123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665 |
- /*
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License as
- * published by the Free Software Foundation version 2.
- *
- * This program is distributed "as is" WITHOUT ANY WARRANTY of any
- * kind, whether express or implied; without even the implied warranty
- * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- */
- #include <linux/clk.h>
- #include <linux/clk-provider.h>
- #include <linux/delay.h>
- #include <linux/err.h>
- #include <linux/math64.h>
- #include <linux/of.h>
- #include <linux/of_address.h>
- #include <linux/clk/ti.h>
- /* FAPLL Control Register PLL_CTRL */
- #define FAPLL_MAIN_MULT_N_SHIFT 16
- #define FAPLL_MAIN_DIV_P_SHIFT 8
- #define FAPLL_MAIN_LOCK BIT(7)
- #define FAPLL_MAIN_PLLEN BIT(3)
- #define FAPLL_MAIN_BP BIT(2)
- #define FAPLL_MAIN_LOC_CTL BIT(0)
- #define FAPLL_MAIN_MAX_MULT_N 0xffff
- #define FAPLL_MAIN_MAX_DIV_P 0xff
- #define FAPLL_MAIN_CLEAR_MASK \
- ((FAPLL_MAIN_MAX_MULT_N << FAPLL_MAIN_MULT_N_SHIFT) | \
- (FAPLL_MAIN_DIV_P_SHIFT << FAPLL_MAIN_DIV_P_SHIFT) | \
- FAPLL_MAIN_LOC_CTL)
- /* FAPLL powerdown register PWD */
- #define FAPLL_PWD_OFFSET 4
- #define MAX_FAPLL_OUTPUTS 7
- #define FAPLL_MAX_RETRIES 1000
- #define to_fapll(_hw) container_of(_hw, struct fapll_data, hw)
- #define to_synth(_hw) container_of(_hw, struct fapll_synth, hw)
- /* The bypass bit is inverted on the ddr_pll.. */
- #define fapll_is_ddr_pll(va) (((u32)(va) & 0xffff) == 0x0440)
- /*
- * The audio_pll_clk1 input is hard wired to the 27MHz bypass clock,
- * and the audio_pll_clk1 synthesizer is hardwared to 32KiHz output.
- */
- #define is_ddr_pll_clk1(va) (((u32)(va) & 0xffff) == 0x044c)
- #define is_audio_pll_clk1(va) (((u32)(va) & 0xffff) == 0x04a8)
- /* Synthesizer divider register */
- #define SYNTH_LDMDIV1 BIT(8)
- /* Synthesizer frequency register */
- #define SYNTH_LDFREQ BIT(31)
- #define SYNTH_PHASE_K 8
- #define SYNTH_MAX_INT_DIV 0xf
- #define SYNTH_MAX_DIV_M 0xff
- struct fapll_data {
- struct clk_hw hw;
- void __iomem *base;
- const char *name;
- struct clk *clk_ref;
- struct clk *clk_bypass;
- struct clk_onecell_data outputs;
- bool bypass_bit_inverted;
- };
- struct fapll_synth {
- struct clk_hw hw;
- struct fapll_data *fd;
- int index;
- void __iomem *freq;
- void __iomem *div;
- const char *name;
- struct clk *clk_pll;
- };
- static bool ti_fapll_clock_is_bypass(struct fapll_data *fd)
- {
- u32 v = readl_relaxed(fd->base);
- if (fd->bypass_bit_inverted)
- return !(v & FAPLL_MAIN_BP);
- else
- return !!(v & FAPLL_MAIN_BP);
- }
- static void ti_fapll_set_bypass(struct fapll_data *fd)
- {
- u32 v = readl_relaxed(fd->base);
- if (fd->bypass_bit_inverted)
- v &= ~FAPLL_MAIN_BP;
- else
- v |= FAPLL_MAIN_BP;
- writel_relaxed(v, fd->base);
- }
- static void ti_fapll_clear_bypass(struct fapll_data *fd)
- {
- u32 v = readl_relaxed(fd->base);
- if (fd->bypass_bit_inverted)
- v |= FAPLL_MAIN_BP;
- else
- v &= ~FAPLL_MAIN_BP;
- writel_relaxed(v, fd->base);
- }
- static int ti_fapll_wait_lock(struct fapll_data *fd)
- {
- int retries = FAPLL_MAX_RETRIES;
- u32 v;
- while ((v = readl_relaxed(fd->base))) {
- if (v & FAPLL_MAIN_LOCK)
- return 0;
- if (retries-- <= 0)
- break;
- udelay(1);
- }
- pr_err("%s failed to lock\n", fd->name);
- return -ETIMEDOUT;
- }
- static int ti_fapll_enable(struct clk_hw *hw)
- {
- struct fapll_data *fd = to_fapll(hw);
- u32 v = readl_relaxed(fd->base);
- v |= FAPLL_MAIN_PLLEN;
- writel_relaxed(v, fd->base);
- ti_fapll_wait_lock(fd);
- return 0;
- }
- static void ti_fapll_disable(struct clk_hw *hw)
- {
- struct fapll_data *fd = to_fapll(hw);
- u32 v = readl_relaxed(fd->base);
- v &= ~FAPLL_MAIN_PLLEN;
- writel_relaxed(v, fd->base);
- }
- static int ti_fapll_is_enabled(struct clk_hw *hw)
- {
- struct fapll_data *fd = to_fapll(hw);
- u32 v = readl_relaxed(fd->base);
- return v & FAPLL_MAIN_PLLEN;
- }
- static unsigned long ti_fapll_recalc_rate(struct clk_hw *hw,
- unsigned long parent_rate)
- {
- struct fapll_data *fd = to_fapll(hw);
- u32 fapll_n, fapll_p, v;
- u64 rate;
- if (ti_fapll_clock_is_bypass(fd))
- return parent_rate;
- rate = parent_rate;
- /* PLL pre-divider is P and multiplier is N */
- v = readl_relaxed(fd->base);
- fapll_p = (v >> 8) & 0xff;
- if (fapll_p)
- do_div(rate, fapll_p);
- fapll_n = v >> 16;
- if (fapll_n)
- rate *= fapll_n;
- return rate;
- }
- static u8 ti_fapll_get_parent(struct clk_hw *hw)
- {
- struct fapll_data *fd = to_fapll(hw);
- if (ti_fapll_clock_is_bypass(fd))
- return 1;
- return 0;
- }
- static int ti_fapll_set_div_mult(unsigned long rate,
- unsigned long parent_rate,
- u32 *pre_div_p, u32 *mult_n)
- {
- /*
- * So far no luck getting decent clock with PLL divider,
- * PLL does not seem to lock and the signal does not look
- * right. It seems the divider can only be used together
- * with the multiplier?
- */
- if (rate < parent_rate) {
- pr_warn("FAPLL main divider rates unsupported\n");
- return -EINVAL;
- }
- *mult_n = rate / parent_rate;
- if (*mult_n > FAPLL_MAIN_MAX_MULT_N)
- return -EINVAL;
- *pre_div_p = 1;
- return 0;
- }
- static long ti_fapll_round_rate(struct clk_hw *hw, unsigned long rate,
- unsigned long *parent_rate)
- {
- u32 pre_div_p, mult_n;
- int error;
- if (!rate)
- return -EINVAL;
- error = ti_fapll_set_div_mult(rate, *parent_rate,
- &pre_div_p, &mult_n);
- if (error)
- return error;
- rate = *parent_rate / pre_div_p;
- rate *= mult_n;
- return rate;
- }
- static int ti_fapll_set_rate(struct clk_hw *hw, unsigned long rate,
- unsigned long parent_rate)
- {
- struct fapll_data *fd = to_fapll(hw);
- u32 pre_div_p, mult_n, v;
- int error;
- if (!rate)
- return -EINVAL;
- error = ti_fapll_set_div_mult(rate, parent_rate,
- &pre_div_p, &mult_n);
- if (error)
- return error;
- ti_fapll_set_bypass(fd);
- v = readl_relaxed(fd->base);
- v &= ~FAPLL_MAIN_CLEAR_MASK;
- v |= pre_div_p << FAPLL_MAIN_DIV_P_SHIFT;
- v |= mult_n << FAPLL_MAIN_MULT_N_SHIFT;
- writel_relaxed(v, fd->base);
- if (ti_fapll_is_enabled(hw))
- ti_fapll_wait_lock(fd);
- ti_fapll_clear_bypass(fd);
- return 0;
- }
- static struct clk_ops ti_fapll_ops = {
- .enable = ti_fapll_enable,
- .disable = ti_fapll_disable,
- .is_enabled = ti_fapll_is_enabled,
- .recalc_rate = ti_fapll_recalc_rate,
- .get_parent = ti_fapll_get_parent,
- .round_rate = ti_fapll_round_rate,
- .set_rate = ti_fapll_set_rate,
- };
- static int ti_fapll_synth_enable(struct clk_hw *hw)
- {
- struct fapll_synth *synth = to_synth(hw);
- u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
- v &= ~(1 << synth->index);
- writel_relaxed(v, synth->fd->base + FAPLL_PWD_OFFSET);
- return 0;
- }
- static void ti_fapll_synth_disable(struct clk_hw *hw)
- {
- struct fapll_synth *synth = to_synth(hw);
- u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
- v |= 1 << synth->index;
- writel_relaxed(v, synth->fd->base + FAPLL_PWD_OFFSET);
- }
- static int ti_fapll_synth_is_enabled(struct clk_hw *hw)
- {
- struct fapll_synth *synth = to_synth(hw);
- u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
- return !(v & (1 << synth->index));
- }
- /*
- * See dm816x TRM chapter 1.10.3 Flying Adder PLL fore more info
- */
- static unsigned long ti_fapll_synth_recalc_rate(struct clk_hw *hw,
- unsigned long parent_rate)
- {
- struct fapll_synth *synth = to_synth(hw);
- u32 synth_div_m;
- u64 rate;
- /* The audio_pll_clk1 is hardwired to produce 32.768KiHz clock */
- if (!synth->div)
- return 32768;
- /*
- * PLL in bypass sets the synths in bypass mode too. The PLL rate
- * can be also be set to 27MHz, so we can't use parent_rate to
- * check for bypass mode.
- */
- if (ti_fapll_clock_is_bypass(synth->fd))
- return parent_rate;
- rate = parent_rate;
- /*
- * Synth frequency integer and fractional divider.
- * Note that the phase output K is 8, so the result needs
- * to be multiplied by SYNTH_PHASE_K.
- */
- if (synth->freq) {
- u32 v, synth_int_div, synth_frac_div, synth_div_freq;
- v = readl_relaxed(synth->freq);
- synth_int_div = (v >> 24) & 0xf;
- synth_frac_div = v & 0xffffff;
- synth_div_freq = (synth_int_div * 10000000) + synth_frac_div;
- rate *= 10000000;
- do_div(rate, synth_div_freq);
- rate *= SYNTH_PHASE_K;
- }
- /* Synth post-divider M */
- synth_div_m = readl_relaxed(synth->div) & SYNTH_MAX_DIV_M;
- return DIV_ROUND_UP_ULL(rate, synth_div_m);
- }
- static unsigned long ti_fapll_synth_get_frac_rate(struct clk_hw *hw,
- unsigned long parent_rate)
- {
- struct fapll_synth *synth = to_synth(hw);
- unsigned long current_rate, frac_rate;
- u32 post_div_m;
- current_rate = ti_fapll_synth_recalc_rate(hw, parent_rate);
- post_div_m = readl_relaxed(synth->div) & SYNTH_MAX_DIV_M;
- frac_rate = current_rate * post_div_m;
- return frac_rate;
- }
- static u32 ti_fapll_synth_set_frac_rate(struct fapll_synth *synth,
- unsigned long rate,
- unsigned long parent_rate)
- {
- u32 post_div_m, synth_int_div = 0, synth_frac_div = 0, v;
- post_div_m = DIV_ROUND_UP_ULL((u64)parent_rate * SYNTH_PHASE_K, rate);
- post_div_m = post_div_m / SYNTH_MAX_INT_DIV;
- if (post_div_m > SYNTH_MAX_DIV_M)
- return -EINVAL;
- if (!post_div_m)
- post_div_m = 1;
- for (; post_div_m < SYNTH_MAX_DIV_M; post_div_m++) {
- synth_int_div = DIV_ROUND_UP_ULL((u64)parent_rate *
- SYNTH_PHASE_K *
- 10000000,
- rate * post_div_m);
- synth_frac_div = synth_int_div % 10000000;
- synth_int_div /= 10000000;
- if (synth_int_div <= SYNTH_MAX_INT_DIV)
- break;
- }
- if (synth_int_div > SYNTH_MAX_INT_DIV)
- return -EINVAL;
- v = readl_relaxed(synth->freq);
- v &= ~0x1fffffff;
- v |= (synth_int_div & SYNTH_MAX_INT_DIV) << 24;
- v |= (synth_frac_div & 0xffffff);
- v |= SYNTH_LDFREQ;
- writel_relaxed(v, synth->freq);
- return post_div_m;
- }
- static long ti_fapll_synth_round_rate(struct clk_hw *hw, unsigned long rate,
- unsigned long *parent_rate)
- {
- struct fapll_synth *synth = to_synth(hw);
- struct fapll_data *fd = synth->fd;
- unsigned long r;
- if (ti_fapll_clock_is_bypass(fd) || !synth->div || !rate)
- return -EINVAL;
- /* Only post divider m available with no fractional divider? */
- if (!synth->freq) {
- unsigned long frac_rate;
- u32 synth_post_div_m;
- frac_rate = ti_fapll_synth_get_frac_rate(hw, *parent_rate);
- synth_post_div_m = DIV_ROUND_UP(frac_rate, rate);
- r = DIV_ROUND_UP(frac_rate, synth_post_div_m);
- goto out;
- }
- r = *parent_rate * SYNTH_PHASE_K;
- if (rate > r)
- goto out;
- r = DIV_ROUND_UP_ULL(r, SYNTH_MAX_INT_DIV * SYNTH_MAX_DIV_M);
- if (rate < r)
- goto out;
- r = rate;
- out:
- return r;
- }
- static int ti_fapll_synth_set_rate(struct clk_hw *hw, unsigned long rate,
- unsigned long parent_rate)
- {
- struct fapll_synth *synth = to_synth(hw);
- struct fapll_data *fd = synth->fd;
- unsigned long frac_rate, post_rate = 0;
- u32 post_div_m = 0, v;
- if (ti_fapll_clock_is_bypass(fd) || !synth->div || !rate)
- return -EINVAL;
- /* Produce the rate with just post divider M? */
- frac_rate = ti_fapll_synth_get_frac_rate(hw, parent_rate);
- if (frac_rate < rate) {
- if (!synth->freq)
- return -EINVAL;
- } else {
- post_div_m = DIV_ROUND_UP(frac_rate, rate);
- if (post_div_m && (post_div_m <= SYNTH_MAX_DIV_M))
- post_rate = DIV_ROUND_UP(frac_rate, post_div_m);
- if (!synth->freq && !post_rate)
- return -EINVAL;
- }
- /* Need to recalculate the fractional divider? */
- if ((post_rate != rate) && synth->freq)
- post_div_m = ti_fapll_synth_set_frac_rate(synth,
- rate,
- parent_rate);
- v = readl_relaxed(synth->div);
- v &= ~SYNTH_MAX_DIV_M;
- v |= post_div_m;
- v |= SYNTH_LDMDIV1;
- writel_relaxed(v, synth->div);
- return 0;
- }
- static struct clk_ops ti_fapll_synt_ops = {
- .enable = ti_fapll_synth_enable,
- .disable = ti_fapll_synth_disable,
- .is_enabled = ti_fapll_synth_is_enabled,
- .recalc_rate = ti_fapll_synth_recalc_rate,
- .round_rate = ti_fapll_synth_round_rate,
- .set_rate = ti_fapll_synth_set_rate,
- };
- static struct clk * __init ti_fapll_synth_setup(struct fapll_data *fd,
- void __iomem *freq,
- void __iomem *div,
- int index,
- const char *name,
- const char *parent,
- struct clk *pll_clk)
- {
- struct clk_init_data *init;
- struct fapll_synth *synth;
- init = kzalloc(sizeof(*init), GFP_KERNEL);
- if (!init)
- return ERR_PTR(-ENOMEM);
- init->ops = &ti_fapll_synt_ops;
- init->name = name;
- init->parent_names = &parent;
- init->num_parents = 1;
- synth = kzalloc(sizeof(*synth), GFP_KERNEL);
- if (!synth)
- goto free;
- synth->fd = fd;
- synth->index = index;
- synth->freq = freq;
- synth->div = div;
- synth->name = name;
- synth->hw.init = init;
- synth->clk_pll = pll_clk;
- return clk_register(NULL, &synth->hw);
- free:
- kfree(synth);
- kfree(init);
- return ERR_PTR(-ENOMEM);
- }
- static void __init ti_fapll_setup(struct device_node *node)
- {
- struct fapll_data *fd;
- struct clk_init_data *init = NULL;
- const char *parent_name[2];
- struct clk *pll_clk;
- int i;
- fd = kzalloc(sizeof(*fd), GFP_KERNEL);
- if (!fd)
- return;
- fd->outputs.clks = kzalloc(sizeof(struct clk *) *
- MAX_FAPLL_OUTPUTS + 1,
- GFP_KERNEL);
- if (!fd->outputs.clks)
- goto free;
- init = kzalloc(sizeof(*init), GFP_KERNEL);
- if (!init)
- goto free;
- init->ops = &ti_fapll_ops;
- init->name = node->name;
- init->num_parents = of_clk_get_parent_count(node);
- if (init->num_parents != 2) {
- pr_err("%s must have two parents\n", node->name);
- goto free;
- }
- of_clk_parent_fill(node, parent_name, 2);
- init->parent_names = parent_name;
- fd->clk_ref = of_clk_get(node, 0);
- if (IS_ERR(fd->clk_ref)) {
- pr_err("%s could not get clk_ref\n", node->name);
- goto free;
- }
- fd->clk_bypass = of_clk_get(node, 1);
- if (IS_ERR(fd->clk_bypass)) {
- pr_err("%s could not get clk_bypass\n", node->name);
- goto free;
- }
- fd->base = of_iomap(node, 0);
- if (!fd->base) {
- pr_err("%s could not get IO base\n", node->name);
- goto free;
- }
- if (fapll_is_ddr_pll(fd->base))
- fd->bypass_bit_inverted = true;
- fd->name = node->name;
- fd->hw.init = init;
- /* Register the parent PLL */
- pll_clk = clk_register(NULL, &fd->hw);
- if (IS_ERR(pll_clk))
- goto unmap;
- fd->outputs.clks[0] = pll_clk;
- fd->outputs.clk_num++;
- /*
- * Set up the child synthesizers starting at index 1 as the
- * PLL output is at index 0. We need to check the clock-indices
- * for numbering in case there are holes in the synth mapping,
- * and then probe the synth register to see if it has a FREQ
- * register available.
- */
- for (i = 0; i < MAX_FAPLL_OUTPUTS; i++) {
- const char *output_name;
- void __iomem *freq, *div;
- struct clk *synth_clk;
- int output_instance;
- u32 v;
- if (of_property_read_string_index(node, "clock-output-names",
- i, &output_name))
- continue;
- if (of_property_read_u32_index(node, "clock-indices", i,
- &output_instance))
- output_instance = i;
- freq = fd->base + (output_instance * 8);
- div = freq + 4;
- /* Check for hardwired audio_pll_clk1 */
- if (is_audio_pll_clk1(freq)) {
- freq = NULL;
- div = NULL;
- } else {
- /* Does the synthesizer have a FREQ register? */
- v = readl_relaxed(freq);
- if (!v)
- freq = NULL;
- }
- synth_clk = ti_fapll_synth_setup(fd, freq, div, output_instance,
- output_name, node->name,
- pll_clk);
- if (IS_ERR(synth_clk))
- continue;
- fd->outputs.clks[output_instance] = synth_clk;
- fd->outputs.clk_num++;
- clk_register_clkdev(synth_clk, output_name, NULL);
- }
- /* Register the child synthesizers as the FAPLL outputs */
- of_clk_add_provider(node, of_clk_src_onecell_get, &fd->outputs);
- /* Add clock alias for the outputs */
- kfree(init);
- return;
- unmap:
- iounmap(fd->base);
- free:
- if (fd->clk_bypass)
- clk_put(fd->clk_bypass);
- if (fd->clk_ref)
- clk_put(fd->clk_ref);
- kfree(fd->outputs.clks);
- kfree(fd);
- kfree(init);
- }
- CLK_OF_DECLARE(ti_fapll_clock, "ti,dm816-fapll-clock", ti_fapll_setup);
|