123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864 |
- /*
- * Functions related to setting various queue properties from drivers
- */
- #include <linux/kernel.h>
- #include <linux/module.h>
- #include <linux/init.h>
- #include <linux/bio.h>
- #include <linux/blkdev.h>
- #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
- #include <linux/gcd.h>
- #include <linux/lcm.h>
- #include <linux/jiffies.h>
- #include <linux/gfp.h>
- #include "blk.h"
- unsigned long blk_max_low_pfn;
- EXPORT_SYMBOL(blk_max_low_pfn);
- unsigned long blk_max_pfn;
- /**
- * blk_queue_prep_rq - set a prepare_request function for queue
- * @q: queue
- * @pfn: prepare_request function
- *
- * It's possible for a queue to register a prepare_request callback which
- * is invoked before the request is handed to the request_fn. The goal of
- * the function is to prepare a request for I/O, it can be used to build a
- * cdb from the request data for instance.
- *
- */
- void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
- {
- q->prep_rq_fn = pfn;
- }
- EXPORT_SYMBOL(blk_queue_prep_rq);
- /**
- * blk_queue_unprep_rq - set an unprepare_request function for queue
- * @q: queue
- * @ufn: unprepare_request function
- *
- * It's possible for a queue to register an unprepare_request callback
- * which is invoked before the request is finally completed. The goal
- * of the function is to deallocate any data that was allocated in the
- * prepare_request callback.
- *
- */
- void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn)
- {
- q->unprep_rq_fn = ufn;
- }
- EXPORT_SYMBOL(blk_queue_unprep_rq);
- void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
- {
- q->softirq_done_fn = fn;
- }
- EXPORT_SYMBOL(blk_queue_softirq_done);
- void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
- {
- q->rq_timeout = timeout;
- }
- EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
- void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
- {
- q->rq_timed_out_fn = fn;
- }
- EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
- void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
- {
- q->lld_busy_fn = fn;
- }
- EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
- /**
- * blk_set_default_limits - reset limits to default values
- * @lim: the queue_limits structure to reset
- *
- * Description:
- * Returns a queue_limit struct to its default state.
- */
- void blk_set_default_limits(struct queue_limits *lim)
- {
- lim->max_segments = BLK_MAX_SEGMENTS;
- lim->max_integrity_segments = 0;
- lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
- lim->virt_boundary_mask = 0;
- lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
- lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
- lim->max_dev_sectors = 0;
- lim->chunk_sectors = 0;
- lim->max_write_same_sectors = 0;
- lim->max_discard_sectors = 0;
- lim->max_hw_discard_sectors = 0;
- lim->discard_granularity = 0;
- lim->discard_alignment = 0;
- lim->discard_misaligned = 0;
- lim->discard_zeroes_data = 0;
- lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
- lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
- lim->alignment_offset = 0;
- lim->io_opt = 0;
- lim->misaligned = 0;
- lim->cluster = 1;
- }
- EXPORT_SYMBOL(blk_set_default_limits);
- /**
- * blk_set_stacking_limits - set default limits for stacking devices
- * @lim: the queue_limits structure to reset
- *
- * Description:
- * Returns a queue_limit struct to its default state. Should be used
- * by stacking drivers like DM that have no internal limits.
- */
- void blk_set_stacking_limits(struct queue_limits *lim)
- {
- blk_set_default_limits(lim);
- /* Inherit limits from component devices */
- lim->discard_zeroes_data = 1;
- lim->max_segments = USHRT_MAX;
- lim->max_hw_sectors = UINT_MAX;
- lim->max_segment_size = UINT_MAX;
- lim->max_sectors = UINT_MAX;
- lim->max_dev_sectors = UINT_MAX;
- lim->max_write_same_sectors = UINT_MAX;
- }
- EXPORT_SYMBOL(blk_set_stacking_limits);
- /**
- * blk_queue_make_request - define an alternate make_request function for a device
- * @q: the request queue for the device to be affected
- * @mfn: the alternate make_request function
- *
- * Description:
- * The normal way for &struct bios to be passed to a device
- * driver is for them to be collected into requests on a request
- * queue, and then to allow the device driver to select requests
- * off that queue when it is ready. This works well for many block
- * devices. However some block devices (typically virtual devices
- * such as md or lvm) do not benefit from the processing on the
- * request queue, and are served best by having the requests passed
- * directly to them. This can be achieved by providing a function
- * to blk_queue_make_request().
- *
- * Caveat:
- * The driver that does this *must* be able to deal appropriately
- * with buffers in "highmemory". This can be accomplished by either calling
- * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
- * blk_queue_bounce() to create a buffer in normal memory.
- **/
- void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
- {
- /*
- * set defaults
- */
- q->nr_requests = BLKDEV_MAX_RQ;
- q->make_request_fn = mfn;
- blk_queue_dma_alignment(q, 511);
- blk_queue_congestion_threshold(q);
- q->nr_batching = BLK_BATCH_REQ;
- blk_set_default_limits(&q->limits);
- /*
- * by default assume old behaviour and bounce for any highmem page
- */
- blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
- }
- EXPORT_SYMBOL(blk_queue_make_request);
- /**
- * blk_queue_bounce_limit - set bounce buffer limit for queue
- * @q: the request queue for the device
- * @max_addr: the maximum address the device can handle
- *
- * Description:
- * Different hardware can have different requirements as to what pages
- * it can do I/O directly to. A low level driver can call
- * blk_queue_bounce_limit to have lower memory pages allocated as bounce
- * buffers for doing I/O to pages residing above @max_addr.
- **/
- void blk_queue_bounce_limit(struct request_queue *q, u64 max_addr)
- {
- unsigned long b_pfn = max_addr >> PAGE_SHIFT;
- int dma = 0;
- q->bounce_gfp = GFP_NOIO;
- #if BITS_PER_LONG == 64
- /*
- * Assume anything <= 4GB can be handled by IOMMU. Actually
- * some IOMMUs can handle everything, but I don't know of a
- * way to test this here.
- */
- if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
- dma = 1;
- q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
- #else
- if (b_pfn < blk_max_low_pfn)
- dma = 1;
- q->limits.bounce_pfn = b_pfn;
- #endif
- if (dma) {
- init_emergency_isa_pool();
- q->bounce_gfp = GFP_NOIO | GFP_DMA;
- q->limits.bounce_pfn = b_pfn;
- }
- }
- EXPORT_SYMBOL(blk_queue_bounce_limit);
- /**
- * blk_queue_max_hw_sectors - set max sectors for a request for this queue
- * @q: the request queue for the device
- * @max_hw_sectors: max hardware sectors in the usual 512b unit
- *
- * Description:
- * Enables a low level driver to set a hard upper limit,
- * max_hw_sectors, on the size of requests. max_hw_sectors is set by
- * the device driver based upon the capabilities of the I/O
- * controller.
- *
- * max_dev_sectors is a hard limit imposed by the storage device for
- * READ/WRITE requests. It is set by the disk driver.
- *
- * max_sectors is a soft limit imposed by the block layer for
- * filesystem type requests. This value can be overridden on a
- * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
- * The soft limit can not exceed max_hw_sectors.
- **/
- void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
- {
- struct queue_limits *limits = &q->limits;
- unsigned int max_sectors;
- if ((max_hw_sectors << 9) < PAGE_SIZE) {
- max_hw_sectors = 1 << (PAGE_SHIFT - 9);
- printk(KERN_INFO "%s: set to minimum %d\n",
- __func__, max_hw_sectors);
- }
- limits->max_hw_sectors = max_hw_sectors;
- max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
- max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS);
- limits->max_sectors = max_sectors;
- }
- EXPORT_SYMBOL(blk_queue_max_hw_sectors);
- /**
- * blk_queue_chunk_sectors - set size of the chunk for this queue
- * @q: the request queue for the device
- * @chunk_sectors: chunk sectors in the usual 512b unit
- *
- * Description:
- * If a driver doesn't want IOs to cross a given chunk size, it can set
- * this limit and prevent merging across chunks. Note that the chunk size
- * must currently be a power-of-2 in sectors. Also note that the block
- * layer must accept a page worth of data at any offset. So if the
- * crossing of chunks is a hard limitation in the driver, it must still be
- * prepared to split single page bios.
- **/
- void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
- {
- BUG_ON(!is_power_of_2(chunk_sectors));
- q->limits.chunk_sectors = chunk_sectors;
- }
- EXPORT_SYMBOL(blk_queue_chunk_sectors);
- /**
- * blk_queue_max_discard_sectors - set max sectors for a single discard
- * @q: the request queue for the device
- * @max_discard_sectors: maximum number of sectors to discard
- **/
- void blk_queue_max_discard_sectors(struct request_queue *q,
- unsigned int max_discard_sectors)
- {
- q->limits.max_hw_discard_sectors = max_discard_sectors;
- q->limits.max_discard_sectors = max_discard_sectors;
- }
- EXPORT_SYMBOL(blk_queue_max_discard_sectors);
- /**
- * blk_queue_max_write_same_sectors - set max sectors for a single write same
- * @q: the request queue for the device
- * @max_write_same_sectors: maximum number of sectors to write per command
- **/
- void blk_queue_max_write_same_sectors(struct request_queue *q,
- unsigned int max_write_same_sectors)
- {
- q->limits.max_write_same_sectors = max_write_same_sectors;
- }
- EXPORT_SYMBOL(blk_queue_max_write_same_sectors);
- /**
- * blk_queue_max_segments - set max hw segments for a request for this queue
- * @q: the request queue for the device
- * @max_segments: max number of segments
- *
- * Description:
- * Enables a low level driver to set an upper limit on the number of
- * hw data segments in a request.
- **/
- void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
- {
- if (!max_segments) {
- max_segments = 1;
- printk(KERN_INFO "%s: set to minimum %d\n",
- __func__, max_segments);
- }
- q->limits.max_segments = max_segments;
- }
- EXPORT_SYMBOL(blk_queue_max_segments);
- /**
- * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
- * @q: the request queue for the device
- * @max_size: max size of segment in bytes
- *
- * Description:
- * Enables a low level driver to set an upper limit on the size of a
- * coalesced segment
- **/
- void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
- {
- if (max_size < PAGE_SIZE) {
- max_size = PAGE_SIZE;
- printk(KERN_INFO "%s: set to minimum %d\n",
- __func__, max_size);
- }
- q->limits.max_segment_size = max_size;
- }
- EXPORT_SYMBOL(blk_queue_max_segment_size);
- /**
- * blk_queue_logical_block_size - set logical block size for the queue
- * @q: the request queue for the device
- * @size: the logical block size, in bytes
- *
- * Description:
- * This should be set to the lowest possible block size that the
- * storage device can address. The default of 512 covers most
- * hardware.
- **/
- void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
- {
- q->limits.logical_block_size = size;
- if (q->limits.physical_block_size < size)
- q->limits.physical_block_size = size;
- if (q->limits.io_min < q->limits.physical_block_size)
- q->limits.io_min = q->limits.physical_block_size;
- }
- EXPORT_SYMBOL(blk_queue_logical_block_size);
- /**
- * blk_queue_physical_block_size - set physical block size for the queue
- * @q: the request queue for the device
- * @size: the physical block size, in bytes
- *
- * Description:
- * This should be set to the lowest possible sector size that the
- * hardware can operate on without reverting to read-modify-write
- * operations.
- */
- void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
- {
- q->limits.physical_block_size = size;
- if (q->limits.physical_block_size < q->limits.logical_block_size)
- q->limits.physical_block_size = q->limits.logical_block_size;
- if (q->limits.io_min < q->limits.physical_block_size)
- q->limits.io_min = q->limits.physical_block_size;
- }
- EXPORT_SYMBOL(blk_queue_physical_block_size);
- /**
- * blk_queue_alignment_offset - set physical block alignment offset
- * @q: the request queue for the device
- * @offset: alignment offset in bytes
- *
- * Description:
- * Some devices are naturally misaligned to compensate for things like
- * the legacy DOS partition table 63-sector offset. Low-level drivers
- * should call this function for devices whose first sector is not
- * naturally aligned.
- */
- void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
- {
- q->limits.alignment_offset =
- offset & (q->limits.physical_block_size - 1);
- q->limits.misaligned = 0;
- }
- EXPORT_SYMBOL(blk_queue_alignment_offset);
- /**
- * blk_limits_io_min - set minimum request size for a device
- * @limits: the queue limits
- * @min: smallest I/O size in bytes
- *
- * Description:
- * Some devices have an internal block size bigger than the reported
- * hardware sector size. This function can be used to signal the
- * smallest I/O the device can perform without incurring a performance
- * penalty.
- */
- void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
- {
- limits->io_min = min;
- if (limits->io_min < limits->logical_block_size)
- limits->io_min = limits->logical_block_size;
- if (limits->io_min < limits->physical_block_size)
- limits->io_min = limits->physical_block_size;
- }
- EXPORT_SYMBOL(blk_limits_io_min);
- /**
- * blk_queue_io_min - set minimum request size for the queue
- * @q: the request queue for the device
- * @min: smallest I/O size in bytes
- *
- * Description:
- * Storage devices may report a granularity or preferred minimum I/O
- * size which is the smallest request the device can perform without
- * incurring a performance penalty. For disk drives this is often the
- * physical block size. For RAID arrays it is often the stripe chunk
- * size. A properly aligned multiple of minimum_io_size is the
- * preferred request size for workloads where a high number of I/O
- * operations is desired.
- */
- void blk_queue_io_min(struct request_queue *q, unsigned int min)
- {
- blk_limits_io_min(&q->limits, min);
- }
- EXPORT_SYMBOL(blk_queue_io_min);
- /**
- * blk_limits_io_opt - set optimal request size for a device
- * @limits: the queue limits
- * @opt: smallest I/O size in bytes
- *
- * Description:
- * Storage devices may report an optimal I/O size, which is the
- * device's preferred unit for sustained I/O. This is rarely reported
- * for disk drives. For RAID arrays it is usually the stripe width or
- * the internal track size. A properly aligned multiple of
- * optimal_io_size is the preferred request size for workloads where
- * sustained throughput is desired.
- */
- void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
- {
- limits->io_opt = opt;
- }
- EXPORT_SYMBOL(blk_limits_io_opt);
- /**
- * blk_queue_io_opt - set optimal request size for the queue
- * @q: the request queue for the device
- * @opt: optimal request size in bytes
- *
- * Description:
- * Storage devices may report an optimal I/O size, which is the
- * device's preferred unit for sustained I/O. This is rarely reported
- * for disk drives. For RAID arrays it is usually the stripe width or
- * the internal track size. A properly aligned multiple of
- * optimal_io_size is the preferred request size for workloads where
- * sustained throughput is desired.
- */
- void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
- {
- blk_limits_io_opt(&q->limits, opt);
- }
- EXPORT_SYMBOL(blk_queue_io_opt);
- /**
- * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
- * @t: the stacking driver (top)
- * @b: the underlying device (bottom)
- **/
- void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
- {
- blk_stack_limits(&t->limits, &b->limits, 0);
- }
- EXPORT_SYMBOL(blk_queue_stack_limits);
- /**
- * blk_stack_limits - adjust queue_limits for stacked devices
- * @t: the stacking driver limits (top device)
- * @b: the underlying queue limits (bottom, component device)
- * @start: first data sector within component device
- *
- * Description:
- * This function is used by stacking drivers like MD and DM to ensure
- * that all component devices have compatible block sizes and
- * alignments. The stacking driver must provide a queue_limits
- * struct (top) and then iteratively call the stacking function for
- * all component (bottom) devices. The stacking function will
- * attempt to combine the values and ensure proper alignment.
- *
- * Returns 0 if the top and bottom queue_limits are compatible. The
- * top device's block sizes and alignment offsets may be adjusted to
- * ensure alignment with the bottom device. If no compatible sizes
- * and alignments exist, -1 is returned and the resulting top
- * queue_limits will have the misaligned flag set to indicate that
- * the alignment_offset is undefined.
- */
- int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
- sector_t start)
- {
- unsigned int top, bottom, alignment, ret = 0;
- t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
- t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
- t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
- t->max_write_same_sectors = min(t->max_write_same_sectors,
- b->max_write_same_sectors);
- t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
- t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
- b->seg_boundary_mask);
- t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
- b->virt_boundary_mask);
- t->max_segments = min_not_zero(t->max_segments, b->max_segments);
- t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
- b->max_integrity_segments);
- t->max_segment_size = min_not_zero(t->max_segment_size,
- b->max_segment_size);
- t->misaligned |= b->misaligned;
- alignment = queue_limit_alignment_offset(b, start);
- /* Bottom device has different alignment. Check that it is
- * compatible with the current top alignment.
- */
- if (t->alignment_offset != alignment) {
- top = max(t->physical_block_size, t->io_min)
- + t->alignment_offset;
- bottom = max(b->physical_block_size, b->io_min) + alignment;
- /* Verify that top and bottom intervals line up */
- if (max(top, bottom) % min(top, bottom)) {
- t->misaligned = 1;
- ret = -1;
- }
- }
- t->logical_block_size = max(t->logical_block_size,
- b->logical_block_size);
- t->physical_block_size = max(t->physical_block_size,
- b->physical_block_size);
- t->io_min = max(t->io_min, b->io_min);
- t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
- t->cluster &= b->cluster;
- t->discard_zeroes_data &= b->discard_zeroes_data;
- /* Physical block size a multiple of the logical block size? */
- if (t->physical_block_size & (t->logical_block_size - 1)) {
- t->physical_block_size = t->logical_block_size;
- t->misaligned = 1;
- ret = -1;
- }
- /* Minimum I/O a multiple of the physical block size? */
- if (t->io_min & (t->physical_block_size - 1)) {
- t->io_min = t->physical_block_size;
- t->misaligned = 1;
- ret = -1;
- }
- /* Optimal I/O a multiple of the physical block size? */
- if (t->io_opt & (t->physical_block_size - 1)) {
- t->io_opt = 0;
- t->misaligned = 1;
- ret = -1;
- }
- t->raid_partial_stripes_expensive =
- max(t->raid_partial_stripes_expensive,
- b->raid_partial_stripes_expensive);
- /* Find lowest common alignment_offset */
- t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
- % max(t->physical_block_size, t->io_min);
- /* Verify that new alignment_offset is on a logical block boundary */
- if (t->alignment_offset & (t->logical_block_size - 1)) {
- t->misaligned = 1;
- ret = -1;
- }
- /* Discard alignment and granularity */
- if (b->discard_granularity) {
- alignment = queue_limit_discard_alignment(b, start);
- if (t->discard_granularity != 0 &&
- t->discard_alignment != alignment) {
- top = t->discard_granularity + t->discard_alignment;
- bottom = b->discard_granularity + alignment;
- /* Verify that top and bottom intervals line up */
- if ((max(top, bottom) % min(top, bottom)) != 0)
- t->discard_misaligned = 1;
- }
- t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
- b->max_discard_sectors);
- t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
- b->max_hw_discard_sectors);
- t->discard_granularity = max(t->discard_granularity,
- b->discard_granularity);
- t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
- t->discard_granularity;
- }
- return ret;
- }
- EXPORT_SYMBOL(blk_stack_limits);
- /**
- * bdev_stack_limits - adjust queue limits for stacked drivers
- * @t: the stacking driver limits (top device)
- * @bdev: the component block_device (bottom)
- * @start: first data sector within component device
- *
- * Description:
- * Merges queue limits for a top device and a block_device. Returns
- * 0 if alignment didn't change. Returns -1 if adding the bottom
- * device caused misalignment.
- */
- int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
- sector_t start)
- {
- struct request_queue *bq = bdev_get_queue(bdev);
- start += get_start_sect(bdev);
- return blk_stack_limits(t, &bq->limits, start);
- }
- EXPORT_SYMBOL(bdev_stack_limits);
- /**
- * disk_stack_limits - adjust queue limits for stacked drivers
- * @disk: MD/DM gendisk (top)
- * @bdev: the underlying block device (bottom)
- * @offset: offset to beginning of data within component device
- *
- * Description:
- * Merges the limits for a top level gendisk and a bottom level
- * block_device.
- */
- void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
- sector_t offset)
- {
- struct request_queue *t = disk->queue;
- if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
- char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
- disk_name(disk, 0, top);
- bdevname(bdev, bottom);
- printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
- top, bottom);
- }
- }
- EXPORT_SYMBOL(disk_stack_limits);
- /**
- * blk_queue_dma_pad - set pad mask
- * @q: the request queue for the device
- * @mask: pad mask
- *
- * Set dma pad mask.
- *
- * Appending pad buffer to a request modifies the last entry of a
- * scatter list such that it includes the pad buffer.
- **/
- void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
- {
- q->dma_pad_mask = mask;
- }
- EXPORT_SYMBOL(blk_queue_dma_pad);
- /**
- * blk_queue_update_dma_pad - update pad mask
- * @q: the request queue for the device
- * @mask: pad mask
- *
- * Update dma pad mask.
- *
- * Appending pad buffer to a request modifies the last entry of a
- * scatter list such that it includes the pad buffer.
- **/
- void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
- {
- if (mask > q->dma_pad_mask)
- q->dma_pad_mask = mask;
- }
- EXPORT_SYMBOL(blk_queue_update_dma_pad);
- /**
- * blk_queue_dma_drain - Set up a drain buffer for excess dma.
- * @q: the request queue for the device
- * @dma_drain_needed: fn which returns non-zero if drain is necessary
- * @buf: physically contiguous buffer
- * @size: size of the buffer in bytes
- *
- * Some devices have excess DMA problems and can't simply discard (or
- * zero fill) the unwanted piece of the transfer. They have to have a
- * real area of memory to transfer it into. The use case for this is
- * ATAPI devices in DMA mode. If the packet command causes a transfer
- * bigger than the transfer size some HBAs will lock up if there
- * aren't DMA elements to contain the excess transfer. What this API
- * does is adjust the queue so that the buf is always appended
- * silently to the scatterlist.
- *
- * Note: This routine adjusts max_hw_segments to make room for appending
- * the drain buffer. If you call blk_queue_max_segments() after calling
- * this routine, you must set the limit to one fewer than your device
- * can support otherwise there won't be room for the drain buffer.
- */
- int blk_queue_dma_drain(struct request_queue *q,
- dma_drain_needed_fn *dma_drain_needed,
- void *buf, unsigned int size)
- {
- if (queue_max_segments(q) < 2)
- return -EINVAL;
- /* make room for appending the drain */
- blk_queue_max_segments(q, queue_max_segments(q) - 1);
- q->dma_drain_needed = dma_drain_needed;
- q->dma_drain_buffer = buf;
- q->dma_drain_size = size;
- return 0;
- }
- EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
- /**
- * blk_queue_segment_boundary - set boundary rules for segment merging
- * @q: the request queue for the device
- * @mask: the memory boundary mask
- **/
- void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
- {
- if (mask < PAGE_SIZE - 1) {
- mask = PAGE_SIZE - 1;
- printk(KERN_INFO "%s: set to minimum %lx\n",
- __func__, mask);
- }
- q->limits.seg_boundary_mask = mask;
- }
- EXPORT_SYMBOL(blk_queue_segment_boundary);
- /**
- * blk_queue_virt_boundary - set boundary rules for bio merging
- * @q: the request queue for the device
- * @mask: the memory boundary mask
- **/
- void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
- {
- q->limits.virt_boundary_mask = mask;
- }
- EXPORT_SYMBOL(blk_queue_virt_boundary);
- /**
- * blk_queue_dma_alignment - set dma length and memory alignment
- * @q: the request queue for the device
- * @mask: alignment mask
- *
- * description:
- * set required memory and length alignment for direct dma transactions.
- * this is used when building direct io requests for the queue.
- *
- **/
- void blk_queue_dma_alignment(struct request_queue *q, int mask)
- {
- q->dma_alignment = mask;
- }
- EXPORT_SYMBOL(blk_queue_dma_alignment);
- /**
- * blk_queue_update_dma_alignment - update dma length and memory alignment
- * @q: the request queue for the device
- * @mask: alignment mask
- *
- * description:
- * update required memory and length alignment for direct dma transactions.
- * If the requested alignment is larger than the current alignment, then
- * the current queue alignment is updated to the new value, otherwise it
- * is left alone. The design of this is to allow multiple objects
- * (driver, device, transport etc) to set their respective
- * alignments without having them interfere.
- *
- **/
- void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
- {
- BUG_ON(mask > PAGE_SIZE);
- if (mask > q->dma_alignment)
- q->dma_alignment = mask;
- }
- EXPORT_SYMBOL(blk_queue_update_dma_alignment);
- void blk_queue_flush_queueable(struct request_queue *q, bool queueable)
- {
- spin_lock_irq(q->queue_lock);
- if (queueable)
- clear_bit(QUEUE_FLAG_FLUSH_NQ, &q->queue_flags);
- else
- set_bit(QUEUE_FLAG_FLUSH_NQ, &q->queue_flags);
- spin_unlock_irq(q->queue_lock);
- }
- EXPORT_SYMBOL_GPL(blk_queue_flush_queueable);
- /**
- * blk_queue_write_cache - configure queue's write cache
- * @q: the request queue for the device
- * @wc: write back cache on or off
- * @fua: device supports FUA writes, if true
- *
- * Tell the block layer about the write cache of @q.
- */
- void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
- {
- spin_lock_irq(q->queue_lock);
- if (wc)
- queue_flag_set(QUEUE_FLAG_WC, q);
- else
- queue_flag_clear(QUEUE_FLAG_WC, q);
- if (fua)
- queue_flag_set(QUEUE_FLAG_FUA, q);
- else
- queue_flag_clear(QUEUE_FLAG_FUA, q);
- spin_unlock_irq(q->queue_lock);
- }
- EXPORT_SYMBOL_GPL(blk_queue_write_cache);
- static int __init blk_settings_init(void)
- {
- blk_max_low_pfn = max_low_pfn - 1;
- blk_max_pfn = max_pfn - 1;
- return 0;
- }
- subsys_initcall(blk_settings_init);
|