123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585 |
- /*
- * Copyright 2010 Tilera Corporation. All Rights Reserved.
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation, version 2.
- *
- * This program is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
- * NON INFRINGEMENT. See the GNU General Public License for
- * more details.
- */
- #include <linux/sched.h>
- #include <linux/kernel.h>
- #include <linux/errno.h>
- #include <linux/mm.h>
- #include <linux/swap.h>
- #include <linux/highmem.h>
- #include <linux/slab.h>
- #include <linux/pagemap.h>
- #include <linux/spinlock.h>
- #include <linux/cpumask.h>
- #include <linux/module.h>
- #include <linux/io.h>
- #include <linux/vmalloc.h>
- #include <linux/smp.h>
- #include <asm/pgtable.h>
- #include <asm/pgalloc.h>
- #include <asm/fixmap.h>
- #include <asm/tlb.h>
- #include <asm/tlbflush.h>
- #include <asm/homecache.h>
- #define K(x) ((x) << (PAGE_SHIFT-10))
- /*
- * The normal show_free_areas() is too verbose on Tile, with dozens
- * of processors and often four NUMA zones each with high and lowmem.
- */
- void show_mem(unsigned int filter)
- {
- struct zone *zone;
- pr_err("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu free:%lu\n slab:%lu mapped:%lu pagetables:%lu bounce:%lu pagecache:%lu swap:%lu\n",
- (global_node_page_state(NR_ACTIVE_ANON) +
- global_node_page_state(NR_ACTIVE_FILE)),
- (global_node_page_state(NR_INACTIVE_ANON) +
- global_node_page_state(NR_INACTIVE_FILE)),
- global_node_page_state(NR_FILE_DIRTY),
- global_node_page_state(NR_WRITEBACK),
- global_node_page_state(NR_UNSTABLE_NFS),
- global_page_state(NR_FREE_PAGES),
- (global_page_state(NR_SLAB_RECLAIMABLE) +
- global_page_state(NR_SLAB_UNRECLAIMABLE)),
- global_node_page_state(NR_FILE_MAPPED),
- global_page_state(NR_PAGETABLE),
- global_page_state(NR_BOUNCE),
- global_node_page_state(NR_FILE_PAGES),
- get_nr_swap_pages());
- for_each_zone(zone) {
- unsigned long flags, order, total = 0, largest_order = -1;
- if (!populated_zone(zone))
- continue;
- spin_lock_irqsave(&zone->lock, flags);
- for (order = 0; order < MAX_ORDER; order++) {
- int nr = zone->free_area[order].nr_free;
- total += nr << order;
- if (nr)
- largest_order = order;
- }
- spin_unlock_irqrestore(&zone->lock, flags);
- pr_err("Node %d %7s: %lukB (largest %luKb)\n",
- zone_to_nid(zone), zone->name,
- K(total), largest_order ? K(1UL) << largest_order : 0);
- }
- }
- /**
- * shatter_huge_page() - ensure a given address is mapped by a small page.
- *
- * This function converts a huge PTE mapping kernel LOWMEM into a bunch
- * of small PTEs with the same caching. No cache flush required, but we
- * must do a global TLB flush.
- *
- * Any caller that wishes to modify a kernel mapping that might
- * have been made with a huge page should call this function,
- * since doing so properly avoids race conditions with installing the
- * newly-shattered page and then flushing all the TLB entries.
- *
- * @addr: Address at which to shatter any existing huge page.
- */
- void shatter_huge_page(unsigned long addr)
- {
- pgd_t *pgd;
- pud_t *pud;
- pmd_t *pmd;
- unsigned long flags = 0; /* happy compiler */
- #ifdef __PAGETABLE_PMD_FOLDED
- struct list_head *pos;
- #endif
- /* Get a pointer to the pmd entry that we need to change. */
- addr &= HPAGE_MASK;
- BUG_ON(pgd_addr_invalid(addr));
- BUG_ON(addr < PAGE_OFFSET); /* only for kernel LOWMEM */
- pgd = swapper_pg_dir + pgd_index(addr);
- pud = pud_offset(pgd, addr);
- BUG_ON(!pud_present(*pud));
- pmd = pmd_offset(pud, addr);
- BUG_ON(!pmd_present(*pmd));
- if (!pmd_huge_page(*pmd))
- return;
- spin_lock_irqsave(&init_mm.page_table_lock, flags);
- if (!pmd_huge_page(*pmd)) {
- /* Lost the race to convert the huge page. */
- spin_unlock_irqrestore(&init_mm.page_table_lock, flags);
- return;
- }
- /* Shatter the huge page into the preallocated L2 page table. */
- pmd_populate_kernel(&init_mm, pmd, get_prealloc_pte(pmd_pfn(*pmd)));
- #ifdef __PAGETABLE_PMD_FOLDED
- /* Walk every pgd on the system and update the pmd there. */
- spin_lock(&pgd_lock);
- list_for_each(pos, &pgd_list) {
- pmd_t *copy_pmd;
- pgd = list_to_pgd(pos) + pgd_index(addr);
- pud = pud_offset(pgd, addr);
- copy_pmd = pmd_offset(pud, addr);
- __set_pmd(copy_pmd, *pmd);
- }
- spin_unlock(&pgd_lock);
- #endif
- /* Tell every cpu to notice the change. */
- flush_remote(0, 0, NULL, addr, HPAGE_SIZE, HPAGE_SIZE,
- cpu_possible_mask, NULL, 0);
- /* Hold the lock until the TLB flush is finished to avoid races. */
- spin_unlock_irqrestore(&init_mm.page_table_lock, flags);
- }
- /*
- * List of all pgd's needed so it can invalidate entries in both cached
- * and uncached pgd's. This is essentially codepath-based locking
- * against pageattr.c; it is the unique case in which a valid change
- * of kernel pagetables can't be lazily synchronized by vmalloc faults.
- * vmalloc faults work because attached pagetables are never freed.
- *
- * The lock is always taken with interrupts disabled, unlike on x86
- * and other platforms, because we need to take the lock in
- * shatter_huge_page(), which may be called from an interrupt context.
- * We are not at risk from the tlbflush IPI deadlock that was seen on
- * x86, since we use the flush_remote() API to have the hypervisor do
- * the TLB flushes regardless of irq disabling.
- */
- DEFINE_SPINLOCK(pgd_lock);
- LIST_HEAD(pgd_list);
- static inline void pgd_list_add(pgd_t *pgd)
- {
- list_add(pgd_to_list(pgd), &pgd_list);
- }
- static inline void pgd_list_del(pgd_t *pgd)
- {
- list_del(pgd_to_list(pgd));
- }
- #define KERNEL_PGD_INDEX_START pgd_index(PAGE_OFFSET)
- #define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_INDEX_START)
- static void pgd_ctor(pgd_t *pgd)
- {
- unsigned long flags;
- memset(pgd, 0, KERNEL_PGD_INDEX_START*sizeof(pgd_t));
- spin_lock_irqsave(&pgd_lock, flags);
- #ifndef __tilegx__
- /*
- * Check that the user interrupt vector has no L2.
- * It never should for the swapper, and new page tables
- * should always start with an empty user interrupt vector.
- */
- BUG_ON(((u64 *)swapper_pg_dir)[pgd_index(MEM_USER_INTRPT)] != 0);
- #endif
- memcpy(pgd + KERNEL_PGD_INDEX_START,
- swapper_pg_dir + KERNEL_PGD_INDEX_START,
- KERNEL_PGD_PTRS * sizeof(pgd_t));
- pgd_list_add(pgd);
- spin_unlock_irqrestore(&pgd_lock, flags);
- }
- static void pgd_dtor(pgd_t *pgd)
- {
- unsigned long flags; /* can be called from interrupt context */
- spin_lock_irqsave(&pgd_lock, flags);
- pgd_list_del(pgd);
- spin_unlock_irqrestore(&pgd_lock, flags);
- }
- pgd_t *pgd_alloc(struct mm_struct *mm)
- {
- pgd_t *pgd = kmem_cache_alloc(pgd_cache, GFP_KERNEL);
- if (pgd)
- pgd_ctor(pgd);
- return pgd;
- }
- void pgd_free(struct mm_struct *mm, pgd_t *pgd)
- {
- pgd_dtor(pgd);
- kmem_cache_free(pgd_cache, pgd);
- }
- #define L2_USER_PGTABLE_PAGES (1 << L2_USER_PGTABLE_ORDER)
- struct page *pgtable_alloc_one(struct mm_struct *mm, unsigned long address,
- int order)
- {
- gfp_t flags = GFP_KERNEL|__GFP_ZERO;
- struct page *p;
- int i;
- p = alloc_pages(flags, L2_USER_PGTABLE_ORDER);
- if (p == NULL)
- return NULL;
- if (!pgtable_page_ctor(p)) {
- __free_pages(p, L2_USER_PGTABLE_ORDER);
- return NULL;
- }
- /*
- * Make every page have a page_count() of one, not just the first.
- * We don't use __GFP_COMP since it doesn't look like it works
- * correctly with tlb_remove_page().
- */
- for (i = 1; i < order; ++i) {
- init_page_count(p+i);
- inc_zone_page_state(p+i, NR_PAGETABLE);
- }
- return p;
- }
- /*
- * Free page immediately (used in __pte_alloc if we raced with another
- * process). We have to correct whatever pte_alloc_one() did before
- * returning the pages to the allocator.
- */
- void pgtable_free(struct mm_struct *mm, struct page *p, int order)
- {
- int i;
- pgtable_page_dtor(p);
- __free_page(p);
- for (i = 1; i < order; ++i) {
- __free_page(p+i);
- dec_zone_page_state(p+i, NR_PAGETABLE);
- }
- }
- void __pgtable_free_tlb(struct mmu_gather *tlb, struct page *pte,
- unsigned long address, int order)
- {
- int i;
- pgtable_page_dtor(pte);
- tlb_remove_page(tlb, pte);
- for (i = 1; i < order; ++i) {
- tlb_remove_page(tlb, pte + i);
- dec_zone_page_state(pte + i, NR_PAGETABLE);
- }
- }
- #ifndef __tilegx__
- /*
- * FIXME: needs to be atomic vs hypervisor writes. For now we make the
- * window of vulnerability a bit smaller by doing an unlocked 8-bit update.
- */
- int ptep_test_and_clear_young(struct vm_area_struct *vma,
- unsigned long addr, pte_t *ptep)
- {
- #if HV_PTE_INDEX_ACCESSED < 8 || HV_PTE_INDEX_ACCESSED >= 16
- # error Code assumes HV_PTE "accessed" bit in second byte
- #endif
- u8 *tmp = (u8 *)ptep;
- u8 second_byte = tmp[1];
- if (!(second_byte & (1 << (HV_PTE_INDEX_ACCESSED - 8))))
- return 0;
- tmp[1] = second_byte & ~(1 << (HV_PTE_INDEX_ACCESSED - 8));
- return 1;
- }
- /*
- * This implementation is atomic vs hypervisor writes, since the hypervisor
- * always writes the low word (where "accessed" and "dirty" are) and this
- * routine only writes the high word.
- */
- void ptep_set_wrprotect(struct mm_struct *mm,
- unsigned long addr, pte_t *ptep)
- {
- #if HV_PTE_INDEX_WRITABLE < 32
- # error Code assumes HV_PTE "writable" bit in high word
- #endif
- u32 *tmp = (u32 *)ptep;
- tmp[1] = tmp[1] & ~(1 << (HV_PTE_INDEX_WRITABLE - 32));
- }
- #endif
- /*
- * Return a pointer to the PTE that corresponds to the given
- * address in the given page table. A NULL page table just uses
- * the standard kernel page table; the preferred API in this case
- * is virt_to_kpte().
- *
- * The returned pointer can point to a huge page in other levels
- * of the page table than the bottom, if the huge page is present
- * in the page table. For bottom-level PTEs, the returned pointer
- * can point to a PTE that is either present or not.
- */
- pte_t *virt_to_pte(struct mm_struct* mm, unsigned long addr)
- {
- pgd_t *pgd;
- pud_t *pud;
- pmd_t *pmd;
- if (pgd_addr_invalid(addr))
- return NULL;
- pgd = mm ? pgd_offset(mm, addr) : swapper_pg_dir + pgd_index(addr);
- pud = pud_offset(pgd, addr);
- if (!pud_present(*pud))
- return NULL;
- if (pud_huge_page(*pud))
- return (pte_t *)pud;
- pmd = pmd_offset(pud, addr);
- if (!pmd_present(*pmd))
- return NULL;
- if (pmd_huge_page(*pmd))
- return (pte_t *)pmd;
- return pte_offset_kernel(pmd, addr);
- }
- EXPORT_SYMBOL(virt_to_pte);
- pte_t *virt_to_kpte(unsigned long kaddr)
- {
- BUG_ON(kaddr < PAGE_OFFSET);
- return virt_to_pte(NULL, kaddr);
- }
- EXPORT_SYMBOL(virt_to_kpte);
- pgprot_t set_remote_cache_cpu(pgprot_t prot, int cpu)
- {
- unsigned int width = smp_width;
- int x = cpu % width;
- int y = cpu / width;
- BUG_ON(y >= smp_height);
- BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3);
- BUG_ON(cpu < 0 || cpu >= NR_CPUS);
- BUG_ON(!cpu_is_valid_lotar(cpu));
- return hv_pte_set_lotar(prot, HV_XY_TO_LOTAR(x, y));
- }
- int get_remote_cache_cpu(pgprot_t prot)
- {
- HV_LOTAR lotar = hv_pte_get_lotar(prot);
- int x = HV_LOTAR_X(lotar);
- int y = HV_LOTAR_Y(lotar);
- BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3);
- return x + y * smp_width;
- }
- /*
- * Convert a kernel VA to a PA and homing information.
- */
- int va_to_cpa_and_pte(void *va, unsigned long long *cpa, pte_t *pte)
- {
- struct page *page = virt_to_page(va);
- pte_t null_pte = { 0 };
- *cpa = __pa(va);
- /* Note that this is not writing a page table, just returning a pte. */
- *pte = pte_set_home(null_pte, page_home(page));
- return 0; /* return non-zero if not hfh? */
- }
- EXPORT_SYMBOL(va_to_cpa_and_pte);
- void __set_pte(pte_t *ptep, pte_t pte)
- {
- #ifdef __tilegx__
- *ptep = pte;
- #else
- # if HV_PTE_INDEX_PRESENT >= 32 || HV_PTE_INDEX_MIGRATING >= 32
- # error Must write the present and migrating bits last
- # endif
- if (pte_present(pte)) {
- ((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32);
- barrier();
- ((u32 *)ptep)[0] = (u32)(pte_val(pte));
- } else {
- ((u32 *)ptep)[0] = (u32)(pte_val(pte));
- barrier();
- ((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32);
- }
- #endif /* __tilegx__ */
- }
- void set_pte(pte_t *ptep, pte_t pte)
- {
- if (pte_present(pte) &&
- (!CHIP_HAS_MMIO() || hv_pte_get_mode(pte) != HV_PTE_MODE_MMIO)) {
- /* The PTE actually references physical memory. */
- unsigned long pfn = pte_pfn(pte);
- if (pfn_valid(pfn)) {
- /* Update the home of the PTE from the struct page. */
- pte = pte_set_home(pte, page_home(pfn_to_page(pfn)));
- } else if (hv_pte_get_mode(pte) == 0) {
- /* remap_pfn_range(), etc, must supply PTE mode. */
- panic("set_pte(): out-of-range PFN and mode 0\n");
- }
- }
- __set_pte(ptep, pte);
- }
- /* Can this mm load a PTE with cached_priority set? */
- static inline int mm_is_priority_cached(struct mm_struct *mm)
- {
- return mm->context.priority_cached != 0;
- }
- /*
- * Add a priority mapping to an mm_context and
- * notify the hypervisor if this is the first one.
- */
- void start_mm_caching(struct mm_struct *mm)
- {
- if (!mm_is_priority_cached(mm)) {
- mm->context.priority_cached = -1UL;
- hv_set_caching(-1UL);
- }
- }
- /*
- * Validate and return the priority_cached flag. We know if it's zero
- * that we don't need to scan, since we immediately set it non-zero
- * when we first consider a MAP_CACHE_PRIORITY mapping.
- *
- * We only _try_ to acquire the mmap_sem semaphore; if we can't acquire it,
- * since we're in an interrupt context (servicing switch_mm) we don't
- * worry about it and don't unset the "priority_cached" field.
- * Presumably we'll come back later and have more luck and clear
- * the value then; for now we'll just keep the cache marked for priority.
- */
- static unsigned long update_priority_cached(struct mm_struct *mm)
- {
- if (mm->context.priority_cached && down_write_trylock(&mm->mmap_sem)) {
- struct vm_area_struct *vm;
- for (vm = mm->mmap; vm; vm = vm->vm_next) {
- if (hv_pte_get_cached_priority(vm->vm_page_prot))
- break;
- }
- if (vm == NULL)
- mm->context.priority_cached = 0;
- up_write(&mm->mmap_sem);
- }
- return mm->context.priority_cached;
- }
- /* Set caching correctly for an mm that we are switching to. */
- void check_mm_caching(struct mm_struct *prev, struct mm_struct *next)
- {
- if (!mm_is_priority_cached(next)) {
- /*
- * If the new mm doesn't use priority caching, just see if we
- * need the hv_set_caching(), or can assume it's already zero.
- */
- if (mm_is_priority_cached(prev))
- hv_set_caching(0);
- } else {
- hv_set_caching(update_priority_cached(next));
- }
- }
- #if CHIP_HAS_MMIO()
- /* Map an arbitrary MMIO address, homed according to pgprot, into VA space. */
- void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
- pgprot_t home)
- {
- void *addr;
- struct vm_struct *area;
- unsigned long offset, last_addr;
- pgprot_t pgprot;
- /* Don't allow wraparound or zero size */
- last_addr = phys_addr + size - 1;
- if (!size || last_addr < phys_addr)
- return NULL;
- /* Create a read/write, MMIO VA mapping homed at the requested shim. */
- pgprot = PAGE_KERNEL;
- pgprot = hv_pte_set_mode(pgprot, HV_PTE_MODE_MMIO);
- pgprot = hv_pte_set_lotar(pgprot, hv_pte_get_lotar(home));
- /*
- * Mappings have to be page-aligned
- */
- offset = phys_addr & ~PAGE_MASK;
- phys_addr &= PAGE_MASK;
- size = PAGE_ALIGN(last_addr+1) - phys_addr;
- /*
- * Ok, go for it..
- */
- area = get_vm_area(size, VM_IOREMAP /* | other flags? */);
- if (!area)
- return NULL;
- area->phys_addr = phys_addr;
- addr = area->addr;
- if (ioremap_page_range((unsigned long)addr, (unsigned long)addr + size,
- phys_addr, pgprot)) {
- free_vm_area(area);
- return NULL;
- }
- return (__force void __iomem *) (offset + (char *)addr);
- }
- EXPORT_SYMBOL(ioremap_prot);
- /* Unmap an MMIO VA mapping. */
- void iounmap(volatile void __iomem *addr_in)
- {
- volatile void __iomem *addr = (volatile void __iomem *)
- (PAGE_MASK & (unsigned long __force)addr_in);
- #if 1
- vunmap((void * __force)addr);
- #else
- /* x86 uses this complicated flow instead of vunmap(). Is
- * there any particular reason we should do the same? */
- struct vm_struct *p, *o;
- /* Use the vm area unlocked, assuming the caller
- ensures there isn't another iounmap for the same address
- in parallel. Reuse of the virtual address is prevented by
- leaving it in the global lists until we're done with it.
- cpa takes care of the direct mappings. */
- p = find_vm_area((void *)addr);
- if (!p) {
- pr_err("iounmap: bad address %p\n", addr);
- dump_stack();
- return;
- }
- /* Finally remove it */
- o = remove_vm_area((void *)addr);
- BUG_ON(p != o || o == NULL);
- kfree(p);
- #endif
- }
- EXPORT_SYMBOL(iounmap);
- #endif /* CHIP_HAS_MMIO() */
|