123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303 |
- /*
- * Copyright 2010 Tilera Corporation. All Rights Reserved.
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation, version 2.
- *
- * This program is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
- * NON INFRINGEMENT. See the GNU General Public License for
- * more details.
- *
- * Support the cycle counter clocksource and tile timer clock event device.
- */
- #include <linux/time.h>
- #include <linux/timex.h>
- #include <linux/clocksource.h>
- #include <linux/clockchips.h>
- #include <linux/hardirq.h>
- #include <linux/sched.h>
- #include <linux/smp.h>
- #include <linux/delay.h>
- #include <linux/module.h>
- #include <linux/timekeeper_internal.h>
- #include <asm/irq_regs.h>
- #include <asm/traps.h>
- #include <asm/vdso.h>
- #include <hv/hypervisor.h>
- #include <arch/interrupts.h>
- #include <arch/spr_def.h>
- /*
- * Define the cycle counter clock source.
- */
- /* How many cycles per second we are running at. */
- static cycles_t cycles_per_sec __write_once;
- cycles_t get_clock_rate(void)
- {
- return cycles_per_sec;
- }
- #if CHIP_HAS_SPLIT_CYCLE()
- cycles_t get_cycles(void)
- {
- unsigned int high = __insn_mfspr(SPR_CYCLE_HIGH);
- unsigned int low = __insn_mfspr(SPR_CYCLE_LOW);
- unsigned int high2 = __insn_mfspr(SPR_CYCLE_HIGH);
- while (unlikely(high != high2)) {
- low = __insn_mfspr(SPR_CYCLE_LOW);
- high = high2;
- high2 = __insn_mfspr(SPR_CYCLE_HIGH);
- }
- return (((cycles_t)high) << 32) | low;
- }
- EXPORT_SYMBOL(get_cycles);
- #endif
- /*
- * We use a relatively small shift value so that sched_clock()
- * won't wrap around very often.
- */
- #define SCHED_CLOCK_SHIFT 10
- static unsigned long sched_clock_mult __write_once;
- static cycles_t clocksource_get_cycles(struct clocksource *cs)
- {
- return get_cycles();
- }
- static struct clocksource cycle_counter_cs = {
- .name = "cycle counter",
- .rating = 300,
- .read = clocksource_get_cycles,
- .mask = CLOCKSOURCE_MASK(64),
- .flags = CLOCK_SOURCE_IS_CONTINUOUS,
- };
- /*
- * Called very early from setup_arch() to set cycles_per_sec.
- * We initialize it early so we can use it to set up loops_per_jiffy.
- */
- void __init setup_clock(void)
- {
- cycles_per_sec = hv_sysconf(HV_SYSCONF_CPU_SPEED);
- sched_clock_mult =
- clocksource_hz2mult(cycles_per_sec, SCHED_CLOCK_SHIFT);
- }
- void __init calibrate_delay(void)
- {
- loops_per_jiffy = get_clock_rate() / HZ;
- pr_info("Clock rate yields %lu.%02lu BogoMIPS (lpj=%lu)\n",
- loops_per_jiffy / (500000 / HZ),
- (loops_per_jiffy / (5000 / HZ)) % 100, loops_per_jiffy);
- }
- /* Called fairly late in init/main.c, but before we go smp. */
- void __init time_init(void)
- {
- /* Initialize and register the clock source. */
- clocksource_register_hz(&cycle_counter_cs, cycles_per_sec);
- /* Start up the tile-timer interrupt source on the boot cpu. */
- setup_tile_timer();
- }
- /*
- * Define the tile timer clock event device. The timer is driven by
- * the TILE_TIMER_CONTROL register, which consists of a 31-bit down
- * counter, plus bit 31, which signifies that the counter has wrapped
- * from zero to (2**31) - 1. The INT_TILE_TIMER interrupt will be
- * raised as long as bit 31 is set.
- *
- * The TILE_MINSEC value represents the largest range of real-time
- * we can possibly cover with the timer, based on MAX_TICK combined
- * with the slowest reasonable clock rate we might run at.
- */
- #define MAX_TICK 0x7fffffff /* we have 31 bits of countdown timer */
- #define TILE_MINSEC 5 /* timer covers no more than 5 seconds */
- static int tile_timer_set_next_event(unsigned long ticks,
- struct clock_event_device *evt)
- {
- BUG_ON(ticks > MAX_TICK);
- __insn_mtspr(SPR_TILE_TIMER_CONTROL, ticks);
- arch_local_irq_unmask_now(INT_TILE_TIMER);
- return 0;
- }
- /*
- * Whenever anyone tries to change modes, we just mask interrupts
- * and wait for the next event to get set.
- */
- static int tile_timer_shutdown(struct clock_event_device *evt)
- {
- arch_local_irq_mask_now(INT_TILE_TIMER);
- return 0;
- }
- /*
- * Set min_delta_ns to 1 microsecond, since it takes about
- * that long to fire the interrupt.
- */
- static DEFINE_PER_CPU(struct clock_event_device, tile_timer) = {
- .name = "tile timer",
- .features = CLOCK_EVT_FEAT_ONESHOT,
- .min_delta_ns = 1000,
- .rating = 100,
- .irq = -1,
- .set_next_event = tile_timer_set_next_event,
- .set_state_shutdown = tile_timer_shutdown,
- .set_state_oneshot = tile_timer_shutdown,
- .tick_resume = tile_timer_shutdown,
- };
- void setup_tile_timer(void)
- {
- struct clock_event_device *evt = this_cpu_ptr(&tile_timer);
- /* Fill in fields that are speed-specific. */
- clockevents_calc_mult_shift(evt, cycles_per_sec, TILE_MINSEC);
- evt->max_delta_ns = clockevent_delta2ns(MAX_TICK, evt);
- /* Mark as being for this cpu only. */
- evt->cpumask = cpumask_of(smp_processor_id());
- /* Start out with timer not firing. */
- arch_local_irq_mask_now(INT_TILE_TIMER);
- /* Register tile timer. */
- clockevents_register_device(evt);
- }
- /* Called from the interrupt vector. */
- void do_timer_interrupt(struct pt_regs *regs, int fault_num)
- {
- struct pt_regs *old_regs = set_irq_regs(regs);
- struct clock_event_device *evt = this_cpu_ptr(&tile_timer);
- /*
- * Mask the timer interrupt here, since we are a oneshot timer
- * and there are now by definition no events pending.
- */
- arch_local_irq_mask(INT_TILE_TIMER);
- /* Track time spent here in an interrupt context */
- irq_enter();
- /* Track interrupt count. */
- __this_cpu_inc(irq_stat.irq_timer_count);
- /* Call the generic timer handler */
- evt->event_handler(evt);
- /*
- * Track time spent against the current process again and
- * process any softirqs if they are waiting.
- */
- irq_exit();
- set_irq_regs(old_regs);
- }
- /*
- * Scheduler clock - returns current time in nanosec units.
- * Note that with LOCKDEP, this is called during lockdep_init(), and
- * we will claim that sched_clock() is zero for a little while, until
- * we run setup_clock(), above.
- */
- unsigned long long sched_clock(void)
- {
- return mult_frac(get_cycles(),
- sched_clock_mult, 1ULL << SCHED_CLOCK_SHIFT);
- }
- int setup_profiling_timer(unsigned int multiplier)
- {
- return -EINVAL;
- }
- /*
- * Use the tile timer to convert nsecs to core clock cycles, relying
- * on it having the same frequency as SPR_CYCLE.
- */
- cycles_t ns2cycles(unsigned long nsecs)
- {
- /*
- * We do not have to disable preemption here as each core has the same
- * clock frequency.
- */
- struct clock_event_device *dev = raw_cpu_ptr(&tile_timer);
- /*
- * as in clocksource.h and x86's timer.h, we split the calculation
- * into 2 parts to avoid unecessary overflow of the intermediate
- * value. This will not lead to any loss of precision.
- */
- u64 quot = (u64)nsecs >> dev->shift;
- u64 rem = (u64)nsecs & ((1ULL << dev->shift) - 1);
- return quot * dev->mult + ((rem * dev->mult) >> dev->shift);
- }
- void update_vsyscall_tz(void)
- {
- write_seqcount_begin(&vdso_data->tz_seq);
- vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
- vdso_data->tz_dsttime = sys_tz.tz_dsttime;
- write_seqcount_end(&vdso_data->tz_seq);
- }
- void update_vsyscall(struct timekeeper *tk)
- {
- if (tk->tkr_mono.clock != &cycle_counter_cs)
- return;
- write_seqcount_begin(&vdso_data->tb_seq);
- vdso_data->cycle_last = tk->tkr_mono.cycle_last;
- vdso_data->mask = tk->tkr_mono.mask;
- vdso_data->mult = tk->tkr_mono.mult;
- vdso_data->shift = tk->tkr_mono.shift;
- vdso_data->wall_time_sec = tk->xtime_sec;
- vdso_data->wall_time_snsec = tk->tkr_mono.xtime_nsec;
- vdso_data->monotonic_time_sec = tk->xtime_sec
- + tk->wall_to_monotonic.tv_sec;
- vdso_data->monotonic_time_snsec = tk->tkr_mono.xtime_nsec
- + ((u64)tk->wall_to_monotonic.tv_nsec
- << tk->tkr_mono.shift);
- while (vdso_data->monotonic_time_snsec >=
- (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift)) {
- vdso_data->monotonic_time_snsec -=
- ((u64)NSEC_PER_SEC) << tk->tkr_mono.shift;
- vdso_data->monotonic_time_sec++;
- }
- vdso_data->wall_time_coarse_sec = tk->xtime_sec;
- vdso_data->wall_time_coarse_nsec = (long)(tk->tkr_mono.xtime_nsec >>
- tk->tkr_mono.shift);
- vdso_data->monotonic_time_coarse_sec =
- vdso_data->wall_time_coarse_sec + tk->wall_to_monotonic.tv_sec;
- vdso_data->monotonic_time_coarse_nsec =
- vdso_data->wall_time_coarse_nsec + tk->wall_to_monotonic.tv_nsec;
- while (vdso_data->monotonic_time_coarse_nsec >= NSEC_PER_SEC) {
- vdso_data->monotonic_time_coarse_nsec -= NSEC_PER_SEC;
- vdso_data->monotonic_time_coarse_sec++;
- }
- write_seqcount_end(&vdso_data->tb_seq);
- }
|