perf.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855
  1. /*
  2. * Parisc performance counters
  3. * Copyright (C) 2001 Randolph Chung <tausq@debian.org>
  4. *
  5. * This code is derived, with permission, from HP/UX sources.
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2, or (at your option)
  10. * any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  20. */
  21. /*
  22. * Edited comment from original sources:
  23. *
  24. * This driver programs the PCX-U/PCX-W performance counters
  25. * on the PA-RISC 2.0 chips. The driver keeps all images now
  26. * internally to the kernel to hopefully eliminate the possibility
  27. * of a bad image halting the CPU. Also, there are different
  28. * images for the PCX-W and later chips vs the PCX-U chips.
  29. *
  30. * Only 1 process is allowed to access the driver at any time,
  31. * so the only protection that is needed is at open and close.
  32. * A variable "perf_enabled" is used to hold the state of the
  33. * driver. The spinlock "perf_lock" is used to protect the
  34. * modification of the state during open/close operations so
  35. * multiple processes don't get into the driver simultaneously.
  36. *
  37. * This driver accesses the processor directly vs going through
  38. * the PDC INTRIGUE calls. This is done to eliminate bugs introduced
  39. * in various PDC revisions. The code is much more maintainable
  40. * and reliable this way vs having to debug on every version of PDC
  41. * on every box.
  42. */
  43. #include <linux/capability.h>
  44. #include <linux/init.h>
  45. #include <linux/proc_fs.h>
  46. #include <linux/miscdevice.h>
  47. #include <linux/spinlock.h>
  48. #include <asm/uaccess.h>
  49. #include <asm/perf.h>
  50. #include <asm/parisc-device.h>
  51. #include <asm/processor.h>
  52. #include <asm/runway.h>
  53. #include <asm/io.h> /* for __raw_read() */
  54. #include "perf_images.h"
  55. #define MAX_RDR_WORDS 24
  56. #define PERF_VERSION 2 /* derived from hpux's PI v2 interface */
  57. /* definition of RDR regs */
  58. struct rdr_tbl_ent {
  59. uint16_t width;
  60. uint8_t num_words;
  61. uint8_t write_control;
  62. };
  63. static int perf_processor_interface __read_mostly = UNKNOWN_INTF;
  64. static int perf_enabled __read_mostly;
  65. static spinlock_t perf_lock;
  66. struct parisc_device *cpu_device __read_mostly;
  67. /* RDRs to write for PCX-W */
  68. static const int perf_rdrs_W[] =
  69. { 0, 1, 4, 5, 6, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, -1 };
  70. /* RDRs to write for PCX-U */
  71. static const int perf_rdrs_U[] =
  72. { 0, 1, 4, 5, 6, 7, 16, 17, 18, 20, 21, 22, 23, 24, 25, -1 };
  73. /* RDR register descriptions for PCX-W */
  74. static const struct rdr_tbl_ent perf_rdr_tbl_W[] = {
  75. { 19, 1, 8 }, /* RDR 0 */
  76. { 16, 1, 16 }, /* RDR 1 */
  77. { 72, 2, 0 }, /* RDR 2 */
  78. { 81, 2, 0 }, /* RDR 3 */
  79. { 328, 6, 0 }, /* RDR 4 */
  80. { 160, 3, 0 }, /* RDR 5 */
  81. { 336, 6, 0 }, /* RDR 6 */
  82. { 164, 3, 0 }, /* RDR 7 */
  83. { 0, 0, 0 }, /* RDR 8 */
  84. { 35, 1, 0 }, /* RDR 9 */
  85. { 6, 1, 0 }, /* RDR 10 */
  86. { 18, 1, 0 }, /* RDR 11 */
  87. { 13, 1, 0 }, /* RDR 12 */
  88. { 8, 1, 0 }, /* RDR 13 */
  89. { 8, 1, 0 }, /* RDR 14 */
  90. { 8, 1, 0 }, /* RDR 15 */
  91. { 1530, 24, 0 }, /* RDR 16 */
  92. { 16, 1, 0 }, /* RDR 17 */
  93. { 4, 1, 0 }, /* RDR 18 */
  94. { 0, 0, 0 }, /* RDR 19 */
  95. { 152, 3, 24 }, /* RDR 20 */
  96. { 152, 3, 24 }, /* RDR 21 */
  97. { 233, 4, 48 }, /* RDR 22 */
  98. { 233, 4, 48 }, /* RDR 23 */
  99. { 71, 2, 0 }, /* RDR 24 */
  100. { 71, 2, 0 }, /* RDR 25 */
  101. { 11, 1, 0 }, /* RDR 26 */
  102. { 18, 1, 0 }, /* RDR 27 */
  103. { 128, 2, 0 }, /* RDR 28 */
  104. { 0, 0, 0 }, /* RDR 29 */
  105. { 16, 1, 0 }, /* RDR 30 */
  106. { 16, 1, 0 }, /* RDR 31 */
  107. };
  108. /* RDR register descriptions for PCX-U */
  109. static const struct rdr_tbl_ent perf_rdr_tbl_U[] = {
  110. { 19, 1, 8 }, /* RDR 0 */
  111. { 32, 1, 16 }, /* RDR 1 */
  112. { 20, 1, 0 }, /* RDR 2 */
  113. { 0, 0, 0 }, /* RDR 3 */
  114. { 344, 6, 0 }, /* RDR 4 */
  115. { 176, 3, 0 }, /* RDR 5 */
  116. { 336, 6, 0 }, /* RDR 6 */
  117. { 0, 0, 0 }, /* RDR 7 */
  118. { 0, 0, 0 }, /* RDR 8 */
  119. { 0, 0, 0 }, /* RDR 9 */
  120. { 28, 1, 0 }, /* RDR 10 */
  121. { 33, 1, 0 }, /* RDR 11 */
  122. { 0, 0, 0 }, /* RDR 12 */
  123. { 230, 4, 0 }, /* RDR 13 */
  124. { 32, 1, 0 }, /* RDR 14 */
  125. { 128, 2, 0 }, /* RDR 15 */
  126. { 1494, 24, 0 }, /* RDR 16 */
  127. { 18, 1, 0 }, /* RDR 17 */
  128. { 4, 1, 0 }, /* RDR 18 */
  129. { 0, 0, 0 }, /* RDR 19 */
  130. { 158, 3, 24 }, /* RDR 20 */
  131. { 158, 3, 24 }, /* RDR 21 */
  132. { 194, 4, 48 }, /* RDR 22 */
  133. { 194, 4, 48 }, /* RDR 23 */
  134. { 71, 2, 0 }, /* RDR 24 */
  135. { 71, 2, 0 }, /* RDR 25 */
  136. { 28, 1, 0 }, /* RDR 26 */
  137. { 33, 1, 0 }, /* RDR 27 */
  138. { 88, 2, 0 }, /* RDR 28 */
  139. { 32, 1, 0 }, /* RDR 29 */
  140. { 24, 1, 0 }, /* RDR 30 */
  141. { 16, 1, 0 }, /* RDR 31 */
  142. };
  143. /*
  144. * A non-zero write_control in the above tables is a byte offset into
  145. * this array.
  146. */
  147. static const uint64_t perf_bitmasks[] = {
  148. 0x0000000000000000ul, /* first dbl word must be zero */
  149. 0xfdffe00000000000ul, /* RDR0 bitmask */
  150. 0x003f000000000000ul, /* RDR1 bitmask */
  151. 0x00fffffffffffffful, /* RDR20-RDR21 bitmask (152 bits) */
  152. 0xfffffffffffffffful,
  153. 0xfffffffc00000000ul,
  154. 0xfffffffffffffffful, /* RDR22-RDR23 bitmask (233 bits) */
  155. 0xfffffffffffffffful,
  156. 0xfffffffffffffffcul,
  157. 0xff00000000000000ul
  158. };
  159. /*
  160. * Write control bitmasks for Pa-8700 processor given
  161. * some things have changed slightly.
  162. */
  163. static const uint64_t perf_bitmasks_piranha[] = {
  164. 0x0000000000000000ul, /* first dbl word must be zero */
  165. 0xfdffe00000000000ul, /* RDR0 bitmask */
  166. 0x003f000000000000ul, /* RDR1 bitmask */
  167. 0x00fffffffffffffful, /* RDR20-RDR21 bitmask (158 bits) */
  168. 0xfffffffffffffffful,
  169. 0xfffffffc00000000ul,
  170. 0xfffffffffffffffful, /* RDR22-RDR23 bitmask (210 bits) */
  171. 0xfffffffffffffffful,
  172. 0xfffffffffffffffful,
  173. 0xfffc000000000000ul
  174. };
  175. static const uint64_t *bitmask_array; /* array of bitmasks to use */
  176. /******************************************************************************
  177. * Function Prototypes
  178. *****************************************************************************/
  179. static int perf_config(uint32_t *image_ptr);
  180. static int perf_release(struct inode *inode, struct file *file);
  181. static int perf_open(struct inode *inode, struct file *file);
  182. static ssize_t perf_read(struct file *file, char __user *buf, size_t cnt, loff_t *ppos);
  183. static ssize_t perf_write(struct file *file, const char __user *buf,
  184. size_t count, loff_t *ppos);
  185. static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
  186. static void perf_start_counters(void);
  187. static int perf_stop_counters(uint32_t *raddr);
  188. static const struct rdr_tbl_ent * perf_rdr_get_entry(uint32_t rdr_num);
  189. static int perf_rdr_read_ubuf(uint32_t rdr_num, uint64_t *buffer);
  190. static int perf_rdr_clear(uint32_t rdr_num);
  191. static int perf_write_image(uint64_t *memaddr);
  192. static void perf_rdr_write(uint32_t rdr_num, uint64_t *buffer);
  193. /* External Assembly Routines */
  194. extern uint64_t perf_rdr_shift_in_W (uint32_t rdr_num, uint16_t width);
  195. extern uint64_t perf_rdr_shift_in_U (uint32_t rdr_num, uint16_t width);
  196. extern void perf_rdr_shift_out_W (uint32_t rdr_num, uint64_t buffer);
  197. extern void perf_rdr_shift_out_U (uint32_t rdr_num, uint64_t buffer);
  198. extern void perf_intrigue_enable_perf_counters (void);
  199. extern void perf_intrigue_disable_perf_counters (void);
  200. /******************************************************************************
  201. * Function Definitions
  202. *****************************************************************************/
  203. /*
  204. * configure:
  205. *
  206. * Configure the cpu with a given data image. First turn off the counters,
  207. * then download the image, then turn the counters back on.
  208. */
  209. static int perf_config(uint32_t *image_ptr)
  210. {
  211. long error;
  212. uint32_t raddr[4];
  213. /* Stop the counters*/
  214. error = perf_stop_counters(raddr);
  215. if (error != 0) {
  216. printk("perf_config: perf_stop_counters = %ld\n", error);
  217. return -EINVAL;
  218. }
  219. printk("Preparing to write image\n");
  220. /* Write the image to the chip */
  221. error = perf_write_image((uint64_t *)image_ptr);
  222. if (error != 0) {
  223. printk("perf_config: DOWNLOAD = %ld\n", error);
  224. return -EINVAL;
  225. }
  226. printk("Preparing to start counters\n");
  227. /* Start the counters */
  228. perf_start_counters();
  229. return sizeof(uint32_t);
  230. }
  231. /*
  232. * Open the device and initialize all of its memory. The device is only
  233. * opened once, but can be "queried" by multiple processes that know its
  234. * file descriptor.
  235. */
  236. static int perf_open(struct inode *inode, struct file *file)
  237. {
  238. spin_lock(&perf_lock);
  239. if (perf_enabled) {
  240. spin_unlock(&perf_lock);
  241. return -EBUSY;
  242. }
  243. perf_enabled = 1;
  244. spin_unlock(&perf_lock);
  245. return 0;
  246. }
  247. /*
  248. * Close the device.
  249. */
  250. static int perf_release(struct inode *inode, struct file *file)
  251. {
  252. spin_lock(&perf_lock);
  253. perf_enabled = 0;
  254. spin_unlock(&perf_lock);
  255. return 0;
  256. }
  257. /*
  258. * Read does nothing for this driver
  259. */
  260. static ssize_t perf_read(struct file *file, char __user *buf, size_t cnt, loff_t *ppos)
  261. {
  262. return 0;
  263. }
  264. /*
  265. * write:
  266. *
  267. * This routine downloads the image to the chip. It must be
  268. * called on the processor that the download should happen
  269. * on.
  270. */
  271. static ssize_t perf_write(struct file *file, const char __user *buf,
  272. size_t count, loff_t *ppos)
  273. {
  274. int err;
  275. size_t image_size;
  276. uint32_t image_type;
  277. uint32_t interface_type;
  278. uint32_t test;
  279. if (perf_processor_interface == ONYX_INTF)
  280. image_size = PCXU_IMAGE_SIZE;
  281. else if (perf_processor_interface == CUDA_INTF)
  282. image_size = PCXW_IMAGE_SIZE;
  283. else
  284. return -EFAULT;
  285. if (!capable(CAP_SYS_ADMIN))
  286. return -EACCES;
  287. if (count != sizeof(uint32_t))
  288. return -EIO;
  289. if ((err = copy_from_user(&image_type, buf, sizeof(uint32_t))) != 0)
  290. return err;
  291. /* Get the interface type and test type */
  292. interface_type = (image_type >> 16) & 0xffff;
  293. test = (image_type & 0xffff);
  294. /* Make sure everything makes sense */
  295. /* First check the machine type is correct for
  296. the requested image */
  297. if (((perf_processor_interface == CUDA_INTF) &&
  298. (interface_type != CUDA_INTF)) ||
  299. ((perf_processor_interface == ONYX_INTF) &&
  300. (interface_type != ONYX_INTF)))
  301. return -EINVAL;
  302. /* Next check to make sure the requested image
  303. is valid */
  304. if (((interface_type == CUDA_INTF) &&
  305. (test >= MAX_CUDA_IMAGES)) ||
  306. ((interface_type == ONYX_INTF) &&
  307. (test >= MAX_ONYX_IMAGES)))
  308. return -EINVAL;
  309. /* Copy the image into the processor */
  310. if (interface_type == CUDA_INTF)
  311. return perf_config(cuda_images[test]);
  312. else
  313. return perf_config(onyx_images[test]);
  314. return count;
  315. }
  316. /*
  317. * Patch the images that need to know the IVA addresses.
  318. */
  319. static void perf_patch_images(void)
  320. {
  321. #if 0 /* FIXME!! */
  322. /*
  323. * NOTE: this routine is VERY specific to the current TLB image.
  324. * If the image is changed, this routine might also need to be changed.
  325. */
  326. extern void $i_itlb_miss_2_0();
  327. extern void $i_dtlb_miss_2_0();
  328. extern void PA2_0_iva();
  329. /*
  330. * We can only use the lower 32-bits, the upper 32-bits should be 0
  331. * anyway given this is in the kernel
  332. */
  333. uint32_t itlb_addr = (uint32_t)&($i_itlb_miss_2_0);
  334. uint32_t dtlb_addr = (uint32_t)&($i_dtlb_miss_2_0);
  335. uint32_t IVAaddress = (uint32_t)&PA2_0_iva;
  336. if (perf_processor_interface == ONYX_INTF) {
  337. /* clear last 2 bytes */
  338. onyx_images[TLBMISS][15] &= 0xffffff00;
  339. /* set 2 bytes */
  340. onyx_images[TLBMISS][15] |= (0x000000ff&((dtlb_addr) >> 24));
  341. onyx_images[TLBMISS][16] = (dtlb_addr << 8)&0xffffff00;
  342. onyx_images[TLBMISS][17] = itlb_addr;
  343. /* clear last 2 bytes */
  344. onyx_images[TLBHANDMISS][15] &= 0xffffff00;
  345. /* set 2 bytes */
  346. onyx_images[TLBHANDMISS][15] |= (0x000000ff&((dtlb_addr) >> 24));
  347. onyx_images[TLBHANDMISS][16] = (dtlb_addr << 8)&0xffffff00;
  348. onyx_images[TLBHANDMISS][17] = itlb_addr;
  349. /* clear last 2 bytes */
  350. onyx_images[BIG_CPI][15] &= 0xffffff00;
  351. /* set 2 bytes */
  352. onyx_images[BIG_CPI][15] |= (0x000000ff&((dtlb_addr) >> 24));
  353. onyx_images[BIG_CPI][16] = (dtlb_addr << 8)&0xffffff00;
  354. onyx_images[BIG_CPI][17] = itlb_addr;
  355. onyx_images[PANIC][15] &= 0xffffff00; /* clear last 2 bytes */
  356. onyx_images[PANIC][15] |= (0x000000ff&((IVAaddress) >> 24)); /* set 2 bytes */
  357. onyx_images[PANIC][16] = (IVAaddress << 8)&0xffffff00;
  358. } else if (perf_processor_interface == CUDA_INTF) {
  359. /* Cuda interface */
  360. cuda_images[TLBMISS][16] =
  361. (cuda_images[TLBMISS][16]&0xffff0000) |
  362. ((dtlb_addr >> 8)&0x0000ffff);
  363. cuda_images[TLBMISS][17] =
  364. ((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff);
  365. cuda_images[TLBMISS][18] = (itlb_addr << 16)&0xffff0000;
  366. cuda_images[TLBHANDMISS][16] =
  367. (cuda_images[TLBHANDMISS][16]&0xffff0000) |
  368. ((dtlb_addr >> 8)&0x0000ffff);
  369. cuda_images[TLBHANDMISS][17] =
  370. ((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff);
  371. cuda_images[TLBHANDMISS][18] = (itlb_addr << 16)&0xffff0000;
  372. cuda_images[BIG_CPI][16] =
  373. (cuda_images[BIG_CPI][16]&0xffff0000) |
  374. ((dtlb_addr >> 8)&0x0000ffff);
  375. cuda_images[BIG_CPI][17] =
  376. ((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff);
  377. cuda_images[BIG_CPI][18] = (itlb_addr << 16)&0xffff0000;
  378. } else {
  379. /* Unknown type */
  380. }
  381. #endif
  382. }
  383. /*
  384. * ioctl routine
  385. * All routines effect the processor that they are executed on. Thus you
  386. * must be running on the processor that you wish to change.
  387. */
  388. static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  389. {
  390. long error_start;
  391. uint32_t raddr[4];
  392. int error = 0;
  393. switch (cmd) {
  394. case PA_PERF_ON:
  395. /* Start the counters */
  396. perf_start_counters();
  397. break;
  398. case PA_PERF_OFF:
  399. error_start = perf_stop_counters(raddr);
  400. if (error_start != 0) {
  401. printk(KERN_ERR "perf_off: perf_stop_counters = %ld\n", error_start);
  402. error = -EFAULT;
  403. break;
  404. }
  405. /* copy out the Counters */
  406. if (copy_to_user((void __user *)arg, raddr,
  407. sizeof (raddr)) != 0) {
  408. error = -EFAULT;
  409. break;
  410. }
  411. break;
  412. case PA_PERF_VERSION:
  413. /* Return the version # */
  414. error = put_user(PERF_VERSION, (int *)arg);
  415. break;
  416. default:
  417. error = -ENOTTY;
  418. }
  419. return error;
  420. }
  421. static const struct file_operations perf_fops = {
  422. .llseek = no_llseek,
  423. .read = perf_read,
  424. .write = perf_write,
  425. .unlocked_ioctl = perf_ioctl,
  426. .compat_ioctl = perf_ioctl,
  427. .open = perf_open,
  428. .release = perf_release
  429. };
  430. static struct miscdevice perf_dev = {
  431. MISC_DYNAMIC_MINOR,
  432. PA_PERF_DEV,
  433. &perf_fops
  434. };
  435. /*
  436. * Initialize the module
  437. */
  438. static int __init perf_init(void)
  439. {
  440. int ret;
  441. /* Determine correct processor interface to use */
  442. bitmask_array = perf_bitmasks;
  443. if (boot_cpu_data.cpu_type == pcxu ||
  444. boot_cpu_data.cpu_type == pcxu_) {
  445. perf_processor_interface = ONYX_INTF;
  446. } else if (boot_cpu_data.cpu_type == pcxw ||
  447. boot_cpu_data.cpu_type == pcxw_ ||
  448. boot_cpu_data.cpu_type == pcxw2 ||
  449. boot_cpu_data.cpu_type == mako ||
  450. boot_cpu_data.cpu_type == mako2) {
  451. perf_processor_interface = CUDA_INTF;
  452. if (boot_cpu_data.cpu_type == pcxw2 ||
  453. boot_cpu_data.cpu_type == mako ||
  454. boot_cpu_data.cpu_type == mako2)
  455. bitmask_array = perf_bitmasks_piranha;
  456. } else {
  457. perf_processor_interface = UNKNOWN_INTF;
  458. printk("Performance monitoring counters not supported on this processor\n");
  459. return -ENODEV;
  460. }
  461. ret = misc_register(&perf_dev);
  462. if (ret) {
  463. printk(KERN_ERR "Performance monitoring counters: "
  464. "cannot register misc device.\n");
  465. return ret;
  466. }
  467. /* Patch the images to match the system */
  468. perf_patch_images();
  469. spin_lock_init(&perf_lock);
  470. /* TODO: this only lets us access the first cpu.. what to do for SMP? */
  471. cpu_device = per_cpu(cpu_data, 0).dev;
  472. printk("Performance monitoring counters enabled for %s\n",
  473. per_cpu(cpu_data, 0).dev->name);
  474. return 0;
  475. }
  476. device_initcall(perf_init);
  477. /*
  478. * perf_start_counters(void)
  479. *
  480. * Start the counters.
  481. */
  482. static void perf_start_counters(void)
  483. {
  484. /* Enable performance monitor counters */
  485. perf_intrigue_enable_perf_counters();
  486. }
  487. /*
  488. * perf_stop_counters
  489. *
  490. * Stop the performance counters and save counts
  491. * in a per_processor array.
  492. */
  493. static int perf_stop_counters(uint32_t *raddr)
  494. {
  495. uint64_t userbuf[MAX_RDR_WORDS];
  496. /* Disable performance counters */
  497. perf_intrigue_disable_perf_counters();
  498. if (perf_processor_interface == ONYX_INTF) {
  499. uint64_t tmp64;
  500. /*
  501. * Read the counters
  502. */
  503. if (!perf_rdr_read_ubuf(16, userbuf))
  504. return -13;
  505. /* Counter0 is bits 1398 to 1429 */
  506. tmp64 = (userbuf[21] << 22) & 0x00000000ffc00000;
  507. tmp64 |= (userbuf[22] >> 42) & 0x00000000003fffff;
  508. /* OR sticky0 (bit 1430) to counter0 bit 32 */
  509. tmp64 |= (userbuf[22] >> 10) & 0x0000000080000000;
  510. raddr[0] = (uint32_t)tmp64;
  511. /* Counter1 is bits 1431 to 1462 */
  512. tmp64 = (userbuf[22] >> 9) & 0x00000000ffffffff;
  513. /* OR sticky1 (bit 1463) to counter1 bit 32 */
  514. tmp64 |= (userbuf[22] << 23) & 0x0000000080000000;
  515. raddr[1] = (uint32_t)tmp64;
  516. /* Counter2 is bits 1464 to 1495 */
  517. tmp64 = (userbuf[22] << 24) & 0x00000000ff000000;
  518. tmp64 |= (userbuf[23] >> 40) & 0x0000000000ffffff;
  519. /* OR sticky2 (bit 1496) to counter2 bit 32 */
  520. tmp64 |= (userbuf[23] >> 8) & 0x0000000080000000;
  521. raddr[2] = (uint32_t)tmp64;
  522. /* Counter3 is bits 1497 to 1528 */
  523. tmp64 = (userbuf[23] >> 7) & 0x00000000ffffffff;
  524. /* OR sticky3 (bit 1529) to counter3 bit 32 */
  525. tmp64 |= (userbuf[23] << 25) & 0x0000000080000000;
  526. raddr[3] = (uint32_t)tmp64;
  527. /*
  528. * Zero out the counters
  529. */
  530. /*
  531. * The counters and sticky-bits comprise the last 132 bits
  532. * (1398 - 1529) of RDR16 on a U chip. We'll zero these
  533. * out the easy way: zero out last 10 bits of dword 21,
  534. * all of dword 22 and 58 bits (plus 6 don't care bits) of
  535. * dword 23.
  536. */
  537. userbuf[21] &= 0xfffffffffffffc00ul; /* 0 to last 10 bits */
  538. userbuf[22] = 0;
  539. userbuf[23] = 0;
  540. /*
  541. * Write back the zeroed bytes + the image given
  542. * the read was destructive.
  543. */
  544. perf_rdr_write(16, userbuf);
  545. } else {
  546. /*
  547. * Read RDR-15 which contains the counters and sticky bits
  548. */
  549. if (!perf_rdr_read_ubuf(15, userbuf)) {
  550. return -13;
  551. }
  552. /*
  553. * Clear out the counters
  554. */
  555. perf_rdr_clear(15);
  556. /*
  557. * Copy the counters
  558. */
  559. raddr[0] = (uint32_t)((userbuf[0] >> 32) & 0x00000000ffffffffUL);
  560. raddr[1] = (uint32_t)(userbuf[0] & 0x00000000ffffffffUL);
  561. raddr[2] = (uint32_t)((userbuf[1] >> 32) & 0x00000000ffffffffUL);
  562. raddr[3] = (uint32_t)(userbuf[1] & 0x00000000ffffffffUL);
  563. }
  564. return 0;
  565. }
  566. /*
  567. * perf_rdr_get_entry
  568. *
  569. * Retrieve a pointer to the description of what this
  570. * RDR contains.
  571. */
  572. static const struct rdr_tbl_ent * perf_rdr_get_entry(uint32_t rdr_num)
  573. {
  574. if (perf_processor_interface == ONYX_INTF) {
  575. return &perf_rdr_tbl_U[rdr_num];
  576. } else {
  577. return &perf_rdr_tbl_W[rdr_num];
  578. }
  579. }
  580. /*
  581. * perf_rdr_read_ubuf
  582. *
  583. * Read the RDR value into the buffer specified.
  584. */
  585. static int perf_rdr_read_ubuf(uint32_t rdr_num, uint64_t *buffer)
  586. {
  587. uint64_t data, data_mask = 0;
  588. uint32_t width, xbits, i;
  589. const struct rdr_tbl_ent *tentry;
  590. tentry = perf_rdr_get_entry(rdr_num);
  591. if ((width = tentry->width) == 0)
  592. return 0;
  593. /* Clear out buffer */
  594. i = tentry->num_words;
  595. while (i--) {
  596. buffer[i] = 0;
  597. }
  598. /* Check for bits an even number of 64 */
  599. if ((xbits = width & 0x03f) != 0) {
  600. data_mask = 1;
  601. data_mask <<= (64 - xbits);
  602. data_mask--;
  603. }
  604. /* Grab all of the data */
  605. i = tentry->num_words;
  606. while (i--) {
  607. if (perf_processor_interface == ONYX_INTF) {
  608. data = perf_rdr_shift_in_U(rdr_num, width);
  609. } else {
  610. data = perf_rdr_shift_in_W(rdr_num, width);
  611. }
  612. if (xbits) {
  613. buffer[i] |= (data << (64 - xbits));
  614. if (i) {
  615. buffer[i-1] |= ((data >> xbits) & data_mask);
  616. }
  617. } else {
  618. buffer[i] = data;
  619. }
  620. }
  621. return 1;
  622. }
  623. /*
  624. * perf_rdr_clear
  625. *
  626. * Zero out the given RDR register
  627. */
  628. static int perf_rdr_clear(uint32_t rdr_num)
  629. {
  630. const struct rdr_tbl_ent *tentry;
  631. int32_t i;
  632. tentry = perf_rdr_get_entry(rdr_num);
  633. if (tentry->width == 0) {
  634. return -1;
  635. }
  636. i = tentry->num_words;
  637. while (i--) {
  638. if (perf_processor_interface == ONYX_INTF) {
  639. perf_rdr_shift_out_U(rdr_num, 0UL);
  640. } else {
  641. perf_rdr_shift_out_W(rdr_num, 0UL);
  642. }
  643. }
  644. return 0;
  645. }
  646. /*
  647. * perf_write_image
  648. *
  649. * Write the given image out to the processor
  650. */
  651. static int perf_write_image(uint64_t *memaddr)
  652. {
  653. uint64_t buffer[MAX_RDR_WORDS];
  654. uint64_t *bptr;
  655. uint32_t dwords;
  656. const uint32_t *intrigue_rdr;
  657. const uint64_t *intrigue_bitmask;
  658. uint64_t tmp64;
  659. void __iomem *runway;
  660. const struct rdr_tbl_ent *tentry;
  661. int i;
  662. /* Clear out counters */
  663. if (perf_processor_interface == ONYX_INTF) {
  664. perf_rdr_clear(16);
  665. /* Toggle performance monitor */
  666. perf_intrigue_enable_perf_counters();
  667. perf_intrigue_disable_perf_counters();
  668. intrigue_rdr = perf_rdrs_U;
  669. } else {
  670. perf_rdr_clear(15);
  671. intrigue_rdr = perf_rdrs_W;
  672. }
  673. /* Write all RDRs */
  674. while (*intrigue_rdr != -1) {
  675. tentry = perf_rdr_get_entry(*intrigue_rdr);
  676. perf_rdr_read_ubuf(*intrigue_rdr, buffer);
  677. bptr = &buffer[0];
  678. dwords = tentry->num_words;
  679. if (tentry->write_control) {
  680. intrigue_bitmask = &bitmask_array[tentry->write_control >> 3];
  681. while (dwords--) {
  682. tmp64 = *intrigue_bitmask & *memaddr++;
  683. tmp64 |= (~(*intrigue_bitmask++)) & *bptr;
  684. *bptr++ = tmp64;
  685. }
  686. } else {
  687. while (dwords--) {
  688. *bptr++ = *memaddr++;
  689. }
  690. }
  691. perf_rdr_write(*intrigue_rdr, buffer);
  692. intrigue_rdr++;
  693. }
  694. /*
  695. * Now copy out the Runway stuff which is not in RDRs
  696. */
  697. if (cpu_device == NULL)
  698. {
  699. printk(KERN_ERR "write_image: cpu_device not yet initialized!\n");
  700. return -1;
  701. }
  702. runway = ioremap_nocache(cpu_device->hpa.start, 4096);
  703. if (!runway) {
  704. pr_err("perf_write_image: ioremap failed!\n");
  705. return -ENOMEM;
  706. }
  707. /* Merge intrigue bits into Runway STATUS 0 */
  708. tmp64 = __raw_readq(runway + RUNWAY_STATUS) & 0xffecfffffffffffful;
  709. __raw_writeq(tmp64 | (*memaddr++ & 0x0013000000000000ul),
  710. runway + RUNWAY_STATUS);
  711. /* Write RUNWAY DEBUG registers */
  712. for (i = 0; i < 8; i++) {
  713. __raw_writeq(*memaddr++, runway + RUNWAY_DEBUG);
  714. }
  715. return 0;
  716. }
  717. /*
  718. * perf_rdr_write
  719. *
  720. * Write the given RDR register with the contents
  721. * of the given buffer.
  722. */
  723. static void perf_rdr_write(uint32_t rdr_num, uint64_t *buffer)
  724. {
  725. const struct rdr_tbl_ent *tentry;
  726. int32_t i;
  727. printk("perf_rdr_write\n");
  728. tentry = perf_rdr_get_entry(rdr_num);
  729. if (tentry->width == 0) { return; }
  730. i = tentry->num_words;
  731. while (i--) {
  732. if (perf_processor_interface == ONYX_INTF) {
  733. perf_rdr_shift_out_U(rdr_num, buffer[i]);
  734. } else {
  735. perf_rdr_shift_out_W(rdr_num, buffer[i]);
  736. }
  737. }
  738. printk("perf_rdr_write done\n");
  739. }