s3c24xx-dma.c 38 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431
  1. /*
  2. * S3C24XX DMA handling
  3. *
  4. * Copyright (c) 2013 Heiko Stuebner <heiko@sntech.de>
  5. *
  6. * based on amba-pl08x.c
  7. *
  8. * Copyright (c) 2006 ARM Ltd.
  9. * Copyright (c) 2010 ST-Ericsson SA
  10. *
  11. * Author: Peter Pearse <peter.pearse@arm.com>
  12. * Author: Linus Walleij <linus.walleij@stericsson.com>
  13. *
  14. * This program is free software; you can redistribute it and/or modify it
  15. * under the terms of the GNU General Public License as published by the Free
  16. * Software Foundation; either version 2 of the License, or (at your option)
  17. * any later version.
  18. *
  19. * The DMA controllers in S3C24XX SoCs have a varying number of DMA signals
  20. * that can be routed to any of the 4 to 8 hardware-channels.
  21. *
  22. * Therefore on these DMA controllers the number of channels
  23. * and the number of incoming DMA signals are two totally different things.
  24. * It is usually not possible to theoretically handle all physical signals,
  25. * so a multiplexing scheme with possible denial of use is necessary.
  26. *
  27. * Open items:
  28. * - bursts
  29. */
  30. #include <linux/platform_device.h>
  31. #include <linux/types.h>
  32. #include <linux/dmaengine.h>
  33. #include <linux/dma-mapping.h>
  34. #include <linux/interrupt.h>
  35. #include <linux/clk.h>
  36. #include <linux/module.h>
  37. #include <linux/slab.h>
  38. #include <linux/platform_data/dma-s3c24xx.h>
  39. #include "dmaengine.h"
  40. #include "virt-dma.h"
  41. #define MAX_DMA_CHANNELS 8
  42. #define S3C24XX_DISRC 0x00
  43. #define S3C24XX_DISRCC 0x04
  44. #define S3C24XX_DISRCC_INC_INCREMENT 0
  45. #define S3C24XX_DISRCC_INC_FIXED BIT(0)
  46. #define S3C24XX_DISRCC_LOC_AHB 0
  47. #define S3C24XX_DISRCC_LOC_APB BIT(1)
  48. #define S3C24XX_DIDST 0x08
  49. #define S3C24XX_DIDSTC 0x0c
  50. #define S3C24XX_DIDSTC_INC_INCREMENT 0
  51. #define S3C24XX_DIDSTC_INC_FIXED BIT(0)
  52. #define S3C24XX_DIDSTC_LOC_AHB 0
  53. #define S3C24XX_DIDSTC_LOC_APB BIT(1)
  54. #define S3C24XX_DIDSTC_INT_TC0 0
  55. #define S3C24XX_DIDSTC_INT_RELOAD BIT(2)
  56. #define S3C24XX_DCON 0x10
  57. #define S3C24XX_DCON_TC_MASK 0xfffff
  58. #define S3C24XX_DCON_DSZ_BYTE (0 << 20)
  59. #define S3C24XX_DCON_DSZ_HALFWORD (1 << 20)
  60. #define S3C24XX_DCON_DSZ_WORD (2 << 20)
  61. #define S3C24XX_DCON_DSZ_MASK (3 << 20)
  62. #define S3C24XX_DCON_DSZ_SHIFT 20
  63. #define S3C24XX_DCON_AUTORELOAD 0
  64. #define S3C24XX_DCON_NORELOAD BIT(22)
  65. #define S3C24XX_DCON_HWTRIG BIT(23)
  66. #define S3C24XX_DCON_HWSRC_SHIFT 24
  67. #define S3C24XX_DCON_SERV_SINGLE 0
  68. #define S3C24XX_DCON_SERV_WHOLE BIT(27)
  69. #define S3C24XX_DCON_TSZ_UNIT 0
  70. #define S3C24XX_DCON_TSZ_BURST4 BIT(28)
  71. #define S3C24XX_DCON_INT BIT(29)
  72. #define S3C24XX_DCON_SYNC_PCLK 0
  73. #define S3C24XX_DCON_SYNC_HCLK BIT(30)
  74. #define S3C24XX_DCON_DEMAND 0
  75. #define S3C24XX_DCON_HANDSHAKE BIT(31)
  76. #define S3C24XX_DSTAT 0x14
  77. #define S3C24XX_DSTAT_STAT_BUSY BIT(20)
  78. #define S3C24XX_DSTAT_CURRTC_MASK 0xfffff
  79. #define S3C24XX_DMASKTRIG 0x20
  80. #define S3C24XX_DMASKTRIG_SWTRIG BIT(0)
  81. #define S3C24XX_DMASKTRIG_ON BIT(1)
  82. #define S3C24XX_DMASKTRIG_STOP BIT(2)
  83. #define S3C24XX_DMAREQSEL 0x24
  84. #define S3C24XX_DMAREQSEL_HW BIT(0)
  85. /*
  86. * S3C2410, S3C2440 and S3C2442 SoCs cannot select any physical channel
  87. * for a DMA source. Instead only specific channels are valid.
  88. * All of these SoCs have 4 physical channels and the number of request
  89. * source bits is 3. Additionally we also need 1 bit to mark the channel
  90. * as valid.
  91. * Therefore we separate the chansel element of the channel data into 4
  92. * parts of 4 bits each, to hold the information if the channel is valid
  93. * and the hw request source to use.
  94. *
  95. * Example:
  96. * SDI is valid on channels 0, 2 and 3 - with varying hw request sources.
  97. * For it the chansel field would look like
  98. *
  99. * ((BIT(3) | 1) << 3 * 4) | // channel 3, with request source 1
  100. * ((BIT(3) | 2) << 2 * 4) | // channel 2, with request source 2
  101. * ((BIT(3) | 2) << 0 * 4) // channel 0, with request source 2
  102. */
  103. #define S3C24XX_CHANSEL_WIDTH 4
  104. #define S3C24XX_CHANSEL_VALID BIT(3)
  105. #define S3C24XX_CHANSEL_REQ_MASK 7
  106. /*
  107. * struct soc_data - vendor-specific config parameters for individual SoCs
  108. * @stride: spacing between the registers of each channel
  109. * @has_reqsel: does the controller use the newer requestselection mechanism
  110. * @has_clocks: are controllable dma-clocks present
  111. */
  112. struct soc_data {
  113. int stride;
  114. bool has_reqsel;
  115. bool has_clocks;
  116. };
  117. /*
  118. * enum s3c24xx_dma_chan_state - holds the virtual channel states
  119. * @S3C24XX_DMA_CHAN_IDLE: the channel is idle
  120. * @S3C24XX_DMA_CHAN_RUNNING: the channel has allocated a physical transport
  121. * channel and is running a transfer on it
  122. * @S3C24XX_DMA_CHAN_WAITING: the channel is waiting for a physical transport
  123. * channel to become available (only pertains to memcpy channels)
  124. */
  125. enum s3c24xx_dma_chan_state {
  126. S3C24XX_DMA_CHAN_IDLE,
  127. S3C24XX_DMA_CHAN_RUNNING,
  128. S3C24XX_DMA_CHAN_WAITING,
  129. };
  130. /*
  131. * struct s3c24xx_sg - structure containing data per sg
  132. * @src_addr: src address of sg
  133. * @dst_addr: dst address of sg
  134. * @len: transfer len in bytes
  135. * @node: node for txd's dsg_list
  136. */
  137. struct s3c24xx_sg {
  138. dma_addr_t src_addr;
  139. dma_addr_t dst_addr;
  140. size_t len;
  141. struct list_head node;
  142. };
  143. /*
  144. * struct s3c24xx_txd - wrapper for struct dma_async_tx_descriptor
  145. * @vd: virtual DMA descriptor
  146. * @dsg_list: list of children sg's
  147. * @at: sg currently being transfered
  148. * @width: transfer width
  149. * @disrcc: value for source control register
  150. * @didstc: value for destination control register
  151. * @dcon: base value for dcon register
  152. * @cyclic: indicate cyclic transfer
  153. */
  154. struct s3c24xx_txd {
  155. struct virt_dma_desc vd;
  156. struct list_head dsg_list;
  157. struct list_head *at;
  158. u8 width;
  159. u32 disrcc;
  160. u32 didstc;
  161. u32 dcon;
  162. bool cyclic;
  163. };
  164. struct s3c24xx_dma_chan;
  165. /*
  166. * struct s3c24xx_dma_phy - holder for the physical channels
  167. * @id: physical index to this channel
  168. * @valid: does the channel have all required elements
  169. * @base: virtual memory base (remapped) for the this channel
  170. * @irq: interrupt for this channel
  171. * @clk: clock for this channel
  172. * @lock: a lock to use when altering an instance of this struct
  173. * @serving: virtual channel currently being served by this physicalchannel
  174. * @host: a pointer to the host (internal use)
  175. */
  176. struct s3c24xx_dma_phy {
  177. unsigned int id;
  178. bool valid;
  179. void __iomem *base;
  180. int irq;
  181. struct clk *clk;
  182. spinlock_t lock;
  183. struct s3c24xx_dma_chan *serving;
  184. struct s3c24xx_dma_engine *host;
  185. };
  186. /*
  187. * struct s3c24xx_dma_chan - this structure wraps a DMA ENGINE channel
  188. * @id: the id of the channel
  189. * @name: name of the channel
  190. * @vc: wrappped virtual channel
  191. * @phy: the physical channel utilized by this channel, if there is one
  192. * @runtime_addr: address for RX/TX according to the runtime config
  193. * @at: active transaction on this channel
  194. * @lock: a lock for this channel data
  195. * @host: a pointer to the host (internal use)
  196. * @state: whether the channel is idle, running etc
  197. * @slave: whether this channel is a device (slave) or for memcpy
  198. */
  199. struct s3c24xx_dma_chan {
  200. int id;
  201. const char *name;
  202. struct virt_dma_chan vc;
  203. struct s3c24xx_dma_phy *phy;
  204. struct dma_slave_config cfg;
  205. struct s3c24xx_txd *at;
  206. struct s3c24xx_dma_engine *host;
  207. enum s3c24xx_dma_chan_state state;
  208. bool slave;
  209. };
  210. /*
  211. * struct s3c24xx_dma_engine - the local state holder for the S3C24XX
  212. * @pdev: the corresponding platform device
  213. * @pdata: platform data passed in from the platform/machine
  214. * @base: virtual memory base (remapped)
  215. * @slave: slave engine for this instance
  216. * @memcpy: memcpy engine for this instance
  217. * @phy_chans: array of data for the physical channels
  218. */
  219. struct s3c24xx_dma_engine {
  220. struct platform_device *pdev;
  221. const struct s3c24xx_dma_platdata *pdata;
  222. struct soc_data *sdata;
  223. void __iomem *base;
  224. struct dma_device slave;
  225. struct dma_device memcpy;
  226. struct s3c24xx_dma_phy *phy_chans;
  227. };
  228. /*
  229. * Physical channel handling
  230. */
  231. /*
  232. * Check whether a certain channel is busy or not.
  233. */
  234. static int s3c24xx_dma_phy_busy(struct s3c24xx_dma_phy *phy)
  235. {
  236. unsigned int val = readl(phy->base + S3C24XX_DSTAT);
  237. return val & S3C24XX_DSTAT_STAT_BUSY;
  238. }
  239. static bool s3c24xx_dma_phy_valid(struct s3c24xx_dma_chan *s3cchan,
  240. struct s3c24xx_dma_phy *phy)
  241. {
  242. struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
  243. const struct s3c24xx_dma_platdata *pdata = s3cdma->pdata;
  244. struct s3c24xx_dma_channel *cdata = &pdata->channels[s3cchan->id];
  245. int phyvalid;
  246. /* every phy is valid for memcopy channels */
  247. if (!s3cchan->slave)
  248. return true;
  249. /* On newer variants all phys can be used for all virtual channels */
  250. if (s3cdma->sdata->has_reqsel)
  251. return true;
  252. phyvalid = (cdata->chansel >> (phy->id * S3C24XX_CHANSEL_WIDTH));
  253. return (phyvalid & S3C24XX_CHANSEL_VALID) ? true : false;
  254. }
  255. /*
  256. * Allocate a physical channel for a virtual channel
  257. *
  258. * Try to locate a physical channel to be used for this transfer. If all
  259. * are taken return NULL and the requester will have to cope by using
  260. * some fallback PIO mode or retrying later.
  261. */
  262. static
  263. struct s3c24xx_dma_phy *s3c24xx_dma_get_phy(struct s3c24xx_dma_chan *s3cchan)
  264. {
  265. struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
  266. const struct s3c24xx_dma_platdata *pdata = s3cdma->pdata;
  267. struct s3c24xx_dma_channel *cdata;
  268. struct s3c24xx_dma_phy *phy = NULL;
  269. unsigned long flags;
  270. int i;
  271. int ret;
  272. if (s3cchan->slave)
  273. cdata = &pdata->channels[s3cchan->id];
  274. for (i = 0; i < s3cdma->pdata->num_phy_channels; i++) {
  275. phy = &s3cdma->phy_chans[i];
  276. if (!phy->valid)
  277. continue;
  278. if (!s3c24xx_dma_phy_valid(s3cchan, phy))
  279. continue;
  280. spin_lock_irqsave(&phy->lock, flags);
  281. if (!phy->serving) {
  282. phy->serving = s3cchan;
  283. spin_unlock_irqrestore(&phy->lock, flags);
  284. break;
  285. }
  286. spin_unlock_irqrestore(&phy->lock, flags);
  287. }
  288. /* No physical channel available, cope with it */
  289. if (i == s3cdma->pdata->num_phy_channels) {
  290. dev_warn(&s3cdma->pdev->dev, "no phy channel available\n");
  291. return NULL;
  292. }
  293. /* start the phy clock */
  294. if (s3cdma->sdata->has_clocks) {
  295. ret = clk_enable(phy->clk);
  296. if (ret) {
  297. dev_err(&s3cdma->pdev->dev, "could not enable clock for channel %d, err %d\n",
  298. phy->id, ret);
  299. phy->serving = NULL;
  300. return NULL;
  301. }
  302. }
  303. return phy;
  304. }
  305. /*
  306. * Mark the physical channel as free.
  307. *
  308. * This drops the link between the physical and virtual channel.
  309. */
  310. static inline void s3c24xx_dma_put_phy(struct s3c24xx_dma_phy *phy)
  311. {
  312. struct s3c24xx_dma_engine *s3cdma = phy->host;
  313. if (s3cdma->sdata->has_clocks)
  314. clk_disable(phy->clk);
  315. phy->serving = NULL;
  316. }
  317. /*
  318. * Stops the channel by writing the stop bit.
  319. * This should not be used for an on-going transfer, but as a method of
  320. * shutting down a channel (eg, when it's no longer used) or terminating a
  321. * transfer.
  322. */
  323. static void s3c24xx_dma_terminate_phy(struct s3c24xx_dma_phy *phy)
  324. {
  325. writel(S3C24XX_DMASKTRIG_STOP, phy->base + S3C24XX_DMASKTRIG);
  326. }
  327. /*
  328. * Virtual channel handling
  329. */
  330. static inline
  331. struct s3c24xx_dma_chan *to_s3c24xx_dma_chan(struct dma_chan *chan)
  332. {
  333. return container_of(chan, struct s3c24xx_dma_chan, vc.chan);
  334. }
  335. static u32 s3c24xx_dma_getbytes_chan(struct s3c24xx_dma_chan *s3cchan)
  336. {
  337. struct s3c24xx_dma_phy *phy = s3cchan->phy;
  338. struct s3c24xx_txd *txd = s3cchan->at;
  339. u32 tc = readl(phy->base + S3C24XX_DSTAT) & S3C24XX_DSTAT_CURRTC_MASK;
  340. return tc * txd->width;
  341. }
  342. static int s3c24xx_dma_set_runtime_config(struct dma_chan *chan,
  343. struct dma_slave_config *config)
  344. {
  345. struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
  346. unsigned long flags;
  347. int ret = 0;
  348. /* Reject definitely invalid configurations */
  349. if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
  350. config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
  351. return -EINVAL;
  352. spin_lock_irqsave(&s3cchan->vc.lock, flags);
  353. if (!s3cchan->slave) {
  354. ret = -EINVAL;
  355. goto out;
  356. }
  357. s3cchan->cfg = *config;
  358. out:
  359. spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
  360. return ret;
  361. }
  362. /*
  363. * Transfer handling
  364. */
  365. static inline
  366. struct s3c24xx_txd *to_s3c24xx_txd(struct dma_async_tx_descriptor *tx)
  367. {
  368. return container_of(tx, struct s3c24xx_txd, vd.tx);
  369. }
  370. static struct s3c24xx_txd *s3c24xx_dma_get_txd(void)
  371. {
  372. struct s3c24xx_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
  373. if (txd) {
  374. INIT_LIST_HEAD(&txd->dsg_list);
  375. txd->dcon = S3C24XX_DCON_INT | S3C24XX_DCON_NORELOAD;
  376. }
  377. return txd;
  378. }
  379. static void s3c24xx_dma_free_txd(struct s3c24xx_txd *txd)
  380. {
  381. struct s3c24xx_sg *dsg, *_dsg;
  382. list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
  383. list_del(&dsg->node);
  384. kfree(dsg);
  385. }
  386. kfree(txd);
  387. }
  388. static void s3c24xx_dma_start_next_sg(struct s3c24xx_dma_chan *s3cchan,
  389. struct s3c24xx_txd *txd)
  390. {
  391. struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
  392. struct s3c24xx_dma_phy *phy = s3cchan->phy;
  393. const struct s3c24xx_dma_platdata *pdata = s3cdma->pdata;
  394. struct s3c24xx_sg *dsg = list_entry(txd->at, struct s3c24xx_sg, node);
  395. u32 dcon = txd->dcon;
  396. u32 val;
  397. /* transfer-size and -count from len and width */
  398. switch (txd->width) {
  399. case 1:
  400. dcon |= S3C24XX_DCON_DSZ_BYTE | dsg->len;
  401. break;
  402. case 2:
  403. dcon |= S3C24XX_DCON_DSZ_HALFWORD | (dsg->len / 2);
  404. break;
  405. case 4:
  406. dcon |= S3C24XX_DCON_DSZ_WORD | (dsg->len / 4);
  407. break;
  408. }
  409. if (s3cchan->slave) {
  410. struct s3c24xx_dma_channel *cdata =
  411. &pdata->channels[s3cchan->id];
  412. if (s3cdma->sdata->has_reqsel) {
  413. writel_relaxed((cdata->chansel << 1) |
  414. S3C24XX_DMAREQSEL_HW,
  415. phy->base + S3C24XX_DMAREQSEL);
  416. } else {
  417. int csel = cdata->chansel >> (phy->id *
  418. S3C24XX_CHANSEL_WIDTH);
  419. csel &= S3C24XX_CHANSEL_REQ_MASK;
  420. dcon |= csel << S3C24XX_DCON_HWSRC_SHIFT;
  421. dcon |= S3C24XX_DCON_HWTRIG;
  422. }
  423. } else {
  424. if (s3cdma->sdata->has_reqsel)
  425. writel_relaxed(0, phy->base + S3C24XX_DMAREQSEL);
  426. }
  427. writel_relaxed(dsg->src_addr, phy->base + S3C24XX_DISRC);
  428. writel_relaxed(txd->disrcc, phy->base + S3C24XX_DISRCC);
  429. writel_relaxed(dsg->dst_addr, phy->base + S3C24XX_DIDST);
  430. writel_relaxed(txd->didstc, phy->base + S3C24XX_DIDSTC);
  431. writel_relaxed(dcon, phy->base + S3C24XX_DCON);
  432. val = readl_relaxed(phy->base + S3C24XX_DMASKTRIG);
  433. val &= ~S3C24XX_DMASKTRIG_STOP;
  434. val |= S3C24XX_DMASKTRIG_ON;
  435. /* trigger the dma operation for memcpy transfers */
  436. if (!s3cchan->slave)
  437. val |= S3C24XX_DMASKTRIG_SWTRIG;
  438. writel(val, phy->base + S3C24XX_DMASKTRIG);
  439. }
  440. /*
  441. * Set the initial DMA register values and start first sg.
  442. */
  443. static void s3c24xx_dma_start_next_txd(struct s3c24xx_dma_chan *s3cchan)
  444. {
  445. struct s3c24xx_dma_phy *phy = s3cchan->phy;
  446. struct virt_dma_desc *vd = vchan_next_desc(&s3cchan->vc);
  447. struct s3c24xx_txd *txd = to_s3c24xx_txd(&vd->tx);
  448. list_del(&txd->vd.node);
  449. s3cchan->at = txd;
  450. /* Wait for channel inactive */
  451. while (s3c24xx_dma_phy_busy(phy))
  452. cpu_relax();
  453. /* point to the first element of the sg list */
  454. txd->at = txd->dsg_list.next;
  455. s3c24xx_dma_start_next_sg(s3cchan, txd);
  456. }
  457. static void s3c24xx_dma_free_txd_list(struct s3c24xx_dma_engine *s3cdma,
  458. struct s3c24xx_dma_chan *s3cchan)
  459. {
  460. LIST_HEAD(head);
  461. vchan_get_all_descriptors(&s3cchan->vc, &head);
  462. vchan_dma_desc_free_list(&s3cchan->vc, &head);
  463. }
  464. /*
  465. * Try to allocate a physical channel. When successful, assign it to
  466. * this virtual channel, and initiate the next descriptor. The
  467. * virtual channel lock must be held at this point.
  468. */
  469. static void s3c24xx_dma_phy_alloc_and_start(struct s3c24xx_dma_chan *s3cchan)
  470. {
  471. struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
  472. struct s3c24xx_dma_phy *phy;
  473. phy = s3c24xx_dma_get_phy(s3cchan);
  474. if (!phy) {
  475. dev_dbg(&s3cdma->pdev->dev, "no physical channel available for xfer on %s\n",
  476. s3cchan->name);
  477. s3cchan->state = S3C24XX_DMA_CHAN_WAITING;
  478. return;
  479. }
  480. dev_dbg(&s3cdma->pdev->dev, "allocated physical channel %d for xfer on %s\n",
  481. phy->id, s3cchan->name);
  482. s3cchan->phy = phy;
  483. s3cchan->state = S3C24XX_DMA_CHAN_RUNNING;
  484. s3c24xx_dma_start_next_txd(s3cchan);
  485. }
  486. static void s3c24xx_dma_phy_reassign_start(struct s3c24xx_dma_phy *phy,
  487. struct s3c24xx_dma_chan *s3cchan)
  488. {
  489. struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
  490. dev_dbg(&s3cdma->pdev->dev, "reassigned physical channel %d for xfer on %s\n",
  491. phy->id, s3cchan->name);
  492. /*
  493. * We do this without taking the lock; we're really only concerned
  494. * about whether this pointer is NULL or not, and we're guaranteed
  495. * that this will only be called when it _already_ is non-NULL.
  496. */
  497. phy->serving = s3cchan;
  498. s3cchan->phy = phy;
  499. s3cchan->state = S3C24XX_DMA_CHAN_RUNNING;
  500. s3c24xx_dma_start_next_txd(s3cchan);
  501. }
  502. /*
  503. * Free a physical DMA channel, potentially reallocating it to another
  504. * virtual channel if we have any pending.
  505. */
  506. static void s3c24xx_dma_phy_free(struct s3c24xx_dma_chan *s3cchan)
  507. {
  508. struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
  509. struct s3c24xx_dma_chan *p, *next;
  510. retry:
  511. next = NULL;
  512. /* Find a waiting virtual channel for the next transfer. */
  513. list_for_each_entry(p, &s3cdma->memcpy.channels, vc.chan.device_node)
  514. if (p->state == S3C24XX_DMA_CHAN_WAITING) {
  515. next = p;
  516. break;
  517. }
  518. if (!next) {
  519. list_for_each_entry(p, &s3cdma->slave.channels,
  520. vc.chan.device_node)
  521. if (p->state == S3C24XX_DMA_CHAN_WAITING &&
  522. s3c24xx_dma_phy_valid(p, s3cchan->phy)) {
  523. next = p;
  524. break;
  525. }
  526. }
  527. /* Ensure that the physical channel is stopped */
  528. s3c24xx_dma_terminate_phy(s3cchan->phy);
  529. if (next) {
  530. bool success;
  531. /*
  532. * Eww. We know this isn't going to deadlock
  533. * but lockdep probably doesn't.
  534. */
  535. spin_lock(&next->vc.lock);
  536. /* Re-check the state now that we have the lock */
  537. success = next->state == S3C24XX_DMA_CHAN_WAITING;
  538. if (success)
  539. s3c24xx_dma_phy_reassign_start(s3cchan->phy, next);
  540. spin_unlock(&next->vc.lock);
  541. /* If the state changed, try to find another channel */
  542. if (!success)
  543. goto retry;
  544. } else {
  545. /* No more jobs, so free up the physical channel */
  546. s3c24xx_dma_put_phy(s3cchan->phy);
  547. }
  548. s3cchan->phy = NULL;
  549. s3cchan->state = S3C24XX_DMA_CHAN_IDLE;
  550. }
  551. static void s3c24xx_dma_desc_free(struct virt_dma_desc *vd)
  552. {
  553. struct s3c24xx_txd *txd = to_s3c24xx_txd(&vd->tx);
  554. struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(vd->tx.chan);
  555. if (!s3cchan->slave)
  556. dma_descriptor_unmap(&vd->tx);
  557. s3c24xx_dma_free_txd(txd);
  558. }
  559. static irqreturn_t s3c24xx_dma_irq(int irq, void *data)
  560. {
  561. struct s3c24xx_dma_phy *phy = data;
  562. struct s3c24xx_dma_chan *s3cchan = phy->serving;
  563. struct s3c24xx_txd *txd;
  564. dev_dbg(&phy->host->pdev->dev, "interrupt on channel %d\n", phy->id);
  565. /*
  566. * Interrupts happen to notify the completion of a transfer and the
  567. * channel should have moved into its stop state already on its own.
  568. * Therefore interrupts on channels not bound to a virtual channel
  569. * should never happen. Nevertheless send a terminate command to the
  570. * channel if the unlikely case happens.
  571. */
  572. if (unlikely(!s3cchan)) {
  573. dev_err(&phy->host->pdev->dev, "interrupt on unused channel %d\n",
  574. phy->id);
  575. s3c24xx_dma_terminate_phy(phy);
  576. return IRQ_HANDLED;
  577. }
  578. spin_lock(&s3cchan->vc.lock);
  579. txd = s3cchan->at;
  580. if (txd) {
  581. /* when more sg's are in this txd, start the next one */
  582. if (!list_is_last(txd->at, &txd->dsg_list)) {
  583. txd->at = txd->at->next;
  584. if (txd->cyclic)
  585. vchan_cyclic_callback(&txd->vd);
  586. s3c24xx_dma_start_next_sg(s3cchan, txd);
  587. } else if (!txd->cyclic) {
  588. s3cchan->at = NULL;
  589. vchan_cookie_complete(&txd->vd);
  590. /*
  591. * And start the next descriptor (if any),
  592. * otherwise free this channel.
  593. */
  594. if (vchan_next_desc(&s3cchan->vc))
  595. s3c24xx_dma_start_next_txd(s3cchan);
  596. else
  597. s3c24xx_dma_phy_free(s3cchan);
  598. } else {
  599. vchan_cyclic_callback(&txd->vd);
  600. /* Cyclic: reset at beginning */
  601. txd->at = txd->dsg_list.next;
  602. s3c24xx_dma_start_next_sg(s3cchan, txd);
  603. }
  604. }
  605. spin_unlock(&s3cchan->vc.lock);
  606. return IRQ_HANDLED;
  607. }
  608. /*
  609. * The DMA ENGINE API
  610. */
  611. static int s3c24xx_dma_terminate_all(struct dma_chan *chan)
  612. {
  613. struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
  614. struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
  615. unsigned long flags;
  616. int ret = 0;
  617. spin_lock_irqsave(&s3cchan->vc.lock, flags);
  618. if (!s3cchan->phy && !s3cchan->at) {
  619. dev_err(&s3cdma->pdev->dev, "trying to terminate already stopped channel %d\n",
  620. s3cchan->id);
  621. ret = -EINVAL;
  622. goto unlock;
  623. }
  624. s3cchan->state = S3C24XX_DMA_CHAN_IDLE;
  625. /* Mark physical channel as free */
  626. if (s3cchan->phy)
  627. s3c24xx_dma_phy_free(s3cchan);
  628. /* Dequeue current job */
  629. if (s3cchan->at) {
  630. s3c24xx_dma_desc_free(&s3cchan->at->vd);
  631. s3cchan->at = NULL;
  632. }
  633. /* Dequeue jobs not yet fired as well */
  634. s3c24xx_dma_free_txd_list(s3cdma, s3cchan);
  635. unlock:
  636. spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
  637. return ret;
  638. }
  639. static void s3c24xx_dma_free_chan_resources(struct dma_chan *chan)
  640. {
  641. /* Ensure all queued descriptors are freed */
  642. vchan_free_chan_resources(to_virt_chan(chan));
  643. }
  644. static enum dma_status s3c24xx_dma_tx_status(struct dma_chan *chan,
  645. dma_cookie_t cookie, struct dma_tx_state *txstate)
  646. {
  647. struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
  648. struct s3c24xx_txd *txd;
  649. struct s3c24xx_sg *dsg;
  650. struct virt_dma_desc *vd;
  651. unsigned long flags;
  652. enum dma_status ret;
  653. size_t bytes = 0;
  654. spin_lock_irqsave(&s3cchan->vc.lock, flags);
  655. ret = dma_cookie_status(chan, cookie, txstate);
  656. /*
  657. * There's no point calculating the residue if there's
  658. * no txstate to store the value.
  659. */
  660. if (ret == DMA_COMPLETE || !txstate) {
  661. spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
  662. return ret;
  663. }
  664. vd = vchan_find_desc(&s3cchan->vc, cookie);
  665. if (vd) {
  666. /* On the issued list, so hasn't been processed yet */
  667. txd = to_s3c24xx_txd(&vd->tx);
  668. list_for_each_entry(dsg, &txd->dsg_list, node)
  669. bytes += dsg->len;
  670. } else {
  671. /*
  672. * Currently running, so sum over the pending sg's and
  673. * the currently active one.
  674. */
  675. txd = s3cchan->at;
  676. dsg = list_entry(txd->at, struct s3c24xx_sg, node);
  677. list_for_each_entry_from(dsg, &txd->dsg_list, node)
  678. bytes += dsg->len;
  679. bytes += s3c24xx_dma_getbytes_chan(s3cchan);
  680. }
  681. spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
  682. /*
  683. * This cookie not complete yet
  684. * Get number of bytes left in the active transactions and queue
  685. */
  686. dma_set_residue(txstate, bytes);
  687. /* Whether waiting or running, we're in progress */
  688. return ret;
  689. }
  690. /*
  691. * Initialize a descriptor to be used by memcpy submit
  692. */
  693. static struct dma_async_tx_descriptor *s3c24xx_dma_prep_memcpy(
  694. struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
  695. size_t len, unsigned long flags)
  696. {
  697. struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
  698. struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
  699. struct s3c24xx_txd *txd;
  700. struct s3c24xx_sg *dsg;
  701. int src_mod, dest_mod;
  702. dev_dbg(&s3cdma->pdev->dev, "prepare memcpy of %zu bytes from %s\n",
  703. len, s3cchan->name);
  704. if ((len & S3C24XX_DCON_TC_MASK) != len) {
  705. dev_err(&s3cdma->pdev->dev, "memcpy size %zu to large\n", len);
  706. return NULL;
  707. }
  708. txd = s3c24xx_dma_get_txd();
  709. if (!txd)
  710. return NULL;
  711. dsg = kzalloc(sizeof(*dsg), GFP_NOWAIT);
  712. if (!dsg) {
  713. s3c24xx_dma_free_txd(txd);
  714. return NULL;
  715. }
  716. list_add_tail(&dsg->node, &txd->dsg_list);
  717. dsg->src_addr = src;
  718. dsg->dst_addr = dest;
  719. dsg->len = len;
  720. /*
  721. * Determine a suitable transfer width.
  722. * The DMA controller cannot fetch/store information which is not
  723. * naturally aligned on the bus, i.e., a 4 byte fetch must start at
  724. * an address divisible by 4 - more generally addr % width must be 0.
  725. */
  726. src_mod = src % 4;
  727. dest_mod = dest % 4;
  728. switch (len % 4) {
  729. case 0:
  730. txd->width = (src_mod == 0 && dest_mod == 0) ? 4 : 1;
  731. break;
  732. case 2:
  733. txd->width = ((src_mod == 2 || src_mod == 0) &&
  734. (dest_mod == 2 || dest_mod == 0)) ? 2 : 1;
  735. break;
  736. default:
  737. txd->width = 1;
  738. break;
  739. }
  740. txd->disrcc = S3C24XX_DISRCC_LOC_AHB | S3C24XX_DISRCC_INC_INCREMENT;
  741. txd->didstc = S3C24XX_DIDSTC_LOC_AHB | S3C24XX_DIDSTC_INC_INCREMENT;
  742. txd->dcon |= S3C24XX_DCON_DEMAND | S3C24XX_DCON_SYNC_HCLK |
  743. S3C24XX_DCON_SERV_WHOLE;
  744. return vchan_tx_prep(&s3cchan->vc, &txd->vd, flags);
  745. }
  746. static struct dma_async_tx_descriptor *s3c24xx_dma_prep_dma_cyclic(
  747. struct dma_chan *chan, dma_addr_t addr, size_t size, size_t period,
  748. enum dma_transfer_direction direction, unsigned long flags)
  749. {
  750. struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
  751. struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
  752. const struct s3c24xx_dma_platdata *pdata = s3cdma->pdata;
  753. struct s3c24xx_dma_channel *cdata = &pdata->channels[s3cchan->id];
  754. struct s3c24xx_txd *txd;
  755. struct s3c24xx_sg *dsg;
  756. unsigned sg_len;
  757. dma_addr_t slave_addr;
  758. u32 hwcfg = 0;
  759. int i;
  760. dev_dbg(&s3cdma->pdev->dev,
  761. "prepare cyclic transaction of %zu bytes with period %zu from %s\n",
  762. size, period, s3cchan->name);
  763. if (!is_slave_direction(direction)) {
  764. dev_err(&s3cdma->pdev->dev,
  765. "direction %d unsupported\n", direction);
  766. return NULL;
  767. }
  768. txd = s3c24xx_dma_get_txd();
  769. if (!txd)
  770. return NULL;
  771. txd->cyclic = 1;
  772. if (cdata->handshake)
  773. txd->dcon |= S3C24XX_DCON_HANDSHAKE;
  774. switch (cdata->bus) {
  775. case S3C24XX_DMA_APB:
  776. txd->dcon |= S3C24XX_DCON_SYNC_PCLK;
  777. hwcfg |= S3C24XX_DISRCC_LOC_APB;
  778. break;
  779. case S3C24XX_DMA_AHB:
  780. txd->dcon |= S3C24XX_DCON_SYNC_HCLK;
  781. hwcfg |= S3C24XX_DISRCC_LOC_AHB;
  782. break;
  783. }
  784. /*
  785. * Always assume our peripheral desintation is a fixed
  786. * address in memory.
  787. */
  788. hwcfg |= S3C24XX_DISRCC_INC_FIXED;
  789. /*
  790. * Individual dma operations are requested by the slave,
  791. * so serve only single atomic operations (S3C24XX_DCON_SERV_SINGLE).
  792. */
  793. txd->dcon |= S3C24XX_DCON_SERV_SINGLE;
  794. if (direction == DMA_MEM_TO_DEV) {
  795. txd->disrcc = S3C24XX_DISRCC_LOC_AHB |
  796. S3C24XX_DISRCC_INC_INCREMENT;
  797. txd->didstc = hwcfg;
  798. slave_addr = s3cchan->cfg.dst_addr;
  799. txd->width = s3cchan->cfg.dst_addr_width;
  800. } else {
  801. txd->disrcc = hwcfg;
  802. txd->didstc = S3C24XX_DIDSTC_LOC_AHB |
  803. S3C24XX_DIDSTC_INC_INCREMENT;
  804. slave_addr = s3cchan->cfg.src_addr;
  805. txd->width = s3cchan->cfg.src_addr_width;
  806. }
  807. sg_len = size / period;
  808. for (i = 0; i < sg_len; i++) {
  809. dsg = kzalloc(sizeof(*dsg), GFP_NOWAIT);
  810. if (!dsg) {
  811. s3c24xx_dma_free_txd(txd);
  812. return NULL;
  813. }
  814. list_add_tail(&dsg->node, &txd->dsg_list);
  815. dsg->len = period;
  816. /* Check last period length */
  817. if (i == sg_len - 1)
  818. dsg->len = size - period * i;
  819. if (direction == DMA_MEM_TO_DEV) {
  820. dsg->src_addr = addr + period * i;
  821. dsg->dst_addr = slave_addr;
  822. } else { /* DMA_DEV_TO_MEM */
  823. dsg->src_addr = slave_addr;
  824. dsg->dst_addr = addr + period * i;
  825. }
  826. }
  827. return vchan_tx_prep(&s3cchan->vc, &txd->vd, flags);
  828. }
  829. static struct dma_async_tx_descriptor *s3c24xx_dma_prep_slave_sg(
  830. struct dma_chan *chan, struct scatterlist *sgl,
  831. unsigned int sg_len, enum dma_transfer_direction direction,
  832. unsigned long flags, void *context)
  833. {
  834. struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
  835. struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
  836. const struct s3c24xx_dma_platdata *pdata = s3cdma->pdata;
  837. struct s3c24xx_dma_channel *cdata = &pdata->channels[s3cchan->id];
  838. struct s3c24xx_txd *txd;
  839. struct s3c24xx_sg *dsg;
  840. struct scatterlist *sg;
  841. dma_addr_t slave_addr;
  842. u32 hwcfg = 0;
  843. int tmp;
  844. dev_dbg(&s3cdma->pdev->dev, "prepare transaction of %d bytes from %s\n",
  845. sg_dma_len(sgl), s3cchan->name);
  846. txd = s3c24xx_dma_get_txd();
  847. if (!txd)
  848. return NULL;
  849. if (cdata->handshake)
  850. txd->dcon |= S3C24XX_DCON_HANDSHAKE;
  851. switch (cdata->bus) {
  852. case S3C24XX_DMA_APB:
  853. txd->dcon |= S3C24XX_DCON_SYNC_PCLK;
  854. hwcfg |= S3C24XX_DISRCC_LOC_APB;
  855. break;
  856. case S3C24XX_DMA_AHB:
  857. txd->dcon |= S3C24XX_DCON_SYNC_HCLK;
  858. hwcfg |= S3C24XX_DISRCC_LOC_AHB;
  859. break;
  860. }
  861. /*
  862. * Always assume our peripheral desintation is a fixed
  863. * address in memory.
  864. */
  865. hwcfg |= S3C24XX_DISRCC_INC_FIXED;
  866. /*
  867. * Individual dma operations are requested by the slave,
  868. * so serve only single atomic operations (S3C24XX_DCON_SERV_SINGLE).
  869. */
  870. txd->dcon |= S3C24XX_DCON_SERV_SINGLE;
  871. if (direction == DMA_MEM_TO_DEV) {
  872. txd->disrcc = S3C24XX_DISRCC_LOC_AHB |
  873. S3C24XX_DISRCC_INC_INCREMENT;
  874. txd->didstc = hwcfg;
  875. slave_addr = s3cchan->cfg.dst_addr;
  876. txd->width = s3cchan->cfg.dst_addr_width;
  877. } else if (direction == DMA_DEV_TO_MEM) {
  878. txd->disrcc = hwcfg;
  879. txd->didstc = S3C24XX_DIDSTC_LOC_AHB |
  880. S3C24XX_DIDSTC_INC_INCREMENT;
  881. slave_addr = s3cchan->cfg.src_addr;
  882. txd->width = s3cchan->cfg.src_addr_width;
  883. } else {
  884. s3c24xx_dma_free_txd(txd);
  885. dev_err(&s3cdma->pdev->dev,
  886. "direction %d unsupported\n", direction);
  887. return NULL;
  888. }
  889. for_each_sg(sgl, sg, sg_len, tmp) {
  890. dsg = kzalloc(sizeof(*dsg), GFP_NOWAIT);
  891. if (!dsg) {
  892. s3c24xx_dma_free_txd(txd);
  893. return NULL;
  894. }
  895. list_add_tail(&dsg->node, &txd->dsg_list);
  896. dsg->len = sg_dma_len(sg);
  897. if (direction == DMA_MEM_TO_DEV) {
  898. dsg->src_addr = sg_dma_address(sg);
  899. dsg->dst_addr = slave_addr;
  900. } else { /* DMA_DEV_TO_MEM */
  901. dsg->src_addr = slave_addr;
  902. dsg->dst_addr = sg_dma_address(sg);
  903. }
  904. }
  905. return vchan_tx_prep(&s3cchan->vc, &txd->vd, flags);
  906. }
  907. /*
  908. * Slave transactions callback to the slave device to allow
  909. * synchronization of slave DMA signals with the DMAC enable
  910. */
  911. static void s3c24xx_dma_issue_pending(struct dma_chan *chan)
  912. {
  913. struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
  914. unsigned long flags;
  915. spin_lock_irqsave(&s3cchan->vc.lock, flags);
  916. if (vchan_issue_pending(&s3cchan->vc)) {
  917. if (!s3cchan->phy && s3cchan->state != S3C24XX_DMA_CHAN_WAITING)
  918. s3c24xx_dma_phy_alloc_and_start(s3cchan);
  919. }
  920. spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
  921. }
  922. /*
  923. * Bringup and teardown
  924. */
  925. /*
  926. * Initialise the DMAC memcpy/slave channels.
  927. * Make a local wrapper to hold required data
  928. */
  929. static int s3c24xx_dma_init_virtual_channels(struct s3c24xx_dma_engine *s3cdma,
  930. struct dma_device *dmadev, unsigned int channels, bool slave)
  931. {
  932. struct s3c24xx_dma_chan *chan;
  933. int i;
  934. INIT_LIST_HEAD(&dmadev->channels);
  935. /*
  936. * Register as many many memcpy as we have physical channels,
  937. * we won't always be able to use all but the code will have
  938. * to cope with that situation.
  939. */
  940. for (i = 0; i < channels; i++) {
  941. chan = devm_kzalloc(dmadev->dev, sizeof(*chan), GFP_KERNEL);
  942. if (!chan)
  943. return -ENOMEM;
  944. chan->id = i;
  945. chan->host = s3cdma;
  946. chan->state = S3C24XX_DMA_CHAN_IDLE;
  947. if (slave) {
  948. chan->slave = true;
  949. chan->name = kasprintf(GFP_KERNEL, "slave%d", i);
  950. if (!chan->name)
  951. return -ENOMEM;
  952. } else {
  953. chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
  954. if (!chan->name)
  955. return -ENOMEM;
  956. }
  957. dev_dbg(dmadev->dev,
  958. "initialize virtual channel \"%s\"\n",
  959. chan->name);
  960. chan->vc.desc_free = s3c24xx_dma_desc_free;
  961. vchan_init(&chan->vc, dmadev);
  962. }
  963. dev_info(dmadev->dev, "initialized %d virtual %s channels\n",
  964. i, slave ? "slave" : "memcpy");
  965. return i;
  966. }
  967. static void s3c24xx_dma_free_virtual_channels(struct dma_device *dmadev)
  968. {
  969. struct s3c24xx_dma_chan *chan = NULL;
  970. struct s3c24xx_dma_chan *next;
  971. list_for_each_entry_safe(chan,
  972. next, &dmadev->channels, vc.chan.device_node) {
  973. list_del(&chan->vc.chan.device_node);
  974. tasklet_kill(&chan->vc.task);
  975. }
  976. }
  977. /* s3c2410, s3c2440 and s3c2442 have a 0x40 stride without separate clocks */
  978. static struct soc_data soc_s3c2410 = {
  979. .stride = 0x40,
  980. .has_reqsel = false,
  981. .has_clocks = false,
  982. };
  983. /* s3c2412 and s3c2413 have a 0x40 stride and dmareqsel mechanism */
  984. static struct soc_data soc_s3c2412 = {
  985. .stride = 0x40,
  986. .has_reqsel = true,
  987. .has_clocks = true,
  988. };
  989. /* s3c2443 and following have a 0x100 stride and dmareqsel mechanism */
  990. static struct soc_data soc_s3c2443 = {
  991. .stride = 0x100,
  992. .has_reqsel = true,
  993. .has_clocks = true,
  994. };
  995. static const struct platform_device_id s3c24xx_dma_driver_ids[] = {
  996. {
  997. .name = "s3c2410-dma",
  998. .driver_data = (kernel_ulong_t)&soc_s3c2410,
  999. }, {
  1000. .name = "s3c2412-dma",
  1001. .driver_data = (kernel_ulong_t)&soc_s3c2412,
  1002. }, {
  1003. .name = "s3c2443-dma",
  1004. .driver_data = (kernel_ulong_t)&soc_s3c2443,
  1005. },
  1006. { },
  1007. };
  1008. static struct soc_data *s3c24xx_dma_get_soc_data(struct platform_device *pdev)
  1009. {
  1010. return (struct soc_data *)
  1011. platform_get_device_id(pdev)->driver_data;
  1012. }
  1013. static int s3c24xx_dma_probe(struct platform_device *pdev)
  1014. {
  1015. const struct s3c24xx_dma_platdata *pdata = dev_get_platdata(&pdev->dev);
  1016. struct s3c24xx_dma_engine *s3cdma;
  1017. struct soc_data *sdata;
  1018. struct resource *res;
  1019. int ret;
  1020. int i;
  1021. if (!pdata) {
  1022. dev_err(&pdev->dev, "platform data missing\n");
  1023. return -ENODEV;
  1024. }
  1025. /* Basic sanity check */
  1026. if (pdata->num_phy_channels > MAX_DMA_CHANNELS) {
  1027. dev_err(&pdev->dev, "to many dma channels %d, max %d\n",
  1028. pdata->num_phy_channels, MAX_DMA_CHANNELS);
  1029. return -EINVAL;
  1030. }
  1031. sdata = s3c24xx_dma_get_soc_data(pdev);
  1032. if (!sdata)
  1033. return -EINVAL;
  1034. s3cdma = devm_kzalloc(&pdev->dev, sizeof(*s3cdma), GFP_KERNEL);
  1035. if (!s3cdma)
  1036. return -ENOMEM;
  1037. s3cdma->pdev = pdev;
  1038. s3cdma->pdata = pdata;
  1039. s3cdma->sdata = sdata;
  1040. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1041. s3cdma->base = devm_ioremap_resource(&pdev->dev, res);
  1042. if (IS_ERR(s3cdma->base))
  1043. return PTR_ERR(s3cdma->base);
  1044. s3cdma->phy_chans = devm_kzalloc(&pdev->dev,
  1045. sizeof(struct s3c24xx_dma_phy) *
  1046. pdata->num_phy_channels,
  1047. GFP_KERNEL);
  1048. if (!s3cdma->phy_chans)
  1049. return -ENOMEM;
  1050. /* acquire irqs and clocks for all physical channels */
  1051. for (i = 0; i < pdata->num_phy_channels; i++) {
  1052. struct s3c24xx_dma_phy *phy = &s3cdma->phy_chans[i];
  1053. char clk_name[6];
  1054. phy->id = i;
  1055. phy->base = s3cdma->base + (i * sdata->stride);
  1056. phy->host = s3cdma;
  1057. phy->irq = platform_get_irq(pdev, i);
  1058. if (phy->irq < 0) {
  1059. dev_err(&pdev->dev, "failed to get irq %d, err %d\n",
  1060. i, phy->irq);
  1061. continue;
  1062. }
  1063. ret = devm_request_irq(&pdev->dev, phy->irq, s3c24xx_dma_irq,
  1064. 0, pdev->name, phy);
  1065. if (ret) {
  1066. dev_err(&pdev->dev, "Unable to request irq for channel %d, error %d\n",
  1067. i, ret);
  1068. continue;
  1069. }
  1070. if (sdata->has_clocks) {
  1071. sprintf(clk_name, "dma.%d", i);
  1072. phy->clk = devm_clk_get(&pdev->dev, clk_name);
  1073. if (IS_ERR(phy->clk) && sdata->has_clocks) {
  1074. dev_err(&pdev->dev, "unable to acquire clock for channel %d, error %lu\n",
  1075. i, PTR_ERR(phy->clk));
  1076. continue;
  1077. }
  1078. ret = clk_prepare(phy->clk);
  1079. if (ret) {
  1080. dev_err(&pdev->dev, "clock for phy %d failed, error %d\n",
  1081. i, ret);
  1082. continue;
  1083. }
  1084. }
  1085. spin_lock_init(&phy->lock);
  1086. phy->valid = true;
  1087. dev_dbg(&pdev->dev, "physical channel %d is %s\n",
  1088. i, s3c24xx_dma_phy_busy(phy) ? "BUSY" : "FREE");
  1089. }
  1090. /* Initialize memcpy engine */
  1091. dma_cap_set(DMA_MEMCPY, s3cdma->memcpy.cap_mask);
  1092. dma_cap_set(DMA_PRIVATE, s3cdma->memcpy.cap_mask);
  1093. s3cdma->memcpy.dev = &pdev->dev;
  1094. s3cdma->memcpy.device_free_chan_resources =
  1095. s3c24xx_dma_free_chan_resources;
  1096. s3cdma->memcpy.device_prep_dma_memcpy = s3c24xx_dma_prep_memcpy;
  1097. s3cdma->memcpy.device_tx_status = s3c24xx_dma_tx_status;
  1098. s3cdma->memcpy.device_issue_pending = s3c24xx_dma_issue_pending;
  1099. s3cdma->memcpy.device_config = s3c24xx_dma_set_runtime_config;
  1100. s3cdma->memcpy.device_terminate_all = s3c24xx_dma_terminate_all;
  1101. /* Initialize slave engine for SoC internal dedicated peripherals */
  1102. dma_cap_set(DMA_SLAVE, s3cdma->slave.cap_mask);
  1103. dma_cap_set(DMA_CYCLIC, s3cdma->slave.cap_mask);
  1104. dma_cap_set(DMA_PRIVATE, s3cdma->slave.cap_mask);
  1105. s3cdma->slave.dev = &pdev->dev;
  1106. s3cdma->slave.device_free_chan_resources =
  1107. s3c24xx_dma_free_chan_resources;
  1108. s3cdma->slave.device_tx_status = s3c24xx_dma_tx_status;
  1109. s3cdma->slave.device_issue_pending = s3c24xx_dma_issue_pending;
  1110. s3cdma->slave.device_prep_slave_sg = s3c24xx_dma_prep_slave_sg;
  1111. s3cdma->slave.device_prep_dma_cyclic = s3c24xx_dma_prep_dma_cyclic;
  1112. s3cdma->slave.device_config = s3c24xx_dma_set_runtime_config;
  1113. s3cdma->slave.device_terminate_all = s3c24xx_dma_terminate_all;
  1114. s3cdma->slave.filter.map = pdata->slave_map;
  1115. s3cdma->slave.filter.mapcnt = pdata->slavecnt;
  1116. s3cdma->slave.filter.fn = s3c24xx_dma_filter;
  1117. /* Register as many memcpy channels as there are physical channels */
  1118. ret = s3c24xx_dma_init_virtual_channels(s3cdma, &s3cdma->memcpy,
  1119. pdata->num_phy_channels, false);
  1120. if (ret <= 0) {
  1121. dev_warn(&pdev->dev,
  1122. "%s failed to enumerate memcpy channels - %d\n",
  1123. __func__, ret);
  1124. goto err_memcpy;
  1125. }
  1126. /* Register slave channels */
  1127. ret = s3c24xx_dma_init_virtual_channels(s3cdma, &s3cdma->slave,
  1128. pdata->num_channels, true);
  1129. if (ret <= 0) {
  1130. dev_warn(&pdev->dev,
  1131. "%s failed to enumerate slave channels - %d\n",
  1132. __func__, ret);
  1133. goto err_slave;
  1134. }
  1135. ret = dma_async_device_register(&s3cdma->memcpy);
  1136. if (ret) {
  1137. dev_warn(&pdev->dev,
  1138. "%s failed to register memcpy as an async device - %d\n",
  1139. __func__, ret);
  1140. goto err_memcpy_reg;
  1141. }
  1142. ret = dma_async_device_register(&s3cdma->slave);
  1143. if (ret) {
  1144. dev_warn(&pdev->dev,
  1145. "%s failed to register slave as an async device - %d\n",
  1146. __func__, ret);
  1147. goto err_slave_reg;
  1148. }
  1149. platform_set_drvdata(pdev, s3cdma);
  1150. dev_info(&pdev->dev, "Loaded dma driver with %d physical channels\n",
  1151. pdata->num_phy_channels);
  1152. return 0;
  1153. err_slave_reg:
  1154. dma_async_device_unregister(&s3cdma->memcpy);
  1155. err_memcpy_reg:
  1156. s3c24xx_dma_free_virtual_channels(&s3cdma->slave);
  1157. err_slave:
  1158. s3c24xx_dma_free_virtual_channels(&s3cdma->memcpy);
  1159. err_memcpy:
  1160. if (sdata->has_clocks)
  1161. for (i = 0; i < pdata->num_phy_channels; i++) {
  1162. struct s3c24xx_dma_phy *phy = &s3cdma->phy_chans[i];
  1163. if (phy->valid)
  1164. clk_unprepare(phy->clk);
  1165. }
  1166. return ret;
  1167. }
  1168. static void s3c24xx_dma_free_irq(struct platform_device *pdev,
  1169. struct s3c24xx_dma_engine *s3cdma)
  1170. {
  1171. int i;
  1172. for (i = 0; i < s3cdma->pdata->num_phy_channels; i++) {
  1173. struct s3c24xx_dma_phy *phy = &s3cdma->phy_chans[i];
  1174. devm_free_irq(&pdev->dev, phy->irq, phy);
  1175. }
  1176. }
  1177. static int s3c24xx_dma_remove(struct platform_device *pdev)
  1178. {
  1179. const struct s3c24xx_dma_platdata *pdata = dev_get_platdata(&pdev->dev);
  1180. struct s3c24xx_dma_engine *s3cdma = platform_get_drvdata(pdev);
  1181. struct soc_data *sdata = s3c24xx_dma_get_soc_data(pdev);
  1182. int i;
  1183. dma_async_device_unregister(&s3cdma->slave);
  1184. dma_async_device_unregister(&s3cdma->memcpy);
  1185. s3c24xx_dma_free_irq(pdev, s3cdma);
  1186. s3c24xx_dma_free_virtual_channels(&s3cdma->slave);
  1187. s3c24xx_dma_free_virtual_channels(&s3cdma->memcpy);
  1188. if (sdata->has_clocks)
  1189. for (i = 0; i < pdata->num_phy_channels; i++) {
  1190. struct s3c24xx_dma_phy *phy = &s3cdma->phy_chans[i];
  1191. if (phy->valid)
  1192. clk_unprepare(phy->clk);
  1193. }
  1194. return 0;
  1195. }
  1196. static struct platform_driver s3c24xx_dma_driver = {
  1197. .driver = {
  1198. .name = "s3c24xx-dma",
  1199. },
  1200. .id_table = s3c24xx_dma_driver_ids,
  1201. .probe = s3c24xx_dma_probe,
  1202. .remove = s3c24xx_dma_remove,
  1203. };
  1204. module_platform_driver(s3c24xx_dma_driver);
  1205. bool s3c24xx_dma_filter(struct dma_chan *chan, void *param)
  1206. {
  1207. struct s3c24xx_dma_chan *s3cchan;
  1208. if (chan->device->dev->driver != &s3c24xx_dma_driver.driver)
  1209. return false;
  1210. s3cchan = to_s3c24xx_dma_chan(chan);
  1211. return s3cchan->id == (uintptr_t)param;
  1212. }
  1213. EXPORT_SYMBOL(s3c24xx_dma_filter);
  1214. MODULE_DESCRIPTION("S3C24XX DMA Driver");
  1215. MODULE_AUTHOR("Heiko Stuebner");
  1216. MODULE_LICENSE("GPL v2");