123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315 |
- /*
- * linux/arch/parisc/kernel/time.c
- *
- * Copyright (C) 1991, 1992, 1995 Linus Torvalds
- * Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
- * Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
- *
- * 1994-07-02 Alan Modra
- * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
- * 1998-12-20 Updated NTP code according to technical memorandum Jan '96
- * "A Kernel Model for Precision Timekeeping" by Dave Mills
- */
- #include <linux/errno.h>
- #include <linux/module.h>
- #include <linux/rtc.h>
- #include <linux/sched.h>
- #include <linux/sched_clock.h>
- #include <linux/kernel.h>
- #include <linux/param.h>
- #include <linux/string.h>
- #include <linux/mm.h>
- #include <linux/interrupt.h>
- #include <linux/time.h>
- #include <linux/init.h>
- #include <linux/smp.h>
- #include <linux/profile.h>
- #include <linux/clocksource.h>
- #include <linux/platform_device.h>
- #include <linux/ftrace.h>
- #include <asm/uaccess.h>
- #include <asm/io.h>
- #include <asm/irq.h>
- #include <asm/page.h>
- #include <asm/param.h>
- #include <asm/pdc.h>
- #include <asm/led.h>
- #include <linux/timex.h>
- static unsigned long clocktick __read_mostly; /* timer cycles per tick */
- /*
- * We keep time on PA-RISC Linux by using the Interval Timer which is
- * a pair of registers; one is read-only and one is write-only; both
- * accessed through CR16. The read-only register is 32 or 64 bits wide,
- * and increments by 1 every CPU clock tick. The architecture only
- * guarantees us a rate between 0.5 and 2, but all implementations use a
- * rate of 1. The write-only register is 32-bits wide. When the lowest
- * 32 bits of the read-only register compare equal to the write-only
- * register, it raises a maskable external interrupt. Each processor has
- * an Interval Timer of its own and they are not synchronised.
- *
- * We want to generate an interrupt every 1/HZ seconds. So we program
- * CR16 to interrupt every @clocktick cycles. The it_value in cpu_data
- * is programmed with the intended time of the next tick. We can be
- * held off for an arbitrarily long period of time by interrupts being
- * disabled, so we may miss one or more ticks.
- */
- irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id)
- {
- unsigned long now, now2;
- unsigned long next_tick;
- unsigned long cycles_elapsed, ticks_elapsed = 1;
- unsigned long cycles_remainder;
- unsigned int cpu = smp_processor_id();
- struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
- /* gcc can optimize for "read-only" case with a local clocktick */
- unsigned long cpt = clocktick;
- profile_tick(CPU_PROFILING);
- /* Initialize next_tick to the expected tick time. */
- next_tick = cpuinfo->it_value;
- /* Get current cycle counter (Control Register 16). */
- now = mfctl(16);
- cycles_elapsed = now - next_tick;
- if ((cycles_elapsed >> 6) < cpt) {
- /* use "cheap" math (add/subtract) instead
- * of the more expensive div/mul method
- */
- cycles_remainder = cycles_elapsed;
- while (cycles_remainder > cpt) {
- cycles_remainder -= cpt;
- ticks_elapsed++;
- }
- } else {
- /* TODO: Reduce this to one fdiv op */
- cycles_remainder = cycles_elapsed % cpt;
- ticks_elapsed += cycles_elapsed / cpt;
- }
- /* convert from "division remainder" to "remainder of clock tick" */
- cycles_remainder = cpt - cycles_remainder;
- /* Determine when (in CR16 cycles) next IT interrupt will fire.
- * We want IT to fire modulo clocktick even if we miss/skip some.
- * But those interrupts don't in fact get delivered that regularly.
- */
- next_tick = now + cycles_remainder;
- cpuinfo->it_value = next_tick;
- /* Program the IT when to deliver the next interrupt.
- * Only bottom 32-bits of next_tick are writable in CR16!
- */
- mtctl(next_tick, 16);
- /* Skip one clocktick on purpose if we missed next_tick.
- * The new CR16 must be "later" than current CR16 otherwise
- * itimer would not fire until CR16 wrapped - e.g 4 seconds
- * later on a 1Ghz processor. We'll account for the missed
- * tick on the next timer interrupt.
- *
- * "next_tick - now" will always give the difference regardless
- * if one or the other wrapped. If "now" is "bigger" we'll end up
- * with a very large unsigned number.
- */
- now2 = mfctl(16);
- if (next_tick - now2 > cpt)
- mtctl(next_tick+cpt, 16);
- #if 1
- /*
- * GGG: DEBUG code for how many cycles programming CR16 used.
- */
- if (unlikely(now2 - now > 0x3000)) /* 12K cycles */
- printk (KERN_CRIT "timer_interrupt(CPU %d): SLOW! 0x%lx cycles!"
- " cyc %lX rem %lX "
- " next/now %lX/%lX\n",
- cpu, now2 - now, cycles_elapsed, cycles_remainder,
- next_tick, now );
- #endif
- /* Can we differentiate between "early CR16" (aka Scenario 1) and
- * "long delay" (aka Scenario 3)? I don't think so.
- *
- * Timer_interrupt will be delivered at least a few hundred cycles
- * after the IT fires. But it's arbitrary how much time passes
- * before we call it "late". I've picked one second.
- *
- * It's important NO printk's are between reading CR16 and
- * setting up the next value. May introduce huge variance.
- */
- if (unlikely(ticks_elapsed > HZ)) {
- /* Scenario 3: very long delay? bad in any case */
- printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!"
- " cycles %lX rem %lX "
- " next/now %lX/%lX\n",
- cpu,
- cycles_elapsed, cycles_remainder,
- next_tick, now );
- }
- /* Done mucking with unreliable delivery of interrupts.
- * Go do system house keeping.
- */
- if (!--cpuinfo->prof_counter) {
- cpuinfo->prof_counter = cpuinfo->prof_multiplier;
- update_process_times(user_mode(get_irq_regs()));
- }
- if (cpu == 0)
- xtime_update(ticks_elapsed);
- return IRQ_HANDLED;
- }
- unsigned long profile_pc(struct pt_regs *regs)
- {
- unsigned long pc = instruction_pointer(regs);
- if (regs->gr[0] & PSW_N)
- pc -= 4;
- #ifdef CONFIG_SMP
- if (in_lock_functions(pc))
- pc = regs->gr[2];
- #endif
- return pc;
- }
- EXPORT_SYMBOL(profile_pc);
- /* clock source code */
- static cycle_t notrace read_cr16(struct clocksource *cs)
- {
- return get_cycles();
- }
- static struct clocksource clocksource_cr16 = {
- .name = "cr16",
- .rating = 300,
- .read = read_cr16,
- .mask = CLOCKSOURCE_MASK(BITS_PER_LONG),
- .flags = CLOCK_SOURCE_IS_CONTINUOUS,
- };
- void __init start_cpu_itimer(void)
- {
- unsigned int cpu = smp_processor_id();
- unsigned long next_tick = mfctl(16) + clocktick;
- mtctl(next_tick, 16); /* kick off Interval Timer (CR16) */
- per_cpu(cpu_data, cpu).it_value = next_tick;
- }
- #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
- static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
- {
- struct pdc_tod tod_data;
- memset(tm, 0, sizeof(*tm));
- if (pdc_tod_read(&tod_data) < 0)
- return -EOPNOTSUPP;
- /* we treat tod_sec as unsigned, so this can work until year 2106 */
- rtc_time64_to_tm(tod_data.tod_sec, tm);
- return rtc_valid_tm(tm);
- }
- static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
- {
- time64_t secs = rtc_tm_to_time64(tm);
- if (pdc_tod_set(secs, 0) < 0)
- return -EOPNOTSUPP;
- return 0;
- }
- static const struct rtc_class_ops rtc_generic_ops = {
- .read_time = rtc_generic_get_time,
- .set_time = rtc_generic_set_time,
- };
- static int __init rtc_init(void)
- {
- struct platform_device *pdev;
- pdev = platform_device_register_data(NULL, "rtc-generic", -1,
- &rtc_generic_ops,
- sizeof(rtc_generic_ops));
- return PTR_ERR_OR_ZERO(pdev);
- }
- device_initcall(rtc_init);
- #endif
- void read_persistent_clock(struct timespec *ts)
- {
- static struct pdc_tod tod_data;
- if (pdc_tod_read(&tod_data) == 0) {
- ts->tv_sec = tod_data.tod_sec;
- ts->tv_nsec = tod_data.tod_usec * 1000;
- } else {
- printk(KERN_ERR "Error reading tod clock\n");
- ts->tv_sec = 0;
- ts->tv_nsec = 0;
- }
- }
- static u64 notrace read_cr16_sched_clock(void)
- {
- return get_cycles();
- }
- /*
- * timer interrupt and sched_clock() initialization
- */
- void __init time_init(void)
- {
- unsigned long cr16_hz;
- clocktick = (100 * PAGE0->mem_10msec) / HZ;
- start_cpu_itimer(); /* get CPU 0 started */
- cr16_hz = 100 * PAGE0->mem_10msec; /* Hz */
- /* register as sched_clock source */
- sched_clock_register(read_cr16_sched_clock, BITS_PER_LONG, cr16_hz);
- }
- static int __init init_cr16_clocksource(void)
- {
- /*
- * The cr16 interval timers are not syncronized across CPUs, so mark
- * them unstable and lower rating on SMP systems.
- */
- if (num_online_cpus() > 1) {
- clocksource_cr16.flags = CLOCK_SOURCE_UNSTABLE;
- clocksource_cr16.rating = 0;
- }
- /* register at clocksource framework */
- clocksource_register_hz(&clocksource_cr16,
- 100 * PAGE0->mem_10msec);
- return 0;
- }
- device_initcall(init_cr16_clocksource);
|