire;
- eeprom->word_size = 64;
- eeprom->opcode_bits = 3;
- eeprom->address_bits = 6;
- eeprom->delay_usec = 50;
- break;
- case e1000_82540:
- case e1000_82545:
- case e1000_82545_rev_3:
- case e1000_82546:
- case e1000_82546_rev_3:
- eeprom->type = e1000_eeprom_microwire;
- eeprom->opcode_bits = 3;
- eeprom->delay_usec = 50;
- if (eecd & E1000_EECD_SIZE) {
- eeprom->word_size = 256;
- eeprom->address_bits = 8;
- } else {
- eeprom->word_size = 64;
- eeprom->address_bits = 6;
- }
- break;
- case e1000_82541:
- case e1000_82541_rev_2:
- case e1000_82547:
- case e1000_82547_rev_2:
- if (eecd & E1000_EECD_TYPE) {
- eeprom->type = e1000_eeprom_spi;
- eeprom->opcode_bits = 8;
- eeprom->delay_usec = 1;
- if (eecd & E1000_EECD_ADDR_BITS) {
- eeprom->page_size = 32;
- eeprom->address_bits = 16;
- } else {
- eeprom->page_size = 8;
- eeprom->address_bits = 8;
- }
- } else {
- eeprom->type = e1000_eeprom_microwire;
- eeprom->opcode_bits = 3;
- eeprom->delay_usec = 50;
- if (eecd & E1000_EECD_ADDR_BITS) {
- eeprom->word_size = 256;
- eeprom->address_bits = 8;
- } else {
- eeprom->word_size = 64;
- eeprom->address_bits = 6;
- }
- }
- break;
- default:
- break;
- }
- if (eeprom->type == e1000_eeprom_spi) {
- /* eeprom_size will be an enum [0..8] that maps to eeprom sizes
- * 128B to 32KB (incremented by powers of 2).
- */
- /* Set to default value for initial eeprom read. */
- eeprom->word_size = 64;
- ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
- if (ret_val)
- return ret_val;
- eeprom_size =
- (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
- /* 256B eeprom size was not supported in earlier hardware, so we
- * bump eeprom_size up one to ensure that "1" (which maps to
- * 256B) is never the result used in the shifting logic below.
- */
- if (eeprom_size)
- eeprom_size++;
- eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
- }
- return ret_val;
- }
- /**
- * e1000_raise_ee_clk - Raises the EEPROM's clock input.
- * @hw: Struct containing variables accessed by shared code
- * @eecd: EECD's current value
- */
- static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd)
- {
- /* Raise the clock input to the EEPROM (by setting the SK bit), and then
- * wait <delay> microseconds.
- */
- *eecd = *eecd | E1000_EECD_SK;
- ew32(EECD, *eecd);
- E1000_WRITE_FLUSH();
- udelay(hw->eeprom.delay_usec);
- }
- /**
- * e1000_lower_ee_clk - Lowers the EEPROM's clock input.
- * @hw: Struct containing variables accessed by shared code
- * @eecd: EECD's current value
- */
- static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd)
- {
- /* Lower the clock input to the EEPROM (by clearing the SK bit), and
- * then wait 50 microseconds.
- */
- *eecd = *eecd & ~E1000_EECD_SK;
- ew32(EECD, *eecd);
- E1000_WRITE_FLUSH();
- udelay(hw->eeprom.delay_usec);
- }
- /**
- * e1000_shift_out_ee_bits - Shift data bits out to the EEPROM.
- * @hw: Struct containing variables accessed by shared code
- * @data: data to send to the EEPROM
- * @count: number of bits to shift out
- */
- static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count)
- {
- struct e1000_eeprom_info *eeprom = &hw->eeprom;
- u32 eecd;
- u32 mask;
- /* We need to shift "count" bits out to the EEPROM. So, value in the
- * "data" parameter will be shifted out to the EEPROM one bit at a time.
- * In order to do this, "data" must be broken down into bits.
- */
- mask = 0x01 << (count - 1);
- eecd = er32(EECD);
- if (eeprom->type == e1000_eeprom_microwire)
- eecd &= ~E1000_EECD_DO;
- else if (eeprom->type == e1000_eeprom_spi)
- eecd |= E1000_EECD_DO;
- do {
- /* A "1" is shifted out to the EEPROM by setting bit "DI" to a
- * "1", and then raising and then lowering the clock (the SK bit
- * controls the clock input to the EEPROM). A "0" is shifted
- * out to the EEPROM by setting "DI" to "0" and then raising and
- * then lowering the clock.
- */
- eecd &= ~E1000_EECD_DI;
- if (data & mask)
- eecd |= E1000_EECD_DI;
- ew32(EECD, eecd);
- E1000_WRITE_FLUSH();
- udelay(eeprom->delay_usec);
- e1000_raise_ee_clk(hw, &eecd);
- e1000_lower_ee_clk(hw, &eecd);
- mask = mask >> 1;
- } while (mask);
- /* We leave the "DI" bit set to "0" when we leave this routine. */
- eecd &= ~E1000_EECD_DI;
- ew32(EECD, eecd);
- }
- /**
- * e1000_shift_in_ee_bits - Shift data bits in from the EEPROM
- * @hw: Struct containing variables accessed by shared code
- * @count: number of bits to shift in
- */
- static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count)
- {
- u32 eecd;
- u32 i;
- u16 data;
- /* In order to read a register from the EEPROM, we need to shift 'count'
- * bits in from the EEPROM. Bits are "shifted in" by raising the clock
- * input to the EEPROM (setting the SK bit), and then reading the value
- * of the "DO" bit. During this "shifting in" process the "DI" bit
- * should always be clear.
- */
- eecd = er32(EECD);
- eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
- data = 0;
- for (i = 0; i < count; i++) {
- data = data << 1;
- e1000_raise_ee_clk(hw, &eecd);
- eecd = er32(EECD);
- eecd &= ~(E1000_EECD_DI);
- if (eecd & E1000_EECD_DO)
- data |= 1;
- e1000_lower_ee_clk(hw, &eecd);
- }
- return data;
- }
- /**
- * e1000_acquire_eeprom - Prepares EEPROM for access
- * @hw: Struct containing variables accessed by shared code
- *
- * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
- * function should be called before issuing a command to the EEPROM.
- */
- static s32 e1000_acquire_eeprom(struct e1000_hw *hw)
- {
- struct e1000_eeprom_info *eeprom = &hw->eeprom;
- u32 eecd, i = 0;
- eecd = er32(EECD);
- /* Request EEPROM Access */
- if (hw->mac_type > e1000_82544) {
- eecd |= E1000_EECD_REQ;
- ew32(EECD, eecd);
- eecd = er32(EECD);
- while ((!(eecd & E1000_EECD_GNT)) &&
- (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
- i++;
- udelay(5);
- eecd = er32(EECD);
- }
- if (!(eecd & E1000_EECD_GNT)) {
- eecd &= ~E1000_EECD_REQ;
- ew32(EECD, eecd);
- e_dbg("Could not acquire EEPROM grant\n");
- return -E1000_ERR_EEPROM;
- }
- }
- /* Setup EEPROM for Read/Write */
- if (eeprom->type == e1000_eeprom_microwire) {
- /* Clear SK and DI */
- eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
- ew32(EECD, eecd);
- /* Set CS */
- eecd |= E1000_EECD_CS;
- ew32(EECD, eecd);
- } else if (eeprom->type == e1000_eeprom_spi) {
- /* Clear SK and CS */
- eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
- ew32(EECD, eecd);
- E1000_WRITE_FLUSH();
- udelay(1);
- }
- return E1000_SUCCESS;
- }
- /**
- * e1000_standby_eeprom - Returns EEPROM to a "standby" state
- * @hw: Struct containing variables accessed by shared code
- */
- static void e1000_standby_eeprom(struct e1000_hw *hw)
- {
- struct e1000_eeprom_info *eeprom = &hw->eeprom;
- u32 eecd;
- eecd = er32(EECD);
- if (eeprom->type == e1000_eeprom_microwire) {
- eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
- ew32(EECD, eecd);
- E1000_WRITE_FLUSH();
- udelay(eeprom->delay_usec);
- /* Clock high */
- eecd |= E1000_EECD_SK;
- ew32(EECD, eecd);
- E1000_WRITE_FLUSH();
- udelay(eeprom->delay_usec);
- /* Select EEPROM */
- eecd |= E1000_EECD_CS;
- ew32(EECD, eecd);
- E1000_WRITE_FLUSH();
- udelay(eeprom->delay_usec);
- /* Clock low */
- eecd &= ~E1000_EECD_SK;
- ew32(EECD, eecd);
- E1000_WRITE_FLUSH();
- udelay(eeprom->delay_usec);
- } else if (eeprom->type == e1000_eeprom_spi) {
- /* Toggle CS to flush commands */
- eecd |= E1000_EECD_CS;
- ew32(EECD, eecd);
- E1000_WRITE_FLUSH();
- udelay(eeprom->delay_usec);
- eecd &= ~E1000_EECD_CS;
- ew32(EECD, eecd);
- E1000_WRITE_FLUSH();
- udelay(eeprom->delay_usec);
- }
- }
- /**
- * e1000_release_eeprom - drop chip select
- * @hw: Struct containing variables accessed by shared code
- *
- * Terminates a command by inverting the EEPROM's chip select pin
- */
- static void e1000_release_eeprom(struct e1000_hw *hw)
- {
- u32 eecd;
- eecd = er32(EECD);
- if (hw->eeprom.type == e1000_eeprom_spi) {
- eecd |= E1000_EECD_CS; /* Pull CS high */
- eecd &= ~E1000_EECD_SK; /* Lower SCK */
- ew32(EECD, eecd);
- E1000_WRITE_FLUSH();
- udelay(hw->eeprom.delay_usec);
- } else if (hw->eeprom.type == e1000_eeprom_microwire) {
- /* cleanup eeprom */
- /* CS on Microwire is active-high */
- eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
- ew32(EECD, eecd);
- /* Rising edge of clock */
- eecd |= E1000_EECD_SK;
- ew32(EECD, eecd);
- E1000_WRITE_FLUSH();
- udelay(hw->eeprom.delay_usec);
- /* Falling edge of clock */
- eecd &= ~E1000_EECD_SK;
- ew32(EECD, eecd);
- E1000_WRITE_FLUSH();
- udelay(hw->eeprom.delay_usec);
- }
- /* Stop requesting EEPROM access */
- if (hw->mac_type > e1000_82544) {
- eecd &= ~E1000_EECD_REQ;
- ew32(EECD, eecd);
- }
- }
- /**
- * e1000_spi_eeprom_ready - Reads a 16 bit word from the EEPROM.
- * @hw: Struct containing variables accessed by shared code
- */
- static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw)
- {
- u16 retry_count = 0;
- u8 spi_stat_reg;
- /* Read "Status Register" repeatedly until the LSB is cleared. The
- * EEPROM will signal that the command has been completed by clearing
- * bit 0 of the internal status register. If it's not cleared within
- * 5 milliseconds, then error out.
- */
- retry_count = 0;
- do {
- e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
- hw->eeprom.opcode_bits);
- spi_stat_reg = (u8)e1000_shift_in_ee_bits(hw, 8);
- if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
- break;
- udelay(5);
- retry_count += 5;
- e1000_standby_eeprom(hw);
- } while (retry_count < EEPROM_MAX_RETRY_SPI);
- /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
- * only 0-5mSec on 5V devices)
- */
- if (retry_count >= EEPROM_MAX_RETRY_SPI) {
- e_dbg("SPI EEPROM Status error\n");
- return -E1000_ERR_EEPROM;
- }
- return E1000_SUCCESS;
- }
- /**
- * e1000_read_eeprom - Reads a 16 bit word from the EEPROM.
- * @hw: Struct containing variables accessed by shared code
- * @offset: offset of word in the EEPROM to read
- * @data: word read from the EEPROM
- * @words: number of words to read
- */
- s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
- {
- s32 ret;
- mutex_lock(&e1000_eeprom_lock);
- ret = e1000_do_read_eeprom(hw, offset, words, data);
- mutex_unlock(&e1000_eeprom_lock);
- return ret;
- }
- static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data)
- {
- struct e1000_eeprom_info *eeprom = &hw->eeprom;
- u32 i = 0;
- if (hw->mac_type == e1000_ce4100) {
- GBE_CONFIG_FLASH_READ(GBE_CONFIG_BASE_VIRT, offset, words,
- data);
- return E1000_SUCCESS;
- }
- /* A check for invalid values: offset too large, too many words, and
- * not enough words.
- */
- if ((offset >= eeprom->word_size) ||
- (words > eeprom->word_size - offset) ||
- (words == 0)) {
- e_dbg("\"words\" parameter out of bounds. Words = %d,"
- "size = %d\n", offset, eeprom->word_size);
- return -E1000_ERR_EEPROM;
- }
- /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
- * directly. In this case, we need to acquire the EEPROM so that
- * FW or other port software does not interrupt.
- */
- /* Prepare the EEPROM for bit-bang reading */
- if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
- return -E1000_ERR_EEPROM;
- /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have
- * acquired the EEPROM at this point, so any returns should release it
- */
- if (eeprom->type == e1000_eeprom_spi) {
- u16 word_in;
- u8 read_opcode = EEPROM_READ_OPCODE_SPI;
- if (e1000_spi_eeprom_ready(hw)) {
- e1000_release_eeprom(hw);
- return -E1000_ERR_EEPROM;
- }
- e1000_standby_eeprom(hw);
- /* Some SPI eeproms use the 8th address bit embedded in the
- * opcode
- */
- if ((eeprom->address_bits == 8) && (offset >= 128))
- read_opcode |= EEPROM_A8_OPCODE_SPI;
- /* Send the READ command (opcode + addr) */
- e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
- e1000_shift_out_ee_bits(hw, (u16)(offset * 2),
- eeprom->address_bits);
- /* Read the data. The address of the eeprom internally
- * increments with each byte (spi) being read, saving on the
- * overhead of eeprom setup and tear-down. The address counter
- * will roll over if reading beyond the size of the eeprom, thus
- * allowing the entire memory to be read starting from any
- * offset.
- */
- for (i = 0; i < words; i++) {
- word_in = e1000_shift_in_ee_bits(hw, 16);
- data[i] = (word_in >> 8) | (word_in << 8);
- }
- } else if (eeprom->type == e1000_eeprom_microwire) {
- for (i = 0; i < words; i++) {
- /* Send the READ command (opcode + addr) */
- e1000_shift_out_ee_bits(hw,
- EEPROM_READ_OPCODE_MICROWIRE,
- eeprom->opcode_bits);
- e1000_shift_out_ee_bits(hw, (u16)(offset + i),
- eeprom->address_bits);
- /* Read the data. For microwire, each word requires the
- * overhead of eeprom setup and tear-down.
- */
- data[i] = e1000_shift_in_ee_bits(hw, 16);
- e1000_standby_eeprom(hw);
- cond_resched();
- }
- }
- /* End this read operation */
- e1000_release_eeprom(hw);
- return E1000_SUCCESS;
- }
- /**
- * e1000_validate_eeprom_checksum - Verifies that the EEPROM has a valid checksum
- * @hw: Struct containing variables accessed by shared code
- *
- * Reads the first 64 16 bit words of the EEPROM and sums the values read.
- * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
- * valid.
- */
- s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw)
- {
- u16 checksum = 0;
- u16 i, eeprom_data;
- for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
- if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
- e_dbg("EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
- checksum += eeprom_data;
- }
- #ifdef CONFIG_PARISC
- /* This is a signature and not a checksum on HP c8000 */
- if ((hw->subsystem_vendor_id == 0x103C) && (eeprom_data == 0x16d6))
- return E1000_SUCCESS;
- #endif
- if (checksum == (u16)EEPROM_SUM)
- return E1000_SUCCESS;
- else {
- e_dbg("EEPROM Checksum Invalid\n");
- return -E1000_ERR_EEPROM;
- }
- }
- /**
- * e1000_update_eeprom_checksum - Calculates/writes the EEPROM checksum
- * @hw: Struct containing variables accessed by shared code
- *
- * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
- * Writes the difference to word offset 63 of the EEPROM.
- */
- s32 e1000_update_eeprom_checksum(struct e1000_hw *hw)
- {
- u16 checksum = 0;
- u16 i, eeprom_data;
- for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
- if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
- e_dbg("EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
- checksum += eeprom_data;
- }
- checksum = (u16)EEPROM_SUM - checksum;
- if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
- e_dbg("EEPROM Write Error\n");
- return -E1000_ERR_EEPROM;
- }
- return E1000_SUCCESS;
- }
- /**
- * e1000_write_eeprom - write words to the different EEPROM types.
- * @hw: Struct containing variables accessed by shared code
- * @offset: offset within the EEPROM to be written to
- * @words: number of words to write
- * @data: 16 bit word to be written to the EEPROM
- *
- * If e1000_update_eeprom_checksum is not called after this function, the
- * EEPROM will most likely contain an invalid checksum.
- */
- s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
- {
- s32 ret;
- mutex_lock(&e1000_eeprom_lock);
- ret = e1000_do_write_eeprom(hw, offset, words, data);
- mutex_unlock(&e1000_eeprom_lock);
- return ret;
- }
- static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data)
- {
- struct e1000_eeprom_info *eeprom = &hw->eeprom;
- s32 status = 0;
- if (hw->mac_type == e1000_ce4100) {
- GBE_CONFIG_FLASH_WRITE(GBE_CONFIG_BASE_VIRT, offset, words,
- data);
- return E1000_SUCCESS;
- }
- /* A check for invalid values: offset too large, too many words, and
- * not enough words.
- */
- if ((offset >= eeprom->word_size) ||
- (words > eeprom->word_size - offset) ||
- (words == 0)) {
- e_dbg("\"words\" parameter out of bounds\n");
- return -E1000_ERR_EEPROM;
- }
- /* Prepare the EEPROM for writing */
- if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
- return -E1000_ERR_EEPROM;
- if (eeprom->type == e1000_eeprom_microwire) {
- status = e1000_write_eeprom_microwire(hw, offset, words, data);
- } else {
- status = e1000_write_eeprom_spi(hw, offset, words, data);
- msleep(10);
- }
- /* Done with writing */
- e1000_release_eeprom(hw);
- return status;
- }
- /**
- * e1000_write_eeprom_spi - Writes a 16 bit word to a given offset in an SPI EEPROM.
- * @hw: Struct containing variables accessed by shared code
- * @offset: offset within the EEPROM to be written to
- * @words: number of words to write
- * @data: pointer to array of 8 bit words to be written to the EEPROM
- */
- static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data)
- {
- struct e1000_eeprom_info *eeprom = &hw->eeprom;
- u16 widx = 0;
- while (widx < words) {
- u8 write_opcode = EEPROM_WRITE_OPCODE_SPI;
- if (e1000_spi_eeprom_ready(hw))
- return -E1000_ERR_EEPROM;
- e1000_standby_eeprom(hw);
- cond_resched();
- /* Send the WRITE ENABLE command (8 bit opcode ) */
- e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
- eeprom->opcode_bits);
- e1000_standby_eeprom(hw);
- /* Some SPI eeproms use the 8th address bit embedded in the
- * opcode
- */
- if ((eeprom->address_bits == 8) && (offset >= 128))
- write_opcode |= EEPROM_A8_OPCODE_SPI;
- /* Send the Write command (8-bit opcode + addr) */
- e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
- e1000_shift_out_ee_bits(hw, (u16)((offset + widx) * 2),
- eeprom->address_bits);
- /* Send the data */
- /* Loop to allow for up to whole page write (32 bytes) of
- * eeprom
- */
- while (widx < words) {
- u16 word_out = data[widx];
- word_out = (word_out >> 8) | (word_out << 8);
- e1000_shift_out_ee_bits(hw, word_out, 16);
- widx++;
- /* Some larger eeprom sizes are capable of a 32-byte
- * PAGE WRITE operation, while the smaller eeproms are
- * capable of an 8-byte PAGE WRITE operation. Break the
- * inner loop to pass new address
- */
- if ((((offset + widx) * 2) % eeprom->page_size) == 0) {
- e1000_standby_eeprom(hw);
- break;
- }
- }
- }
- return E1000_SUCCESS;
- }
- /**
- * e1000_write_eeprom_microwire - Writes a 16 bit word to a given offset in a Microwire EEPROM.
- * @hw: Struct containing variables accessed by shared code
- * @offset: offset within the EEPROM to be written to
- * @words: number of words to write
- * @data: pointer to array of 8 bit words to be written to the EEPROM
- */
- static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
- u16 words, u16 *data)
- {
- struct e1000_eeprom_info *eeprom = &hw->eeprom;
- u32 eecd;
- u16 words_written = 0;
- u16 i = 0;
- /* Send the write enable command to the EEPROM (3-bit opcode plus
- * 6/8-bit dummy address beginning with 11). It's less work to include
- * the 11 of the dummy address as part of the opcode than it is to shift
- * it over the correct number of bits for the address. This puts the
- * EEPROM into write/erase mode.
- */
- e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
- (u16)(eeprom->opcode_bits + 2));
- e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2));
- /* Prepare the EEPROM */
- e1000_standby_eeprom(hw);
- while (words_written < words) {
- /* Send the Write command (3-bit opcode + addr) */
- e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
- eeprom->opcode_bits);
- e1000_shift_out_ee_bits(hw, (u16)(offset + words_written),
- eeprom->address_bits);
- /* Send the data */
- e1000_shift_out_ee_bits(hw, data[words_written], 16);
- /* Toggle the CS line. This in effect tells the EEPROM to
- * execute the previous command.
- */
- e1000_standby_eeprom(hw);
- /* Read DO repeatedly until it is high (equal to '1'). The
- * EEPROM will signal that the command has been completed by
- * raising the DO signal. If DO does not go high in 10
- * milliseconds, then error out.
- */
- for (i = 0; i < 200; i++) {
- eecd = er32(EECD);
- if (eecd & E1000_EECD_DO)
- break;
- udelay(50);
- }
- if (i == 200) {
- e_dbg("EEPROM Write did not complete\n");
- return -E1000_ERR_EEPROM;
- }
- /* Recover from write */
- e1000_standby_eeprom(hw);
- cond_resched();
- words_written++;
- }
- /* Send the write disable command to the EEPROM (3-bit opcode plus
- * 6/8-bit dummy address beginning with 10). It's less work to include
- * the 10 of the dummy address as part of the opcode than it is to shift
- * it over the correct number of bits for the address. This takes the
- * EEPROM out of write/erase mode.
- */
- e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
- (u16)(eeprom->opcode_bits + 2));
- e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2));
- return E1000_SUCCESS;
- }
- /**
- * e1000_read_mac_addr - read the adapters MAC from eeprom
- * @hw: Struct containing variables accessed by shared code
- *
- * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
- * second function of dual function devices
- */
- s32 e1000_read_mac_addr(struct e1000_hw *hw)
- {
- u16 offset;
- u16 eeprom_data, i;
- for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
- offset = i >> 1;
- if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
- e_dbg("EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
- hw->perm_mac_addr[i] = (u8)(eeprom_data & 0x00FF);
- hw->perm_mac_addr[i + 1] = (u8)(eeprom_data >> 8);
- }
- switch (hw->mac_type) {
- default:
- break;
- case e1000_82546:
- case e1000_82546_rev_3:
- if (er32(STATUS) & E1000_STATUS_FUNC_1)
- hw->perm_mac_addr[5] ^= 0x01;
- break;
- }
- for (i = 0; i < NODE_ADDRESS_SIZE; i++)
- hw->mac_addr[i] = hw->perm_mac_addr[i];
- return E1000_SUCCESS;
- }
- /**
- * e1000_init_rx_addrs - Initializes receive address filters.
- * @hw: Struct containing variables accessed by shared code
- *
- * Places the MAC address in receive address register 0 and clears the rest
- * of the receive address registers. Clears the multicast table. Assumes
- * the receiver is in reset when the routine is called.
- */
- static void e1000_init_rx_addrs(struct e1000_hw *hw)
- {
- u32 i;
- u32 rar_num;
- /* Setup the receive address. */
- e_dbg("Programming MAC Address into RAR[0]\n");
- e1000_rar_set(hw, hw->mac_addr, 0);
- rar_num = E1000_RAR_ENTRIES;
- /* Zero out the other 15 receive addresses. */
- e_dbg("Clearing RAR[1-15]\n");
- for (i = 1; i < rar_num; i++) {
- E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
- E1000_WRITE_FLUSH();
- E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
- E1000_WRITE_FLUSH();
- }
- }
- /**
- * e1000_hash_mc_addr - Hashes an address to determine its location in the multicast table
- * @hw: Struct containing variables accessed by shared code
- * @mc_addr: the multicast address to hash
- */
- u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
- {
- u32 hash_value = 0;
- /* The portion of the address that is used for the hash table is
- * determined by the mc_filter_type setting.
- */
- switch (hw->mc_filter_type) {
- /* [0] [1] [2] [3] [4] [5]
- * 01 AA 00 12 34 56
- * LSB MSB
- */
- case 0:
- /* [47:36] i.e. 0x563 for above example address */
- hash_value = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
- break;
- case 1:
- /* [46:35] i.e. 0xAC6 for above example address */
- hash_value = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
- break;
- case 2:
- /* [45:34] i.e. 0x5D8 for above example address */
- hash_value = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
- break;
- case 3:
- /* [43:32] i.e. 0x634 for above example address */
- hash_value = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
- break;
- }
- hash_value &= 0xFFF;
- return hash_value;
- }
- /**
- * e1000_rar_set - Puts an ethernet address into a receive address register.
- * @hw: Struct containing variables accessed by shared code
- * @addr: Address to put into receive address register
- * @index: Receive address register to write
- */
- void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
- {
- u32 rar_low, rar_high;
- /* HW expects these in little endian so we reverse the byte order
- * from network order (big endian) to little endian
- */
- rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
- ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
- rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
- /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
- * unit hang.
- *
- * Description:
- * If there are any Rx frames queued up or otherwise present in the HW
- * before RSS is enabled, and then we enable RSS, the HW Rx unit will
- * hang. To work around this issue, we have to disable receives and
- * flush out all Rx frames before we enable RSS. To do so, we modify we
- * redirect all Rx traffic to manageability and then reset the HW.
- * This flushes away Rx frames, and (since the redirections to
- * manageability persists across resets) keeps new ones from coming in
- * while we work. Then, we clear the Address Valid AV bit for all MAC
- * addresses and undo the re-direction to manageability.
- * Now, frames are coming in again, but the MAC won't accept them, so
- * far so good. We now proceed to initialize RSS (if necessary) and
- * configure the Rx unit. Last, we re-enable the AV bits and continue
- * on our merry way.
- */
- switch (hw->mac_type) {
- default:
- /* Indicate to hardware the Address is Valid. */
- rar_high |= E1000_RAH_AV;
- break;
- }
- E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
- E1000_WRITE_FLUSH();
- E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
- E1000_WRITE_FLUSH();
- }
- /**
- * e1000_write_vfta - Writes a value to the specified offset in the VLAN filter table.
- * @hw: Struct containing variables accessed by shared code
- * @offset: Offset in VLAN filer table to write
- * @value: Value to write into VLAN filter table
- */
- void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
- {
- u32 temp;
- if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
- temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
- E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
- E1000_WRITE_FLUSH();
- E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
- E1000_WRITE_FLUSH();
- } else {
- E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
- E1000_WRITE_FLUSH();
- }
- }
- /**
- * e1000_clear_vfta - Clears the VLAN filer table
- * @hw: Struct containing variables accessed by shared code
- */
- static void e1000_clear_vfta(struct e1000_hw *hw)
- {
- u32 offset;
- u32 vfta_value = 0;
- u32 vfta_offset = 0;
- u32 vfta_bit_in_reg = 0;
- for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
- /* If the offset we want to clear is the same offset of the
- * manageability VLAN ID, then clear all bits except that of the
- * manageability unit
- */
- vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
- E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
- E1000_WRITE_FLUSH();
- }
- }
- static s32 e1000_id_led_init(struct e1000_hw *hw)
- {
- u32 ledctl;
- const u32 ledctl_mask = 0x000000FF;
- const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
- const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
- u16 eeprom_data, i, temp;
- const u16 led_mask = 0x0F;
- if (hw->mac_type < e1000_82540) {
- /* Nothing to do */
- return E1000_SUCCESS;
- }
- ledctl = er32(LEDCTL);
- hw->ledctl_default = ledctl;
- hw->ledctl_mode1 = hw->ledctl_default;
- hw->ledctl_mode2 = hw->ledctl_default;
- if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
- e_dbg("EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
- if ((eeprom_data == ID_LED_RESERVED_0000) ||
- (eeprom_data == ID_LED_RESERVED_FFFF)) {
- eeprom_data = ID_LED_DEFAULT;
- }
- for (i = 0; i < 4; i++) {
- temp = (eeprom_data >> (i << 2)) & led_mask;
- switch (temp) {
- case ID_LED_ON1_DEF2:
- case ID_LED_ON1_ON2:
- case ID_LED_ON1_OFF2:
- hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
- hw->ledctl_mode1 |= ledctl_on << (i << 3);
- break;
- case ID_LED_OFF1_DEF2:
- case ID_LED_OFF1_ON2:
- case ID_LED_OFF1_OFF2:
- hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
- hw->ledctl_mode1 |= ledctl_off << (i << 3);
- break;
- default:
- /* Do nothing */
- break;
- }
- switch (temp) {
- case ID_LED_DEF1_ON2:
- case ID_LED_ON1_ON2:
- case ID_LED_OFF1_ON2:
- hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
- hw->ledctl_mode2 |= ledctl_on << (i << 3);
- break;
- case ID_LED_DEF1_OFF2:
- case ID_LED_ON1_OFF2:
- case ID_LED_OFF1_OFF2:
- hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
- hw->ledctl_mode2 |= ledctl_off << (i << 3);
- break;
- default:
- /* Do nothing */
- break;
- }
- }
- return E1000_SUCCESS;
- }
- /**
- * e1000_setup_led
- * @hw: Struct containing variables accessed by shared code
- *
- * Prepares SW controlable LED for use and saves the current state of the LED.
- */
- s32 e1000_setup_led(struct e1000_hw *hw)
- {
- u32 ledctl;
- s32 ret_val = E1000_SUCCESS;
- switch (hw->mac_type) {
- case e1000_82542_rev2_0:
- case e1000_82542_rev2_1:
- case e1000_82543:
- case e1000_82544:
- /* No setup necessary */
- break;
- case e1000_82541:
- case e1000_82547:
- case e1000_82541_rev_2:
- case e1000_82547_rev_2:
- /* Turn off PHY Smart Power Down (if enabled) */
- ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
- &hw->phy_spd_default);
- if (ret_val)
- return ret_val;
- ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
- (u16)(hw->phy_spd_default &
- ~IGP01E1000_GMII_SPD));
- if (ret_val)
- return ret_val;
- /* Fall Through */
- default:
- if (hw->media_type == e1000_media_type_fiber) {
- ledctl = er32(LEDCTL);
- /* Save current LEDCTL settings */
- hw->ledctl_default = ledctl;
- /* Turn off LED0 */
- ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
- E1000_LEDCTL_LED0_BLINK |
- E1000_LEDCTL_LED0_MODE_MASK);
- ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
- E1000_LEDCTL_LED0_MODE_SHIFT);
- ew32(LEDCTL, ledctl);
- } else if (hw->media_type == e1000_media_type_copper)
- ew32(LEDCTL, hw->ledctl_mode1);
- break;
- }
- return E1000_SUCCESS;
- }
- /**
- * e1000_cleanup_led - Restores the saved state of the SW controlable LED.
- * @hw: Struct containing variables accessed by shared code
- */
- s32 e1000_cleanup_led(struct e1000_hw *hw)
- {
- s32 ret_val = E1000_SUCCESS;
- switch (hw->mac_type) {
- case e1000_82542_rev2_0:
- case e1000_82542_rev2_1:
- case e1000_82543:
- case e1000_82544:
- /* No cleanup necessary */
- break;
- case e1000_82541:
- case e1000_82547:
- case e1000_82541_rev_2:
- case e1000_82547_rev_2:
- /* Turn on PHY Smart Power Down (if previously enabled) */
- ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
- hw->phy_spd_default);
- if (ret_val)
- return ret_val;
- /* Fall Through */
- default:
- /* Restore LEDCTL settings */
- ew32(LEDCTL, hw->ledctl_default);
- break;
- }
- return E1000_SUCCESS;
- }
- /**
- * e1000_led_on - Turns on the software controllable LED
- * @hw: Struct containing variables accessed by shared code
- */
- s32 e1000_led_on(struct e1000_hw *hw)
- {
- u32 ctrl = er32(CTRL);
- switch (hw->mac_type) {
- case e1000_82542_rev2_0:
- case e1000_82542_rev2_1:
- case e1000_82543:
- /* Set SW Defineable Pin 0 to turn on the LED */
- ctrl |= E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- break;
- case e1000_82544:
- if (hw->media_type == e1000_media_type_fiber) {
- /* Set SW Defineable Pin 0 to turn on the LED */
- ctrl |= E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- } else {
- /* Clear SW Defineable Pin 0 to turn on the LED */
- ctrl &= ~E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- }
- break;
- default:
- if (hw->media_type == e1000_media_type_fiber) {
- /* Clear SW Defineable Pin 0 to turn on the LED */
- ctrl &= ~E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- } else if (hw->media_type == e1000_media_type_copper) {
- ew32(LEDCTL, hw->ledctl_mode2);
- return E1000_SUCCESS;
- }
- break;
- }
- ew32(CTRL, ctrl);
- return E1000_SUCCESS;
- }
- /**
- * e1000_led_off - Turns off the software controllable LED
- * @hw: Struct containing variables accessed by shared code
- */
- s32 e1000_led_off(struct e1000_hw *hw)
- {
- u32 ctrl = er32(CTRL);
- switch (hw->mac_type) {
- case e1000_82542_rev2_0:
- case e1000_82542_rev2_1:
- case e1000_82543:
- /* Clear SW Defineable Pin 0 to turn off the LED */
- ctrl &= ~E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- break;
- case e1000_82544:
- if (hw->media_type == e1000_media_type_fiber) {
- /* Clear SW Defineable Pin 0 to turn off the LED */
- ctrl &= ~E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- } else {
- /* Set SW Defineable Pin 0 to turn off the LED */
- ctrl |= E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- }
- break;
- default:
- if (hw->media_type == e1000_media_type_fiber) {
- /* Set SW Defineable Pin 0 to turn off the LED */
- ctrl |= E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- } else if (hw->media_type == e1000_media_type_copper) {
- ew32(LEDCTL, hw->ledctl_mode1);
- return E1000_SUCCESS;
- }
- break;
- }
- ew32(CTRL, ctrl);
- return E1000_SUCCESS;
- }
- /**
- * e1000_clear_hw_cntrs - Clears all hardware statistics counters.
- * @hw: Struct containing variables accessed by shared code
- */
- static void e1000_clear_hw_cntrs(struct e1000_hw *hw)
- {
- volatile u32 temp;
- temp = er32(CRCERRS);
- temp = er32(SYMERRS);
- temp = er32(MPC);
- temp = er32(SCC);
- temp = er32(ECOL);
- temp = er32(MCC);
- temp = er32(LATECOL);
- temp = er32(COLC);
- temp = er32(DC);
- temp = er32(SEC);
- temp = er32(RLEC);
- temp = er32(XONRXC);
- temp = er32(XONTXC);
- temp = er32(XOFFRXC);
- temp = er32(XOFFTXC);
- temp = er32(FCRUC);
- temp = er32(PRC64);
- temp = er32(PRC127);
- temp = er32(PRC255);
- temp = er32(PRC511);
- temp = er32(PRC1023);
- temp = er32(PRC1522);
- temp = er32(GPRC);
- temp = er32(BPRC);
- temp = er32(MPRC);
- temp = er32(GPTC);
- temp = er32(GORCL);
- temp = er32(GORCH);
- temp = er32(GOTCL);
- temp = er32(GOTCH);
- temp = er32(RNBC);
- temp = er32(RUC);
- temp = er32(RFC);
- temp = er32(ROC);
- temp = er32(RJC);
- temp = er32(TORL);
- temp = er32(TORH);
- temp = er32(TOTL);
- temp = er32(TOTH);
- temp = er32(TPR);
- temp = er32(TPT);
- temp = er32(PTC64);
- temp = er32(PTC127);
- temp = er32(PTC255);
- temp = er32(PTC511);
- temp = er32(PTC1023);
- temp = er32(PTC1522);
- temp = er32(MPTC);
- temp = er32(BPTC);
- if (hw->mac_type < e1000_82543)
- return;
- temp = er32(ALGNERRC);
- temp = er32(RXERRC);
- temp = er32(TNCRS);
- temp = er32(CEXTERR);
- temp = er32(TSCTC);
- temp = er32(TSCTFC);
- if (hw->mac_type <= e1000_82544)
- return;
- temp = er32(MGTPRC);
- temp = er32(MGTPDC);
- temp = er32(MGTPTC);
- }
- /**
- * e1000_reset_adaptive - Resets Adaptive IFS to its default state.
- * @hw: Struct containing variables accessed by shared code
- *
- * Call this after e1000_init_hw. You may override the IFS defaults by setting
- * hw->ifs_params_forced to true. However, you must initialize hw->
- * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
- * before calling this function.
- */
- void e1000_reset_adaptive(struct e1000_hw *hw)
- {
- if (hw->adaptive_ifs) {
- if (!hw->ifs_params_forced) {
- hw->current_ifs_val = 0;
- hw->ifs_min_val = IFS_MIN;
- hw->ifs_max_val = IFS_MAX;
- hw->ifs_step_size = IFS_STEP;
- hw->ifs_ratio = IFS_RATIO;
- }
- hw->in_ifs_mode = false;
- ew32(AIT, 0);
- } else {
- e_dbg("Not in Adaptive IFS mode!\n");
- }
- }
- /**
- * e1000_update_adaptive - update adaptive IFS
- * @hw: Struct containing variables accessed by shared code
- * @tx_packets: Number of transmits since last callback
- * @total_collisions: Number of collisions since last callback
- *
- * Called during the callback/watchdog routine to update IFS value based on
- * the ratio of transmits to collisions.
- */
- void e1000_update_adaptive(struct e1000_hw *hw)
- {
- if (hw->adaptive_ifs) {
- if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
- if (hw->tx_packet_delta > MIN_NUM_XMITS) {
- hw->in_ifs_mode = true;
- if (hw->current_ifs_val < hw->ifs_max_val) {
- if (hw->current_ifs_val == 0)
- hw->current_ifs_val =
- hw->ifs_min_val;
- else
- hw->current_ifs_val +=
- hw->ifs_step_size;
- ew32(AIT, hw->current_ifs_val);
- }
- }
- } else {
- if (hw->in_ifs_mode &&
- (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
- hw->current_ifs_val = 0;
- hw->in_ifs_mode = false;
- ew32(AIT, 0);
- }
- }
- } else {
- e_dbg("Not in Adaptive IFS mode!\n");
- }
- }
- /**
- * e1000_get_bus_info
- * @hw: Struct containing variables accessed by shared code
- *
- * Gets the current PCI bus type, speed, and width of the hardware
- */
- void e1000_get_bus_info(struct e1000_hw *hw)
- {
- u32 status;
- switch (hw->mac_type) {
- case e1000_82542_rev2_0:
- case e1000_82542_rev2_1:
- hw->bus_type = e1000_bus_type_pci;
- hw->bus_speed = e1000_bus_speed_unknown;
- hw->bus_width = e1000_bus_width_unknown;
- break;
- default:
- status = er32(STATUS);
- hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
- e1000_bus_type_pcix : e1000_bus_type_pci;
- if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
- hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
- e1000_bus_speed_66 : e1000_bus_speed_120;
- } else if (hw->bus_type == e1000_bus_type_pci) {
- hw->bus_speed = (status & E1000_STATUS_PCI66) ?
- e1000_bus_speed_66 : e1000_bus_speed_33;
- } else {
- switch (status & E1000_STATUS_PCIX_SPEED) {
- case E1000_STATUS_PCIX_SPEED_66:
- hw->bus_speed = e1000_bus_speed_66;
- break;
- case E1000_STATUS_PCIX_SPEED_100:
- hw->bus_speed = e1000_bus_speed_100;
- break;
- case E1000_STATUS_PCIX_SPEED_133:
- hw->bus_speed = e1000_bus_speed_133;
- break;
- default:
- hw->bus_speed = e1000_bus_speed_reserved;
- break;
- }
- }
- hw->bus_width = (status & E1000_STATUS_BUS64) ?
- e1000_bus_width_64 : e1000_bus_width_32;
- break;
- }
- }
- /**
- * e1000_write_reg_io
- * @hw: Struct containing variables accessed by shared code
- * @offset: offset to write to
- * @value: value to write
- *
- * Writes a value to one of the devices registers using port I/O (as opposed to
- * memory mapped I/O). Only 82544 and newer devices support port I/O.
- */
- static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value)
- {
- unsigned long io_addr = hw->io_base;
- unsigned long io_data = hw->io_base + 4;
- e1000_io_write(hw, io_addr, offset);
- e1000_io_write(hw, io_data, value);
- }
- /**
- * e1000_get_cable_length - Estimates the cable length.
- * @hw: Struct containing variables accessed by shared code
- * @min_length: The estimated minimum length
- * @max_length: The estimated maximum length
- *
- * returns: - E1000_ERR_XXX
- * E1000_SUCCESS
- *
- * This function always returns a ranged length (minimum & maximum).
- * So for M88 phy's, this function interprets the one value returned from the
- * register to the minimum and maximum range.
- * For IGP phy's, the function calculates the range by the AGC registers.
- */
- static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
- u16 *max_length)
- {
- s32 ret_val;
- u16 agc_value = 0;
- u16 i, phy_data;
- u16 cable_length;
- *min_length = *max_length = 0;
- /* Use old method for Phy older than IGP */
- if (hw->phy_type == e1000_phy_m88) {
- ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
- &phy_data);
- if (ret_val)
- return ret_val;
- cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
- M88E1000_PSSR_CABLE_LENGTH_SHIFT;
- /* Convert the enum value to ranged values */
- switch (cable_length) {
- case e1000_cable_length_50:
- *min_length = 0;
- *max_length = e1000_igp_cable_length_50;
- break;
- case e1000_cable_length_50_80:
- *min_length = e1000_igp_cable_length_50;
- *max_length = e1000_igp_cable_length_80;
- break;
- case e1000_cable_length_80_110:
- *min_length = e1000_igp_cable_length_80;
- *max_length = e1000_igp_cable_length_110;
- break;
- case e1000_cable_length_110_140:
- *min_length = e1000_igp_cable_length_110;
- *max_length = e1000_igp_cable_length_140;
- break;
- case e1000_cable_length_140:
- *min_length = e1000_igp_cable_length_140;
- *max_length = e1000_igp_cable_length_170;
- break;
- default:
- return -E1000_ERR_PHY;
- }
- } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */
- u16 cur_agc_value;
- u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
- static const u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
- IGP01E1000_PHY_AGC_A,
- IGP01E1000_PHY_AGC_B,
- IGP01E1000_PHY_AGC_C,
- IGP01E1000_PHY_AGC_D
- };
- /* Read the AGC registers for all channels */
- for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
- ret_val =
- e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
- if (ret_val)
- return ret_val;
- cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
- /* Value bound check. */
- if ((cur_agc_value >=
- IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
- (cur_agc_value == 0))
- return -E1000_ERR_PHY;
- agc_value += cur_agc_value;
- /* Update minimal AGC value. */
- if (min_agc_value > cur_agc_value)
- min_agc_value = cur_agc_value;
- }
- /* Remove the minimal AGC result for length < 50m */
- if (agc_value <
- IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
- agc_value -= min_agc_value;
- /* Get the average length of the remaining 3 channels */
- agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
- } else {
- /* Get the average length of all the 4 channels. */
- agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
- }
- /* Set the range of the calculated length. */
- *min_length = ((e1000_igp_cable_length_table[agc_value] -
- IGP01E1000_AGC_RANGE) > 0) ?
- (e1000_igp_cable_length_table[agc_value] -
- IGP01E1000_AGC_RANGE) : 0;
- *max_length = e1000_igp_cable_length_table[agc_value] +
- IGP01E1000_AGC_RANGE;
- }
- return E1000_SUCCESS;
- }
- /**
- * e1000_check_polarity - Check the cable polarity
- * @hw: Struct containing variables accessed by shared code
- * @polarity: output parameter : 0 - Polarity is not reversed
- * 1 - Polarity is reversed.
- *
- * returns: - E1000_ERR_XXX
- * E1000_SUCCESS
- *
- * For phy's older than IGP, this function simply reads the polarity bit in the
- * Phy Status register. For IGP phy's, this bit is valid only if link speed is
- * 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will
- * return 0. If the link speed is 1000 Mbps the polarity status is in the
- * IGP01E1000_PHY_PCS_INIT_REG.
- */
- static s32 e1000_check_polarity(struct e1000_hw *hw,
- e1000_rev_polarity *polarity)
- {
- s32 ret_val;
- u16 phy_data;
- if (hw->phy_type == e1000_phy_m88) {
- /* return the Polarity bit in the Status register. */
- ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
- &phy_data);
- if (ret_val)
- return ret_val;
- *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >>
- M88E1000_PSSR_REV_POLARITY_SHIFT) ?
- e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
- } else if (hw->phy_type == e1000_phy_igp) {
- /* Read the Status register to check the speed */
- ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
- &phy_data);
- if (ret_val)
- return ret_val;
- /* If speed is 1000 Mbps, must read the
- * IGP01E1000_PHY_PCS_INIT_REG to find the polarity status
- */
- if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
- IGP01E1000_PSSR_SPEED_1000MBPS) {
- /* Read the GIG initialization PCS register (0x00B4) */
- ret_val =
- e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
- &phy_data);
- if (ret_val)
- return ret_val;
- /* Check the polarity bits */
- *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
- e1000_rev_polarity_reversed :
- e1000_rev_polarity_normal;
- } else {
- /* For 10 Mbps, read the polarity bit in the status
- * register. (for 100 Mbps this bit is always 0)
- */
- *polarity =
- (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
- e1000_rev_polarity_reversed :
- e1000_rev_polarity_normal;
- }
- }
- return E1000_SUCCESS;
- }
- /**
- * e1000_check_downshift - Check if Downshift occurred
- * @hw: Struct containing variables accessed by shared code
- * @downshift: output parameter : 0 - No Downshift occurred.
- * 1 - Downshift occurred.
- *
- * returns: - E1000_ERR_XXX
- * E1000_SUCCESS
- *
- * For phy's older than IGP, this function reads the Downshift bit in the Phy
- * Specific Status register. For IGP phy's, it reads the Downgrade bit in the
- * Link Health register. In IGP this bit is latched high, so the driver must
- * read it immediately after link is established.
- */
- static s32 e1000_check_downshift(struct e1000_hw *hw)
- {
- s32 ret_val;
- u16 phy_data;
- if (hw->phy_type == e1000_phy_igp) {
- ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
- &phy_data);
- if (ret_val)
- return ret_val;
- hw->speed_downgraded =
- (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
- } else if (hw->phy_type == e1000_phy_m88) {
- ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
- &phy_data);
- if (ret_val)
- return ret_val;
- hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
- M88E1000_PSSR_DOWNSHIFT_SHIFT;
- }
- return E1000_SUCCESS;
- }
- static const u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
- IGP01E1000_PHY_AGC_PARAM_A,
- IGP01E1000_PHY_AGC_PARAM_B,
- IGP01E1000_PHY_AGC_PARAM_C,
- IGP01E1000_PHY_AGC_PARAM_D
- };
- static s32 e1000_1000Mb_check_cable_length(struct e1000_hw *hw)
- {
- u16 min_length, max_length;
- u16 phy_data, i;
- s32 ret_val;
- ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
- if (ret_val)
- return ret_val;
- if (hw->dsp_config_state != e1000_dsp_config_enabled)
- return 0;
- if (min_length >= e1000_igp_cable_length_50) {
- for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
- ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
- &phy_data);
- if (ret_val)
- return ret_val;
- phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
- ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
- phy_data);
- if (ret_val)
- return ret_val;
- }
- hw->dsp_config_state = e1000_dsp_config_activated;
- } else {
- u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
- u32 idle_errs = 0;
- /* clear previous idle error counts */
- ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
- for (i = 0; i < ffe_idle_err_timeout; i++) {
- udelay(1000);
- ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
- &phy_data);
- if (ret_val)
- return ret_val;
- idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
- if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
- hw->ffe_config_state = e1000_ffe_config_active;
- ret_val = e1000_write_phy_reg(hw,
- IGP01E1000_PHY_DSP_FFE,
- IGP01E1000_PHY_DSP_FFE_CM_CP);
- if (ret_val)
- return ret_val;
- break;
- }
- if (idle_errs)
- ffe_idle_err_timeout =
- FFE_IDLE_ERR_COUNT_TIMEOUT_100;
- }
- }
- return 0;
- }
- /**
- * e1000_config_dsp_after_link_change
- * @hw: Struct containing variables accessed by shared code
- * @link_up: was link up at the time this was called
- *
- * returns: - E1000_ERR_PHY if fail to read/write the PHY
- * E1000_SUCCESS at any other case.
- *
- * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
- * gigabit link is achieved to improve link quality.
- */
- static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up)
- {
- s32 ret_val;
- u16 phy_data, phy_saved_data, speed, duplex, i;
- if (hw->phy_type != e1000_phy_igp)
- return E1000_SUCCESS;
- if (link_up) {
- ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
- if (ret_val) {
- e_dbg("Error getting link speed and duplex\n");
- return ret_val;
- }
- if (speed == SPEED_1000) {
- ret_val = e1000_1000Mb_check_cable_length(hw);
- if (ret_val)
- return ret_val;
- }
- } else {
- if (hw->dsp_config_state == e1000_dsp_config_activated) {
- /* Save off the current value of register 0x2F5B to be
- * restored at the end of the routines.
- */
- ret_val =
- e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
- if (ret_val)
- return ret_val;
- /* Disable the PHY transmitter */
- ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
- if (ret_val)
- return ret_val;
- msleep(20);
- ret_val = e1000_write_phy_reg(hw, 0x0000,
- IGP01E1000_IEEE_FORCE_GIGA);
- if (ret_val)
- return ret_val;
- for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
- ret_val =
- e1000_read_phy_reg(hw, dsp_reg_array[i],
- &phy_data);
- if (ret_val)
- return ret_val;
- phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
- phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
- ret_val =
- e1000_write_phy_reg(hw, dsp_reg_array[i],
- phy_data);
- if (ret_val)
- return ret_val;
- }
- ret_val = e1000_write_phy_reg(hw, 0x0000,
- IGP01E1000_IEEE_RESTART_AUTONEG);
- if (ret_val)
- return ret_val;
- msleep(20);
- /* Now enable the transmitter */
- ret_val =
- e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
- if (ret_val)
- return ret_val;
- hw->dsp_config_state = e1000_dsp_config_enabled;
- }
- if (hw->ffe_config_state == e1000_ffe_config_active) {
- /* Save off the current value of register 0x2F5B to be
- * restored at the end of the routines.
- */
- ret_val =
- e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
- if (ret_val)
- return ret_val;
- /* Disable the PHY transmitter */
- ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
- if (ret_val)
- return ret_val;
- msleep(20);
- ret_val = e1000_write_phy_reg(hw, 0x0000,
- IGP01E1000_IEEE_FORCE_GIGA);
- if (ret_val)
- return ret_val;
- ret_val =
- e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
- IGP01E1000_PHY_DSP_FFE_DEFAULT);
- if (ret_val)
- return ret_val;
- ret_val = e1000_write_phy_reg(hw, 0x0000,
- IGP01E1000_IEEE_RESTART_AUTONEG);
- if (ret_val)
- return ret_val;
- msleep(20);
- /* Now enable the transmitter */
- ret_val =
- e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
- if (ret_val)
- return ret_val;
- hw->ffe_config_state = e1000_ffe_config_enabled;
- }
- }
- return E1000_SUCCESS;
- }
- /**
- * e1000_set_phy_mode - Set PHY to class A mode
- * @hw: Struct containing variables accessed by shared code
- *
- * Assumes the following operations will follow to enable the new class mode.
- * 1. Do a PHY soft reset
- * 2. Restart auto-negotiation or force link.
- */
- static s32 e1000_set_phy_mode(struct e1000_hw *hw)
- {
- s32 ret_val;
- u16 eeprom_data;
- if ((hw->mac_type == e1000_82545_rev_3) &&
- (hw->media_type == e1000_media_type_copper)) {
- ret_val =
- e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1,
- &eeprom_data);
- if (ret_val)
- return ret_val;
- if ((eeprom_data != EEPROM_RESERVED_WORD) &&
- (eeprom_data & EEPROM_PHY_CLASS_A)) {
- ret_val =
- e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT,
- 0x000B);
- if (ret_val)
- return ret_val;
- ret_val =
- e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL,
- 0x8104);
- if (ret_val)
- return ret_val;
- hw->phy_reset_disable = false;
- }
- }
- return E1000_SUCCESS;
- }
- /**
- * e1000_set_d3_lplu_state - set d3 link power state
- * @hw: Struct containing variables accessed by shared code
- * @active: true to enable lplu false to disable lplu.
- *
- * This function sets the lplu state according to the active flag. When
- * activating lplu this function also disables smart speed and vise versa.
- * lplu will not be activated unless the device autonegotiation advertisement
- * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
- *
- * returns: - E1000_ERR_PHY if fail to read/write the PHY
- * E1000_SUCCESS at any other case.
- */
- static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
- {
- s32 ret_val;
- u16 phy_data;
- if (hw->phy_type != e1000_phy_igp)
- return E1000_SUCCESS;
- /* During driver activity LPLU should not be used or it will attain link
- * from the lowest speeds starting from 10Mbps. The capability is used
- * for Dx transitions and states
- */
- if (hw->mac_type == e1000_82541_rev_2 ||
- hw->mac_type == e1000_82547_rev_2) {
- ret_val =
- e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
- if (ret_val)
- return ret_val;
- }
- if (!active) {
- if (hw->mac_type == e1000_82541_rev_2 ||
- hw->mac_type == e1000_82547_rev_2) {
- phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
- ret_val =
- e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
- phy_data);
- if (ret_val)
- return ret_val;
- }
- /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
- * during Dx states where the power conservation is most
- * important. During driver activity we should enable
- * SmartSpeed, so performance is maintained.
- */
- if (hw->smart_speed == e1000_smart_speed_on) {
- ret_val =
- e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- &phy_data);
- if (ret_val)
- return ret_val;
- phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
- ret_val =
- e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- phy_data);
- if (ret_val)
- return ret_val;
- } else if (hw->smart_speed == e1000_smart_speed_off) {
- ret_val =
- e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- &phy_data);
- if (ret_val)
- return ret_val;
- phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val =
- e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- phy_data);
- if (ret_val)
- return ret_val;
- }
- } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
- (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
- (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
- if (hw->mac_type == e1000_82541_rev_2 ||
- hw->mac_type == e1000_82547_rev_2) {
- phy_data |= IGP01E1000_GMII_FLEX_SPD;
- ret_val =
- e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
- phy_data);
- if (ret_val)
- return ret_val;
- }
- /* When LPLU is enabled we should disable SmartSpeed */
- ret_val =
- e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- &phy_data);
- if (ret_val)
- return ret_val;
- phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val =
- e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- phy_data);
- if (ret_val)
- return ret_val;
- }
- return E1000_SUCCESS;
- }
- /**
- * e1000_set_vco_speed
- * @hw: Struct containing variables accessed by shared code
- *
- * Change VCO speed register to improve Bit Error Rate performance of SERDES.
- */
- static s32 e1000_set_vco_speed(struct e1000_hw *hw)
- {
- s32 ret_val;
- u16 default_page = 0;
- u16 phy_data;
- switch (hw->mac_type) {
- case e1000_82545_rev_3:
- case e1000_82546_rev_3:
- break;
- default:
- return E1000_SUCCESS;
- }
- /* Set PHY register 30, page 5, bit 8 to 0 */
- ret_val =
- e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
- if (ret_val)
- return ret_val;
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
- if (ret_val)
- return ret_val;
- ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
- if (ret_val)
- return ret_val;
- phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
- if (ret_val)
- return ret_val;
- /* Set PHY register 30, page 4, bit 11 to 1 */
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
- if (ret_val)
- return ret_val;
- ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
- if (ret_val)
- return ret_val;
- phy_data |= M88E1000_PHY_VCO_REG_BIT11;
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
- if (ret_val)
- return ret_val;
- ret_val =
- e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
- if (ret_val)
- return ret_val;
- return E1000_SUCCESS;
- }
- /**
- * e1000_enable_mng_pass_thru - check for bmc pass through
- * @hw: Struct containing variables accessed by shared code
- *
- * Verifies the hardware needs to allow ARPs to be processed by the host
- * returns: - true/false
- */
- u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw)
- {
- u32 manc;
- if (hw->asf_firmware_present) {
- manc = er32(MANC);
- if (!(manc & E1000_MANC_RCV_TCO_EN) ||
- !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
- return false;
- if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
- return true;
- }
- return false;
- }
- static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw)
- {
- s32 ret_val;
- u16 mii_status_reg;
- u16 i;
- /* Polarity reversal workaround for forced 10F/10H links. */
- /* Disable the transmitter on the PHY */
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
- if (ret_val)
- return ret_val;
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
- if (ret_val)
- return ret_val;
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
- if (ret_val)
- return ret_val;
- /* This loop will early-out if the NO link condition has been met. */
- for (i = PHY_FORCE_TIME; i > 0; i--) {
- /* Read the MII Status Register and wait for Link Status bit
- * to be clear.
- */
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
- if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0)
- break;
- msleep(100);
- }
- /* Recommended delay time after link has been lost */
- msleep(1000);
- /* Now we will re-enable th transmitter on the PHY */
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
- if (ret_val)
- return ret_val;
- msleep(50);
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
- if (ret_val)
- return ret_val;
- msleep(50);
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
- if (ret_val)
- return ret_val;
- msleep(50);
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
- if (ret_val)
- return ret_val;
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
- if (ret_val)
- return ret_val;
- /* This loop will early-out if the link condition has been met. */
- for (i = PHY_FORCE_TIME; i > 0; i--) {
- /* Read the MII Status Register and wait for Link Status bit
- * to be set.
- */
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
- if (mii_status_reg & MII_SR_LINK_STATUS)
- break;
- msleep(100);
- }
- return E1000_SUCCESS;
- }
- /**
- * e1000_get_auto_rd_done
- * @hw: Struct containing variables accessed by shared code
- *
- * Check for EEPROM Auto Read bit done.
- * returns: - E1000_ERR_RESET if fail to reset MAC
- * E1000_SUCCESS at any other case.
- */
- static s32 e1000_get_auto_rd_done(struct e1000_hw *hw)
- {
- msleep(5);
- return E1000_SUCCESS;
- }
- /**
- * e1000_get_phy_cfg_done
- * @hw: Struct containing variables accessed by shared code
- *
- * Checks if the PHY configuration is done
- * returns: - E1000_ERR_RESET if fail to reset MAC
- * E1000_SUCCESS at any other case.
- */
- static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
- {
- msleep(10);
- return E1000_SUCCESS;
- }
|