init.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987
  1. /*
  2. * Copyright (C) 1995 Linus Torvalds
  3. * Copyright 2010 Tilera Corporation. All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License
  7. * as published by the Free Software Foundation, version 2.
  8. *
  9. * This program is distributed in the hope that it will be useful, but
  10. * WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  12. * NON INFRINGEMENT. See the GNU General Public License for
  13. * more details.
  14. */
  15. #include <linux/module.h>
  16. #include <linux/signal.h>
  17. #include <linux/sched.h>
  18. #include <linux/kernel.h>
  19. #include <linux/errno.h>
  20. #include <linux/string.h>
  21. #include <linux/types.h>
  22. #include <linux/ptrace.h>
  23. #include <linux/mman.h>
  24. #include <linux/mm.h>
  25. #include <linux/hugetlb.h>
  26. #include <linux/swap.h>
  27. #include <linux/smp.h>
  28. #include <linux/init.h>
  29. #include <linux/highmem.h>
  30. #include <linux/pagemap.h>
  31. #include <linux/poison.h>
  32. #include <linux/bootmem.h>
  33. #include <linux/slab.h>
  34. #include <linux/proc_fs.h>
  35. #include <linux/efi.h>
  36. #include <linux/memory_hotplug.h>
  37. #include <linux/uaccess.h>
  38. #include <asm/mmu_context.h>
  39. #include <asm/processor.h>
  40. #include <asm/pgtable.h>
  41. #include <asm/pgalloc.h>
  42. #include <asm/dma.h>
  43. #include <asm/fixmap.h>
  44. #include <asm/tlb.h>
  45. #include <asm/tlbflush.h>
  46. #include <asm/sections.h>
  47. #include <asm/setup.h>
  48. #include <asm/homecache.h>
  49. #include <hv/hypervisor.h>
  50. #include <arch/chip.h>
  51. #include "migrate.h"
  52. #define clear_pgd(pmdptr) (*(pmdptr) = hv_pte(0))
  53. #ifndef __tilegx__
  54. unsigned long VMALLOC_RESERVE = CONFIG_VMALLOC_RESERVE;
  55. EXPORT_SYMBOL(VMALLOC_RESERVE);
  56. #endif
  57. /* Create an L2 page table */
  58. static pte_t * __init alloc_pte(void)
  59. {
  60. return __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE, HV_PAGE_TABLE_ALIGN, 0);
  61. }
  62. /*
  63. * L2 page tables per controller. We allocate these all at once from
  64. * the bootmem allocator and store them here. This saves on kernel L2
  65. * page table memory, compared to allocating a full 64K page per L2
  66. * page table, and also means that in cases where we use huge pages,
  67. * we are guaranteed to later be able to shatter those huge pages and
  68. * switch to using these page tables instead, without requiring
  69. * further allocation. Each l2_ptes[] entry points to the first page
  70. * table for the first hugepage-size piece of memory on the
  71. * controller; other page tables are just indexed directly, i.e. the
  72. * L2 page tables are contiguous in memory for each controller.
  73. */
  74. static pte_t *l2_ptes[MAX_NUMNODES];
  75. static int num_l2_ptes[MAX_NUMNODES];
  76. static void init_prealloc_ptes(int node, int pages)
  77. {
  78. BUG_ON(pages & (PTRS_PER_PTE - 1));
  79. if (pages) {
  80. num_l2_ptes[node] = pages;
  81. l2_ptes[node] = __alloc_bootmem(pages * sizeof(pte_t),
  82. HV_PAGE_TABLE_ALIGN, 0);
  83. }
  84. }
  85. pte_t *get_prealloc_pte(unsigned long pfn)
  86. {
  87. int node = pfn_to_nid(pfn);
  88. pfn &= ~(-1UL << (NR_PA_HIGHBIT_SHIFT - PAGE_SHIFT));
  89. BUG_ON(node >= MAX_NUMNODES);
  90. BUG_ON(pfn >= num_l2_ptes[node]);
  91. return &l2_ptes[node][pfn];
  92. }
  93. /*
  94. * What caching do we expect pages from the heap to have when
  95. * they are allocated during bootup? (Once we've installed the
  96. * "real" swapper_pg_dir.)
  97. */
  98. static int initial_heap_home(void)
  99. {
  100. if (hash_default)
  101. return PAGE_HOME_HASH;
  102. return smp_processor_id();
  103. }
  104. /*
  105. * Place a pointer to an L2 page table in a middle page
  106. * directory entry.
  107. */
  108. static void __init assign_pte(pmd_t *pmd, pte_t *page_table)
  109. {
  110. phys_addr_t pa = __pa(page_table);
  111. unsigned long l2_ptfn = pa >> HV_LOG2_PAGE_TABLE_ALIGN;
  112. pte_t pteval = hv_pte_set_ptfn(__pgprot(_PAGE_TABLE), l2_ptfn);
  113. BUG_ON((pa & (HV_PAGE_TABLE_ALIGN-1)) != 0);
  114. pteval = pte_set_home(pteval, initial_heap_home());
  115. *(pte_t *)pmd = pteval;
  116. if (page_table != (pte_t *)pmd_page_vaddr(*pmd))
  117. BUG();
  118. }
  119. #ifdef __tilegx__
  120. static inline pmd_t *alloc_pmd(void)
  121. {
  122. return __alloc_bootmem(L1_KERNEL_PGTABLE_SIZE, HV_PAGE_TABLE_ALIGN, 0);
  123. }
  124. static inline void assign_pmd(pud_t *pud, pmd_t *pmd)
  125. {
  126. assign_pte((pmd_t *)pud, (pte_t *)pmd);
  127. }
  128. #endif /* __tilegx__ */
  129. /* Replace the given pmd with a full PTE table. */
  130. void __init shatter_pmd(pmd_t *pmd)
  131. {
  132. pte_t *pte = get_prealloc_pte(pte_pfn(*(pte_t *)pmd));
  133. assign_pte(pmd, pte);
  134. }
  135. #ifdef __tilegx__
  136. static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
  137. {
  138. pud_t *pud = pud_offset(&pgtables[pgd_index(va)], va);
  139. if (pud_none(*pud))
  140. assign_pmd(pud, alloc_pmd());
  141. return pmd_offset(pud, va);
  142. }
  143. #else
  144. static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
  145. {
  146. return pmd_offset(pud_offset(&pgtables[pgd_index(va)], va), va);
  147. }
  148. #endif
  149. /*
  150. * This function initializes a certain range of kernel virtual memory
  151. * with new bootmem page tables, everywhere page tables are missing in
  152. * the given range.
  153. */
  154. /*
  155. * NOTE: The pagetables are allocated contiguous on the physical space
  156. * so we can cache the place of the first one and move around without
  157. * checking the pgd every time.
  158. */
  159. static void __init page_table_range_init(unsigned long start,
  160. unsigned long end, pgd_t *pgd)
  161. {
  162. unsigned long vaddr;
  163. start = round_down(start, PMD_SIZE);
  164. end = round_up(end, PMD_SIZE);
  165. for (vaddr = start; vaddr < end; vaddr += PMD_SIZE) {
  166. pmd_t *pmd = get_pmd(pgd, vaddr);
  167. if (pmd_none(*pmd))
  168. assign_pte(pmd, alloc_pte());
  169. }
  170. }
  171. static int __initdata ktext_hash = 1; /* .text pages */
  172. static int __initdata kdata_hash = 1; /* .data and .bss pages */
  173. int __write_once hash_default = 1; /* kernel allocator pages */
  174. EXPORT_SYMBOL(hash_default);
  175. int __write_once kstack_hash = 1; /* if no homecaching, use h4h */
  176. /*
  177. * CPUs to use to for striping the pages of kernel data. If hash-for-home
  178. * is available, this is only relevant if kcache_hash sets up the
  179. * .data and .bss to be page-homed, and we don't want the default mode
  180. * of using the full set of kernel cpus for the striping.
  181. */
  182. static __initdata struct cpumask kdata_mask;
  183. static __initdata int kdata_arg_seen;
  184. int __write_once kdata_huge; /* if no homecaching, small pages */
  185. /* Combine a generic pgprot_t with cache home to get a cache-aware pgprot. */
  186. static pgprot_t __init construct_pgprot(pgprot_t prot, int home)
  187. {
  188. prot = pte_set_home(prot, home);
  189. if (home == PAGE_HOME_IMMUTABLE) {
  190. if (ktext_hash)
  191. prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_HASH_L3);
  192. else
  193. prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_NO_L3);
  194. }
  195. return prot;
  196. }
  197. /*
  198. * For a given kernel data VA, how should it be cached?
  199. * We return the complete pgprot_t with caching bits set.
  200. */
  201. static pgprot_t __init init_pgprot(ulong address)
  202. {
  203. int cpu;
  204. unsigned long page;
  205. enum { CODE_DELTA = MEM_SV_START - PAGE_OFFSET };
  206. /* For kdata=huge, everything is just hash-for-home. */
  207. if (kdata_huge)
  208. return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
  209. /*
  210. * We map the aliased pages of permanent text so we can
  211. * update them if necessary, for ftrace, etc.
  212. */
  213. if (address < (ulong) _sinittext - CODE_DELTA)
  214. return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
  215. /* We map read-only data non-coherent for performance. */
  216. if ((address >= (ulong) __start_rodata &&
  217. address < (ulong) __end_rodata) ||
  218. address == (ulong) empty_zero_page) {
  219. return construct_pgprot(PAGE_KERNEL_RO, PAGE_HOME_IMMUTABLE);
  220. }
  221. #ifndef __tilegx__
  222. /* Force the atomic_locks[] array page to be hash-for-home. */
  223. if (address == (ulong) atomic_locks)
  224. return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
  225. #endif
  226. /*
  227. * Everything else that isn't data or bss is heap, so mark it
  228. * with the initial heap home (hash-for-home, or this cpu). This
  229. * includes any addresses after the loaded image and any address before
  230. * __init_end, since we already captured the case of text before
  231. * _sinittext, and __pa(einittext) is approximately __pa(__init_begin).
  232. *
  233. * All the LOWMEM pages that we mark this way will get their
  234. * struct page homecache properly marked later, in set_page_homes().
  235. * The HIGHMEM pages we leave with a default zero for their
  236. * homes, but with a zero free_time we don't have to actually
  237. * do a flush action the first time we use them, either.
  238. */
  239. if (address >= (ulong) _end || address < (ulong) __init_end)
  240. return construct_pgprot(PAGE_KERNEL, initial_heap_home());
  241. /* Use hash-for-home if requested for data/bss. */
  242. if (kdata_hash)
  243. return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
  244. /*
  245. * Otherwise we just hand out consecutive cpus. To avoid
  246. * requiring this function to hold state, we just walk forward from
  247. * __end_rodata by PAGE_SIZE, skipping the readonly and init data, to
  248. * reach the requested address, while walking cpu home around
  249. * kdata_mask. This is typically no more than a dozen or so iterations.
  250. */
  251. page = (((ulong)__end_rodata) + PAGE_SIZE - 1) & PAGE_MASK;
  252. BUG_ON(address < page || address >= (ulong)_end);
  253. cpu = cpumask_first(&kdata_mask);
  254. for (; page < address; page += PAGE_SIZE) {
  255. if (page >= (ulong)&init_thread_union &&
  256. page < (ulong)&init_thread_union + THREAD_SIZE)
  257. continue;
  258. if (page == (ulong)empty_zero_page)
  259. continue;
  260. #ifndef __tilegx__
  261. if (page == (ulong)atomic_locks)
  262. continue;
  263. #endif
  264. cpu = cpumask_next(cpu, &kdata_mask);
  265. if (cpu == NR_CPUS)
  266. cpu = cpumask_first(&kdata_mask);
  267. }
  268. return construct_pgprot(PAGE_KERNEL, cpu);
  269. }
  270. /*
  271. * This function sets up how we cache the kernel text. If we have
  272. * hash-for-home support, normally that is used instead (see the
  273. * kcache_hash boot flag for more information). But if we end up
  274. * using a page-based caching technique, this option sets up the
  275. * details of that. In addition, the "ktext=nocache" option may
  276. * always be used to disable local caching of text pages, if desired.
  277. */
  278. static int __initdata ktext_arg_seen;
  279. static int __initdata ktext_small;
  280. static int __initdata ktext_local;
  281. static int __initdata ktext_all;
  282. static int __initdata ktext_nondataplane;
  283. static int __initdata ktext_nocache;
  284. static struct cpumask __initdata ktext_mask;
  285. static int __init setup_ktext(char *str)
  286. {
  287. if (str == NULL)
  288. return -EINVAL;
  289. /* If you have a leading "nocache", turn off ktext caching */
  290. if (strncmp(str, "nocache", 7) == 0) {
  291. ktext_nocache = 1;
  292. pr_info("ktext: disabling local caching of kernel text\n");
  293. str += 7;
  294. if (*str == ',')
  295. ++str;
  296. if (*str == '\0')
  297. return 0;
  298. }
  299. ktext_arg_seen = 1;
  300. /* Default setting: use a huge page */
  301. if (strcmp(str, "huge") == 0)
  302. pr_info("ktext: using one huge locally cached page\n");
  303. /* Pay TLB cost but get no cache benefit: cache small pages locally */
  304. else if (strcmp(str, "local") == 0) {
  305. ktext_small = 1;
  306. ktext_local = 1;
  307. pr_info("ktext: using small pages with local caching\n");
  308. }
  309. /* Neighborhood cache ktext pages on all cpus. */
  310. else if (strcmp(str, "all") == 0) {
  311. ktext_small = 1;
  312. ktext_all = 1;
  313. pr_info("ktext: using maximal caching neighborhood\n");
  314. }
  315. /* Neighborhood ktext pages on specified mask */
  316. else if (cpulist_parse(str, &ktext_mask) == 0) {
  317. if (cpumask_weight(&ktext_mask) > 1) {
  318. ktext_small = 1;
  319. pr_info("ktext: using caching neighborhood %*pbl with small pages\n",
  320. cpumask_pr_args(&ktext_mask));
  321. } else {
  322. pr_info("ktext: caching on cpu %*pbl with one huge page\n",
  323. cpumask_pr_args(&ktext_mask));
  324. }
  325. }
  326. else if (*str)
  327. return -EINVAL;
  328. return 0;
  329. }
  330. early_param("ktext", setup_ktext);
  331. static inline pgprot_t ktext_set_nocache(pgprot_t prot)
  332. {
  333. if (!ktext_nocache)
  334. prot = hv_pte_set_nc(prot);
  335. else
  336. prot = hv_pte_set_no_alloc_l2(prot);
  337. return prot;
  338. }
  339. /* Temporary page table we use for staging. */
  340. static pgd_t pgtables[PTRS_PER_PGD]
  341. __attribute__((aligned(HV_PAGE_TABLE_ALIGN)));
  342. /*
  343. * This maps the physical memory to kernel virtual address space, a total
  344. * of max_low_pfn pages, by creating page tables starting from address
  345. * PAGE_OFFSET.
  346. *
  347. * This routine transitions us from using a set of compiled-in large
  348. * pages to using some more precise caching, including removing access
  349. * to code pages mapped at PAGE_OFFSET (executed only at MEM_SV_START)
  350. * marking read-only data as locally cacheable, striping the remaining
  351. * .data and .bss across all the available tiles, and removing access
  352. * to pages above the top of RAM (thus ensuring a page fault from a bad
  353. * virtual address rather than a hypervisor shoot down for accessing
  354. * memory outside the assigned limits).
  355. */
  356. static void __init kernel_physical_mapping_init(pgd_t *pgd_base)
  357. {
  358. unsigned long long irqmask;
  359. unsigned long address, pfn;
  360. pmd_t *pmd;
  361. pte_t *pte;
  362. int pte_ofs;
  363. const struct cpumask *my_cpu_mask = cpumask_of(smp_processor_id());
  364. struct cpumask kstripe_mask;
  365. int rc, i;
  366. if (ktext_arg_seen && ktext_hash) {
  367. pr_warn("warning: \"ktext\" boot argument ignored if \"kcache_hash\" sets up text hash-for-home\n");
  368. ktext_small = 0;
  369. }
  370. if (kdata_arg_seen && kdata_hash) {
  371. pr_warn("warning: \"kdata\" boot argument ignored if \"kcache_hash\" sets up data hash-for-home\n");
  372. }
  373. if (kdata_huge && !hash_default) {
  374. pr_warn("warning: disabling \"kdata=huge\"; requires kcache_hash=all or =allbutstack\n");
  375. kdata_huge = 0;
  376. }
  377. /*
  378. * Set up a mask for cpus to use for kernel striping.
  379. * This is normally all cpus, but minus dataplane cpus if any.
  380. * If the dataplane covers the whole chip, we stripe over
  381. * the whole chip too.
  382. */
  383. cpumask_copy(&kstripe_mask, cpu_possible_mask);
  384. if (!kdata_arg_seen)
  385. kdata_mask = kstripe_mask;
  386. /* Allocate and fill in L2 page tables */
  387. for (i = 0; i < MAX_NUMNODES; ++i) {
  388. #ifdef CONFIG_HIGHMEM
  389. unsigned long end_pfn = node_lowmem_end_pfn[i];
  390. #else
  391. unsigned long end_pfn = node_end_pfn[i];
  392. #endif
  393. unsigned long end_huge_pfn = 0;
  394. /* Pre-shatter the last huge page to allow per-cpu pages. */
  395. if (kdata_huge)
  396. end_huge_pfn = end_pfn - (HPAGE_SIZE >> PAGE_SHIFT);
  397. pfn = node_start_pfn[i];
  398. /* Allocate enough memory to hold L2 page tables for node. */
  399. init_prealloc_ptes(i, end_pfn - pfn);
  400. address = (unsigned long) pfn_to_kaddr(pfn);
  401. while (pfn < end_pfn) {
  402. BUG_ON(address & (HPAGE_SIZE-1));
  403. pmd = get_pmd(pgtables, address);
  404. pte = get_prealloc_pte(pfn);
  405. if (pfn < end_huge_pfn) {
  406. pgprot_t prot = init_pgprot(address);
  407. *(pte_t *)pmd = pte_mkhuge(pfn_pte(pfn, prot));
  408. for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
  409. pfn++, pte_ofs++, address += PAGE_SIZE)
  410. pte[pte_ofs] = pfn_pte(pfn, prot);
  411. } else {
  412. if (kdata_huge)
  413. printk(KERN_DEBUG "pre-shattered huge page at %#lx\n",
  414. address);
  415. for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
  416. pfn++, pte_ofs++, address += PAGE_SIZE) {
  417. pgprot_t prot = init_pgprot(address);
  418. pte[pte_ofs] = pfn_pte(pfn, prot);
  419. }
  420. assign_pte(pmd, pte);
  421. }
  422. }
  423. }
  424. /*
  425. * Set or check ktext_map now that we have cpu_possible_mask
  426. * and kstripe_mask to work with.
  427. */
  428. if (ktext_all)
  429. cpumask_copy(&ktext_mask, cpu_possible_mask);
  430. else if (ktext_nondataplane)
  431. ktext_mask = kstripe_mask;
  432. else if (!cpumask_empty(&ktext_mask)) {
  433. /* Sanity-check any mask that was requested */
  434. struct cpumask bad;
  435. cpumask_andnot(&bad, &ktext_mask, cpu_possible_mask);
  436. cpumask_and(&ktext_mask, &ktext_mask, cpu_possible_mask);
  437. if (!cpumask_empty(&bad))
  438. pr_info("ktext: not using unavailable cpus %*pbl\n",
  439. cpumask_pr_args(&bad));
  440. if (cpumask_empty(&ktext_mask)) {
  441. pr_warn("ktext: no valid cpus; caching on %d\n",
  442. smp_processor_id());
  443. cpumask_copy(&ktext_mask,
  444. cpumask_of(smp_processor_id()));
  445. }
  446. }
  447. address = MEM_SV_START;
  448. pmd = get_pmd(pgtables, address);
  449. pfn = 0; /* code starts at PA 0 */
  450. if (ktext_small) {
  451. /* Allocate an L2 PTE for the kernel text */
  452. int cpu = 0;
  453. pgprot_t prot = construct_pgprot(PAGE_KERNEL_EXEC,
  454. PAGE_HOME_IMMUTABLE);
  455. if (ktext_local) {
  456. if (ktext_nocache)
  457. prot = hv_pte_set_mode(prot,
  458. HV_PTE_MODE_UNCACHED);
  459. else
  460. prot = hv_pte_set_mode(prot,
  461. HV_PTE_MODE_CACHE_NO_L3);
  462. } else {
  463. prot = hv_pte_set_mode(prot,
  464. HV_PTE_MODE_CACHE_TILE_L3);
  465. cpu = cpumask_first(&ktext_mask);
  466. prot = ktext_set_nocache(prot);
  467. }
  468. BUG_ON(address != (unsigned long)_text);
  469. pte = NULL;
  470. for (; address < (unsigned long)_einittext;
  471. pfn++, address += PAGE_SIZE) {
  472. pte_ofs = pte_index(address);
  473. if (pte_ofs == 0) {
  474. if (pte)
  475. assign_pte(pmd++, pte);
  476. pte = alloc_pte();
  477. }
  478. if (!ktext_local) {
  479. prot = set_remote_cache_cpu(prot, cpu);
  480. cpu = cpumask_next(cpu, &ktext_mask);
  481. if (cpu == NR_CPUS)
  482. cpu = cpumask_first(&ktext_mask);
  483. }
  484. pte[pte_ofs] = pfn_pte(pfn, prot);
  485. }
  486. if (pte)
  487. assign_pte(pmd, pte);
  488. } else {
  489. pte_t pteval = pfn_pte(0, PAGE_KERNEL_EXEC);
  490. pteval = pte_mkhuge(pteval);
  491. if (ktext_hash) {
  492. pteval = hv_pte_set_mode(pteval,
  493. HV_PTE_MODE_CACHE_HASH_L3);
  494. pteval = ktext_set_nocache(pteval);
  495. } else
  496. if (cpumask_weight(&ktext_mask) == 1) {
  497. pteval = set_remote_cache_cpu(pteval,
  498. cpumask_first(&ktext_mask));
  499. pteval = hv_pte_set_mode(pteval,
  500. HV_PTE_MODE_CACHE_TILE_L3);
  501. pteval = ktext_set_nocache(pteval);
  502. } else if (ktext_nocache)
  503. pteval = hv_pte_set_mode(pteval,
  504. HV_PTE_MODE_UNCACHED);
  505. else
  506. pteval = hv_pte_set_mode(pteval,
  507. HV_PTE_MODE_CACHE_NO_L3);
  508. for (; address < (unsigned long)_einittext;
  509. pfn += PFN_DOWN(HPAGE_SIZE), address += HPAGE_SIZE)
  510. *(pte_t *)(pmd++) = pfn_pte(pfn, pteval);
  511. }
  512. /* Set swapper_pgprot here so it is flushed to memory right away. */
  513. swapper_pgprot = init_pgprot((unsigned long)swapper_pg_dir);
  514. /*
  515. * Since we may be changing the caching of the stack and page
  516. * table itself, we invoke an assembly helper to do the
  517. * following steps:
  518. *
  519. * - flush the cache so we start with an empty slate
  520. * - install pgtables[] as the real page table
  521. * - flush the TLB so the new page table takes effect
  522. */
  523. irqmask = interrupt_mask_save_mask();
  524. interrupt_mask_set_mask(-1ULL);
  525. rc = flush_and_install_context(__pa(pgtables),
  526. init_pgprot((unsigned long)pgtables),
  527. __this_cpu_read(current_asid),
  528. cpumask_bits(my_cpu_mask));
  529. interrupt_mask_restore_mask(irqmask);
  530. BUG_ON(rc != 0);
  531. /* Copy the page table back to the normal swapper_pg_dir. */
  532. memcpy(pgd_base, pgtables, sizeof(pgtables));
  533. __install_page_table(pgd_base, __this_cpu_read(current_asid),
  534. swapper_pgprot);
  535. /*
  536. * We just read swapper_pgprot and thus brought it into the cache,
  537. * with its new home & caching mode. When we start the other CPUs,
  538. * they're going to reference swapper_pgprot via their initial fake
  539. * VA-is-PA mappings, which cache everything locally. At that
  540. * time, if it's in our cache with a conflicting home, the
  541. * simulator's coherence checker will complain. So, flush it out
  542. * of our cache; we're not going to ever use it again anyway.
  543. */
  544. __insn_finv(&swapper_pgprot);
  545. }
  546. /*
  547. * devmem_is_allowed() checks to see if /dev/mem access to a certain address
  548. * is valid. The argument is a physical page number.
  549. *
  550. * On Tile, the only valid things for which we can just hand out unchecked
  551. * PTEs are the kernel code and data. Anything else might change its
  552. * homing with time, and we wouldn't know to adjust the /dev/mem PTEs.
  553. * Note that init_thread_union is released to heap soon after boot,
  554. * so we include it in the init data.
  555. *
  556. * For TILE-Gx, we might want to consider allowing access to PA
  557. * regions corresponding to PCI space, etc.
  558. */
  559. int devmem_is_allowed(unsigned long pagenr)
  560. {
  561. return pagenr < kaddr_to_pfn(_end) &&
  562. !(pagenr >= kaddr_to_pfn(&init_thread_union) ||
  563. pagenr < kaddr_to_pfn(__init_end)) &&
  564. !(pagenr >= kaddr_to_pfn(_sinittext) ||
  565. pagenr <= kaddr_to_pfn(_einittext-1));
  566. }
  567. #ifdef CONFIG_HIGHMEM
  568. static void __init permanent_kmaps_init(pgd_t *pgd_base)
  569. {
  570. pgd_t *pgd;
  571. pud_t *pud;
  572. pmd_t *pmd;
  573. pte_t *pte;
  574. unsigned long vaddr;
  575. vaddr = PKMAP_BASE;
  576. page_table_range_init(vaddr, vaddr + PAGE_SIZE*LAST_PKMAP, pgd_base);
  577. pgd = swapper_pg_dir + pgd_index(vaddr);
  578. pud = pud_offset(pgd, vaddr);
  579. pmd = pmd_offset(pud, vaddr);
  580. pte = pte_offset_kernel(pmd, vaddr);
  581. pkmap_page_table = pte;
  582. }
  583. #endif /* CONFIG_HIGHMEM */
  584. #ifndef CONFIG_64BIT
  585. static void __init init_free_pfn_range(unsigned long start, unsigned long end)
  586. {
  587. unsigned long pfn;
  588. struct page *page = pfn_to_page(start);
  589. for (pfn = start; pfn < end; ) {
  590. /* Optimize by freeing pages in large batches */
  591. int order = __ffs(pfn);
  592. int count, i;
  593. struct page *p;
  594. if (order >= MAX_ORDER)
  595. order = MAX_ORDER-1;
  596. count = 1 << order;
  597. while (pfn + count > end) {
  598. count >>= 1;
  599. --order;
  600. }
  601. for (p = page, i = 0; i < count; ++i, ++p) {
  602. __ClearPageReserved(p);
  603. /*
  604. * Hacky direct set to avoid unnecessary
  605. * lock take/release for EVERY page here.
  606. */
  607. p->_refcount.counter = 0;
  608. p->_mapcount.counter = -1;
  609. }
  610. init_page_count(page);
  611. __free_pages(page, order);
  612. adjust_managed_page_count(page, count);
  613. page += count;
  614. pfn += count;
  615. }
  616. }
  617. static void __init set_non_bootmem_pages_init(void)
  618. {
  619. struct zone *z;
  620. for_each_zone(z) {
  621. unsigned long start, end;
  622. int nid = z->zone_pgdat->node_id;
  623. #ifdef CONFIG_HIGHMEM
  624. int idx = zone_idx(z);
  625. #endif
  626. start = z->zone_start_pfn;
  627. end = start + z->spanned_pages;
  628. start = max(start, node_free_pfn[nid]);
  629. start = max(start, max_low_pfn);
  630. #ifdef CONFIG_HIGHMEM
  631. if (idx == ZONE_HIGHMEM)
  632. totalhigh_pages += z->spanned_pages;
  633. #endif
  634. if (kdata_huge) {
  635. unsigned long percpu_pfn = node_percpu_pfn[nid];
  636. if (start < percpu_pfn && end > percpu_pfn)
  637. end = percpu_pfn;
  638. }
  639. #ifdef CONFIG_PCI
  640. if (start <= pci_reserve_start_pfn &&
  641. end > pci_reserve_start_pfn) {
  642. if (end > pci_reserve_end_pfn)
  643. init_free_pfn_range(pci_reserve_end_pfn, end);
  644. end = pci_reserve_start_pfn;
  645. }
  646. #endif
  647. init_free_pfn_range(start, end);
  648. }
  649. }
  650. #endif
  651. /*
  652. * paging_init() sets up the page tables - note that all of lowmem is
  653. * already mapped by head.S.
  654. */
  655. void __init paging_init(void)
  656. {
  657. #ifdef __tilegx__
  658. pud_t *pud;
  659. #endif
  660. pgd_t *pgd_base = swapper_pg_dir;
  661. kernel_physical_mapping_init(pgd_base);
  662. /* Fixed mappings, only the page table structure has to be created. */
  663. page_table_range_init(fix_to_virt(__end_of_fixed_addresses - 1),
  664. FIXADDR_TOP, pgd_base);
  665. #ifdef CONFIG_HIGHMEM
  666. permanent_kmaps_init(pgd_base);
  667. #endif
  668. #ifdef __tilegx__
  669. /*
  670. * Since GX allocates just one pmd_t array worth of vmalloc space,
  671. * we go ahead and allocate it statically here, then share it
  672. * globally. As a result we don't have to worry about any task
  673. * changing init_mm once we get up and running, and there's no
  674. * need for e.g. vmalloc_sync_all().
  675. */
  676. BUILD_BUG_ON(pgd_index(VMALLOC_START) != pgd_index(VMALLOC_END - 1));
  677. pud = pud_offset(pgd_base + pgd_index(VMALLOC_START), VMALLOC_START);
  678. assign_pmd(pud, alloc_pmd());
  679. #endif
  680. }
  681. /*
  682. * Walk the kernel page tables and derive the page_home() from
  683. * the PTEs, so that set_pte() can properly validate the caching
  684. * of all PTEs it sees.
  685. */
  686. void __init set_page_homes(void)
  687. {
  688. }
  689. static void __init set_max_mapnr_init(void)
  690. {
  691. #ifdef CONFIG_FLATMEM
  692. max_mapnr = max_low_pfn;
  693. #endif
  694. }
  695. void __init mem_init(void)
  696. {
  697. int i;
  698. #ifndef __tilegx__
  699. void *last;
  700. #endif
  701. #ifdef CONFIG_FLATMEM
  702. BUG_ON(!mem_map);
  703. #endif
  704. #ifdef CONFIG_HIGHMEM
  705. /* check that fixmap and pkmap do not overlap */
  706. if (PKMAP_ADDR(LAST_PKMAP-1) >= FIXADDR_START) {
  707. pr_err("fixmap and kmap areas overlap - this will crash\n");
  708. pr_err("pkstart: %lxh pkend: %lxh fixstart %lxh\n",
  709. PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP-1), FIXADDR_START);
  710. BUG();
  711. }
  712. #endif
  713. set_max_mapnr_init();
  714. /* this will put all bootmem onto the freelists */
  715. free_all_bootmem();
  716. #ifndef CONFIG_64BIT
  717. /* count all remaining LOWMEM and give all HIGHMEM to page allocator */
  718. set_non_bootmem_pages_init();
  719. #endif
  720. mem_init_print_info(NULL);
  721. /*
  722. * In debug mode, dump some interesting memory mappings.
  723. */
  724. #ifdef CONFIG_HIGHMEM
  725. printk(KERN_DEBUG " KMAP %#lx - %#lx\n",
  726. FIXADDR_START, FIXADDR_TOP + PAGE_SIZE - 1);
  727. printk(KERN_DEBUG " PKMAP %#lx - %#lx\n",
  728. PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP) - 1);
  729. #endif
  730. printk(KERN_DEBUG " VMALLOC %#lx - %#lx\n",
  731. _VMALLOC_START, _VMALLOC_END - 1);
  732. #ifdef __tilegx__
  733. for (i = MAX_NUMNODES-1; i >= 0; --i) {
  734. struct pglist_data *node = &node_data[i];
  735. if (node->node_present_pages) {
  736. unsigned long start = (unsigned long)
  737. pfn_to_kaddr(node->node_start_pfn);
  738. unsigned long end = start +
  739. (node->node_present_pages << PAGE_SHIFT);
  740. printk(KERN_DEBUG " MEM%d %#lx - %#lx\n",
  741. i, start, end - 1);
  742. }
  743. }
  744. #else
  745. last = high_memory;
  746. for (i = MAX_NUMNODES-1; i >= 0; --i) {
  747. if ((unsigned long)vbase_map[i] != -1UL) {
  748. printk(KERN_DEBUG " LOWMEM%d %#lx - %#lx\n",
  749. i, (unsigned long) (vbase_map[i]),
  750. (unsigned long) (last-1));
  751. last = vbase_map[i];
  752. }
  753. }
  754. #endif
  755. #ifndef __tilegx__
  756. /*
  757. * Convert from using one lock for all atomic operations to
  758. * one per cpu.
  759. */
  760. __init_atomic_per_cpu();
  761. #endif
  762. }
  763. /*
  764. * this is for the non-NUMA, single node SMP system case.
  765. * Specifically, in the case of x86, we will always add
  766. * memory to the highmem for now.
  767. */
  768. #ifndef CONFIG_NEED_MULTIPLE_NODES
  769. int arch_add_memory(u64 start, u64 size, bool for_device)
  770. {
  771. struct pglist_data *pgdata = &contig_page_data;
  772. struct zone *zone = pgdata->node_zones + MAX_NR_ZONES-1;
  773. unsigned long start_pfn = start >> PAGE_SHIFT;
  774. unsigned long nr_pages = size >> PAGE_SHIFT;
  775. return __add_pages(zone, start_pfn, nr_pages);
  776. }
  777. int remove_memory(u64 start, u64 size)
  778. {
  779. return -EINVAL;
  780. }
  781. #ifdef CONFIG_MEMORY_HOTREMOVE
  782. int arch_remove_memory(u64 start, u64 size)
  783. {
  784. /* TODO */
  785. return -EBUSY;
  786. }
  787. #endif
  788. #endif
  789. struct kmem_cache *pgd_cache;
  790. void __init pgtable_cache_init(void)
  791. {
  792. pgd_cache = kmem_cache_create("pgd", SIZEOF_PGD, SIZEOF_PGD, 0, NULL);
  793. if (!pgd_cache)
  794. panic("pgtable_cache_init(): Cannot create pgd cache");
  795. }
  796. static long __write_once initfree = 1;
  797. static bool __write_once set_initfree_done;
  798. /* Select whether to free (1) or mark unusable (0) the __init pages. */
  799. static int __init set_initfree(char *str)
  800. {
  801. long val;
  802. if (kstrtol(str, 0, &val) == 0) {
  803. set_initfree_done = true;
  804. initfree = val;
  805. pr_info("initfree: %s free init pages\n",
  806. initfree ? "will" : "won't");
  807. }
  808. return 1;
  809. }
  810. __setup("initfree=", set_initfree);
  811. static void free_init_pages(char *what, unsigned long begin, unsigned long end)
  812. {
  813. unsigned long addr = (unsigned long) begin;
  814. /* Prefer user request first */
  815. if (!set_initfree_done) {
  816. if (debug_pagealloc_enabled())
  817. initfree = 0;
  818. }
  819. if (kdata_huge && !initfree) {
  820. pr_warn("Warning: ignoring initfree=0: incompatible with kdata=huge\n");
  821. initfree = 1;
  822. }
  823. end = (end + PAGE_SIZE - 1) & PAGE_MASK;
  824. local_flush_tlb_pages(NULL, begin, PAGE_SIZE, end - begin);
  825. for (addr = begin; addr < end; addr += PAGE_SIZE) {
  826. /*
  827. * Note we just reset the home here directly in the
  828. * page table. We know this is safe because our caller
  829. * just flushed the caches on all the other cpus,
  830. * and they won't be touching any of these pages.
  831. */
  832. int pfn = kaddr_to_pfn((void *)addr);
  833. struct page *page = pfn_to_page(pfn);
  834. pte_t *ptep = virt_to_kpte(addr);
  835. if (!initfree) {
  836. /*
  837. * If debugging page accesses then do not free
  838. * this memory but mark them not present - any
  839. * buggy init-section access will create a
  840. * kernel page fault:
  841. */
  842. pte_clear(&init_mm, addr, ptep);
  843. continue;
  844. }
  845. if (pte_huge(*ptep))
  846. BUG_ON(!kdata_huge);
  847. else
  848. set_pte_at(&init_mm, addr, ptep,
  849. pfn_pte(pfn, PAGE_KERNEL));
  850. memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
  851. free_reserved_page(page);
  852. }
  853. pr_info("Freeing %s: %ldk freed\n", what, (end - begin) >> 10);
  854. }
  855. void free_initmem(void)
  856. {
  857. const unsigned long text_delta = MEM_SV_START - PAGE_OFFSET;
  858. /*
  859. * Evict the cache on all cores to avoid incoherence.
  860. * We are guaranteed that no one will touch the init pages any more.
  861. */
  862. homecache_evict(&cpu_cacheable_map);
  863. /* Free the data pages that we won't use again after init. */
  864. free_init_pages("unused kernel data",
  865. (unsigned long)__init_begin,
  866. (unsigned long)__init_end);
  867. /*
  868. * Free the pages mapped from 0xc0000000 that correspond to code
  869. * pages from MEM_SV_START that we won't use again after init.
  870. */
  871. free_init_pages("unused kernel text",
  872. (unsigned long)_sinittext - text_delta,
  873. (unsigned long)_einittext - text_delta);
  874. /* Do a global TLB flush so everyone sees the changes. */
  875. flush_tlb_all();
  876. }