time.c 8.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315
  1. /*
  2. * linux/arch/parisc/kernel/time.c
  3. *
  4. * Copyright (C) 1991, 1992, 1995 Linus Torvalds
  5. * Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
  6. * Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
  7. *
  8. * 1994-07-02 Alan Modra
  9. * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
  10. * 1998-12-20 Updated NTP code according to technical memorandum Jan '96
  11. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  12. */
  13. #include <linux/errno.h>
  14. #include <linux/module.h>
  15. #include <linux/rtc.h>
  16. #include <linux/sched.h>
  17. #include <linux/sched_clock.h>
  18. #include <linux/kernel.h>
  19. #include <linux/param.h>
  20. #include <linux/string.h>
  21. #include <linux/mm.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/time.h>
  24. #include <linux/init.h>
  25. #include <linux/smp.h>
  26. #include <linux/profile.h>
  27. #include <linux/clocksource.h>
  28. #include <linux/platform_device.h>
  29. #include <linux/ftrace.h>
  30. #include <asm/uaccess.h>
  31. #include <asm/io.h>
  32. #include <asm/irq.h>
  33. #include <asm/page.h>
  34. #include <asm/param.h>
  35. #include <asm/pdc.h>
  36. #include <asm/led.h>
  37. #include <linux/timex.h>
  38. static unsigned long clocktick __read_mostly; /* timer cycles per tick */
  39. /*
  40. * We keep time on PA-RISC Linux by using the Interval Timer which is
  41. * a pair of registers; one is read-only and one is write-only; both
  42. * accessed through CR16. The read-only register is 32 or 64 bits wide,
  43. * and increments by 1 every CPU clock tick. The architecture only
  44. * guarantees us a rate between 0.5 and 2, but all implementations use a
  45. * rate of 1. The write-only register is 32-bits wide. When the lowest
  46. * 32 bits of the read-only register compare equal to the write-only
  47. * register, it raises a maskable external interrupt. Each processor has
  48. * an Interval Timer of its own and they are not synchronised.
  49. *
  50. * We want to generate an interrupt every 1/HZ seconds. So we program
  51. * CR16 to interrupt every @clocktick cycles. The it_value in cpu_data
  52. * is programmed with the intended time of the next tick. We can be
  53. * held off for an arbitrarily long period of time by interrupts being
  54. * disabled, so we may miss one or more ticks.
  55. */
  56. irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id)
  57. {
  58. unsigned long now, now2;
  59. unsigned long next_tick;
  60. unsigned long cycles_elapsed, ticks_elapsed = 1;
  61. unsigned long cycles_remainder;
  62. unsigned int cpu = smp_processor_id();
  63. struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
  64. /* gcc can optimize for "read-only" case with a local clocktick */
  65. unsigned long cpt = clocktick;
  66. profile_tick(CPU_PROFILING);
  67. /* Initialize next_tick to the expected tick time. */
  68. next_tick = cpuinfo->it_value;
  69. /* Get current cycle counter (Control Register 16). */
  70. now = mfctl(16);
  71. cycles_elapsed = now - next_tick;
  72. if ((cycles_elapsed >> 6) < cpt) {
  73. /* use "cheap" math (add/subtract) instead
  74. * of the more expensive div/mul method
  75. */
  76. cycles_remainder = cycles_elapsed;
  77. while (cycles_remainder > cpt) {
  78. cycles_remainder -= cpt;
  79. ticks_elapsed++;
  80. }
  81. } else {
  82. /* TODO: Reduce this to one fdiv op */
  83. cycles_remainder = cycles_elapsed % cpt;
  84. ticks_elapsed += cycles_elapsed / cpt;
  85. }
  86. /* convert from "division remainder" to "remainder of clock tick" */
  87. cycles_remainder = cpt - cycles_remainder;
  88. /* Determine when (in CR16 cycles) next IT interrupt will fire.
  89. * We want IT to fire modulo clocktick even if we miss/skip some.
  90. * But those interrupts don't in fact get delivered that regularly.
  91. */
  92. next_tick = now + cycles_remainder;
  93. cpuinfo->it_value = next_tick;
  94. /* Program the IT when to deliver the next interrupt.
  95. * Only bottom 32-bits of next_tick are writable in CR16!
  96. */
  97. mtctl(next_tick, 16);
  98. /* Skip one clocktick on purpose if we missed next_tick.
  99. * The new CR16 must be "later" than current CR16 otherwise
  100. * itimer would not fire until CR16 wrapped - e.g 4 seconds
  101. * later on a 1Ghz processor. We'll account for the missed
  102. * tick on the next timer interrupt.
  103. *
  104. * "next_tick - now" will always give the difference regardless
  105. * if one or the other wrapped. If "now" is "bigger" we'll end up
  106. * with a very large unsigned number.
  107. */
  108. now2 = mfctl(16);
  109. if (next_tick - now2 > cpt)
  110. mtctl(next_tick+cpt, 16);
  111. #if 1
  112. /*
  113. * GGG: DEBUG code for how many cycles programming CR16 used.
  114. */
  115. if (unlikely(now2 - now > 0x3000)) /* 12K cycles */
  116. printk (KERN_CRIT "timer_interrupt(CPU %d): SLOW! 0x%lx cycles!"
  117. " cyc %lX rem %lX "
  118. " next/now %lX/%lX\n",
  119. cpu, now2 - now, cycles_elapsed, cycles_remainder,
  120. next_tick, now );
  121. #endif
  122. /* Can we differentiate between "early CR16" (aka Scenario 1) and
  123. * "long delay" (aka Scenario 3)? I don't think so.
  124. *
  125. * Timer_interrupt will be delivered at least a few hundred cycles
  126. * after the IT fires. But it's arbitrary how much time passes
  127. * before we call it "late". I've picked one second.
  128. *
  129. * It's important NO printk's are between reading CR16 and
  130. * setting up the next value. May introduce huge variance.
  131. */
  132. if (unlikely(ticks_elapsed > HZ)) {
  133. /* Scenario 3: very long delay? bad in any case */
  134. printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!"
  135. " cycles %lX rem %lX "
  136. " next/now %lX/%lX\n",
  137. cpu,
  138. cycles_elapsed, cycles_remainder,
  139. next_tick, now );
  140. }
  141. /* Done mucking with unreliable delivery of interrupts.
  142. * Go do system house keeping.
  143. */
  144. if (!--cpuinfo->prof_counter) {
  145. cpuinfo->prof_counter = cpuinfo->prof_multiplier;
  146. update_process_times(user_mode(get_irq_regs()));
  147. }
  148. if (cpu == 0)
  149. xtime_update(ticks_elapsed);
  150. return IRQ_HANDLED;
  151. }
  152. unsigned long profile_pc(struct pt_regs *regs)
  153. {
  154. unsigned long pc = instruction_pointer(regs);
  155. if (regs->gr[0] & PSW_N)
  156. pc -= 4;
  157. #ifdef CONFIG_SMP
  158. if (in_lock_functions(pc))
  159. pc = regs->gr[2];
  160. #endif
  161. return pc;
  162. }
  163. EXPORT_SYMBOL(profile_pc);
  164. /* clock source code */
  165. static cycle_t notrace read_cr16(struct clocksource *cs)
  166. {
  167. return get_cycles();
  168. }
  169. static struct clocksource clocksource_cr16 = {
  170. .name = "cr16",
  171. .rating = 300,
  172. .read = read_cr16,
  173. .mask = CLOCKSOURCE_MASK(BITS_PER_LONG),
  174. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  175. };
  176. void __init start_cpu_itimer(void)
  177. {
  178. unsigned int cpu = smp_processor_id();
  179. unsigned long next_tick = mfctl(16) + clocktick;
  180. mtctl(next_tick, 16); /* kick off Interval Timer (CR16) */
  181. per_cpu(cpu_data, cpu).it_value = next_tick;
  182. }
  183. #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
  184. static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
  185. {
  186. struct pdc_tod tod_data;
  187. memset(tm, 0, sizeof(*tm));
  188. if (pdc_tod_read(&tod_data) < 0)
  189. return -EOPNOTSUPP;
  190. /* we treat tod_sec as unsigned, so this can work until year 2106 */
  191. rtc_time64_to_tm(tod_data.tod_sec, tm);
  192. return rtc_valid_tm(tm);
  193. }
  194. static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
  195. {
  196. time64_t secs = rtc_tm_to_time64(tm);
  197. if (pdc_tod_set(secs, 0) < 0)
  198. return -EOPNOTSUPP;
  199. return 0;
  200. }
  201. static const struct rtc_class_ops rtc_generic_ops = {
  202. .read_time = rtc_generic_get_time,
  203. .set_time = rtc_generic_set_time,
  204. };
  205. static int __init rtc_init(void)
  206. {
  207. struct platform_device *pdev;
  208. pdev = platform_device_register_data(NULL, "rtc-generic", -1,
  209. &rtc_generic_ops,
  210. sizeof(rtc_generic_ops));
  211. return PTR_ERR_OR_ZERO(pdev);
  212. }
  213. device_initcall(rtc_init);
  214. #endif
  215. void read_persistent_clock(struct timespec *ts)
  216. {
  217. static struct pdc_tod tod_data;
  218. if (pdc_tod_read(&tod_data) == 0) {
  219. ts->tv_sec = tod_data.tod_sec;
  220. ts->tv_nsec = tod_data.tod_usec * 1000;
  221. } else {
  222. printk(KERN_ERR "Error reading tod clock\n");
  223. ts->tv_sec = 0;
  224. ts->tv_nsec = 0;
  225. }
  226. }
  227. static u64 notrace read_cr16_sched_clock(void)
  228. {
  229. return get_cycles();
  230. }
  231. /*
  232. * timer interrupt and sched_clock() initialization
  233. */
  234. void __init time_init(void)
  235. {
  236. unsigned long cr16_hz;
  237. clocktick = (100 * PAGE0->mem_10msec) / HZ;
  238. start_cpu_itimer(); /* get CPU 0 started */
  239. cr16_hz = 100 * PAGE0->mem_10msec; /* Hz */
  240. /* register as sched_clock source */
  241. sched_clock_register(read_cr16_sched_clock, BITS_PER_LONG, cr16_hz);
  242. }
  243. static int __init init_cr16_clocksource(void)
  244. {
  245. /*
  246. * The cr16 interval timers are not syncronized across CPUs, so mark
  247. * them unstable and lower rating on SMP systems.
  248. */
  249. if (num_online_cpus() > 1) {
  250. clocksource_cr16.flags = CLOCK_SOURCE_UNSTABLE;
  251. clocksource_cr16.rating = 0;
  252. }
  253. /* register at clocksource framework */
  254. clocksource_register_hz(&clocksource_cr16,
  255. 100 * PAGE0->mem_10msec);
  256. return 0;
  257. }
  258. device_initcall(init_cr16_clocksource);