sys_regs.c 61 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274
  1. /*
  2. * Copyright (C) 2012,2013 - ARM Ltd
  3. * Author: Marc Zyngier <marc.zyngier@arm.com>
  4. *
  5. * Derived from arch/arm/kvm/coproc.c:
  6. * Copyright (C) 2012 - Virtual Open Systems and Columbia University
  7. * Authors: Rusty Russell <rusty@rustcorp.com.au>
  8. * Christoffer Dall <c.dall@virtualopensystems.com>
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License, version 2, as
  12. * published by the Free Software Foundation.
  13. *
  14. * This program is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. * GNU General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  21. */
  22. #include <linux/bsearch.h>
  23. #include <linux/kvm_host.h>
  24. #include <linux/mm.h>
  25. #include <linux/uaccess.h>
  26. #include <asm/cacheflush.h>
  27. #include <asm/cputype.h>
  28. #include <asm/debug-monitors.h>
  29. #include <asm/esr.h>
  30. #include <asm/kvm_arm.h>
  31. #include <asm/kvm_asm.h>
  32. #include <asm/kvm_coproc.h>
  33. #include <asm/kvm_emulate.h>
  34. #include <asm/kvm_host.h>
  35. #include <asm/kvm_mmu.h>
  36. #include <asm/perf_event.h>
  37. #include <asm/sysreg.h>
  38. #include <trace/events/kvm.h>
  39. #include "sys_regs.h"
  40. #include "trace.h"
  41. /*
  42. * All of this file is extremly similar to the ARM coproc.c, but the
  43. * types are different. My gut feeling is that it should be pretty
  44. * easy to merge, but that would be an ABI breakage -- again. VFP
  45. * would also need to be abstracted.
  46. *
  47. * For AArch32, we only take care of what is being trapped. Anything
  48. * that has to do with init and userspace access has to go via the
  49. * 64bit interface.
  50. */
  51. /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
  52. static u32 cache_levels;
  53. /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
  54. #define CSSELR_MAX 12
  55. /* Which cache CCSIDR represents depends on CSSELR value. */
  56. static u32 get_ccsidr(u32 csselr)
  57. {
  58. u32 ccsidr;
  59. /* Make sure noone else changes CSSELR during this! */
  60. local_irq_disable();
  61. write_sysreg(csselr, csselr_el1);
  62. isb();
  63. ccsidr = read_sysreg(ccsidr_el1);
  64. local_irq_enable();
  65. return ccsidr;
  66. }
  67. /*
  68. * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
  69. */
  70. static bool access_dcsw(struct kvm_vcpu *vcpu,
  71. struct sys_reg_params *p,
  72. const struct sys_reg_desc *r)
  73. {
  74. if (!p->is_write)
  75. return read_from_write_only(vcpu, p);
  76. kvm_set_way_flush(vcpu);
  77. return true;
  78. }
  79. /*
  80. * Generic accessor for VM registers. Only called as long as HCR_TVM
  81. * is set. If the guest enables the MMU, we stop trapping the VM
  82. * sys_regs and leave it in complete control of the caches.
  83. */
  84. static bool access_vm_reg(struct kvm_vcpu *vcpu,
  85. struct sys_reg_params *p,
  86. const struct sys_reg_desc *r)
  87. {
  88. bool was_enabled = vcpu_has_cache_enabled(vcpu);
  89. BUG_ON(!p->is_write);
  90. if (!p->is_aarch32) {
  91. vcpu_sys_reg(vcpu, r->reg) = p->regval;
  92. } else {
  93. if (!p->is_32bit)
  94. vcpu_cp15_64_high(vcpu, r->reg) = upper_32_bits(p->regval);
  95. vcpu_cp15_64_low(vcpu, r->reg) = lower_32_bits(p->regval);
  96. }
  97. kvm_toggle_cache(vcpu, was_enabled);
  98. return true;
  99. }
  100. /*
  101. * Trap handler for the GICv3 SGI generation system register.
  102. * Forward the request to the VGIC emulation.
  103. * The cp15_64 code makes sure this automatically works
  104. * for both AArch64 and AArch32 accesses.
  105. */
  106. static bool access_gic_sgi(struct kvm_vcpu *vcpu,
  107. struct sys_reg_params *p,
  108. const struct sys_reg_desc *r)
  109. {
  110. if (!p->is_write)
  111. return read_from_write_only(vcpu, p);
  112. vgic_v3_dispatch_sgi(vcpu, p->regval);
  113. return true;
  114. }
  115. static bool access_gic_sre(struct kvm_vcpu *vcpu,
  116. struct sys_reg_params *p,
  117. const struct sys_reg_desc *r)
  118. {
  119. if (p->is_write)
  120. return ignore_write(vcpu, p);
  121. p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
  122. return true;
  123. }
  124. static bool trap_raz_wi(struct kvm_vcpu *vcpu,
  125. struct sys_reg_params *p,
  126. const struct sys_reg_desc *r)
  127. {
  128. if (p->is_write)
  129. return ignore_write(vcpu, p);
  130. else
  131. return read_zero(vcpu, p);
  132. }
  133. static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
  134. struct sys_reg_params *p,
  135. const struct sys_reg_desc *r)
  136. {
  137. if (p->is_write) {
  138. return ignore_write(vcpu, p);
  139. } else {
  140. p->regval = (1 << 3);
  141. return true;
  142. }
  143. }
  144. static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
  145. struct sys_reg_params *p,
  146. const struct sys_reg_desc *r)
  147. {
  148. if (p->is_write) {
  149. return ignore_write(vcpu, p);
  150. } else {
  151. p->regval = read_sysreg(dbgauthstatus_el1);
  152. return true;
  153. }
  154. }
  155. /*
  156. * We want to avoid world-switching all the DBG registers all the
  157. * time:
  158. *
  159. * - If we've touched any debug register, it is likely that we're
  160. * going to touch more of them. It then makes sense to disable the
  161. * traps and start doing the save/restore dance
  162. * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
  163. * then mandatory to save/restore the registers, as the guest
  164. * depends on them.
  165. *
  166. * For this, we use a DIRTY bit, indicating the guest has modified the
  167. * debug registers, used as follow:
  168. *
  169. * On guest entry:
  170. * - If the dirty bit is set (because we're coming back from trapping),
  171. * disable the traps, save host registers, restore guest registers.
  172. * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
  173. * set the dirty bit, disable the traps, save host registers,
  174. * restore guest registers.
  175. * - Otherwise, enable the traps
  176. *
  177. * On guest exit:
  178. * - If the dirty bit is set, save guest registers, restore host
  179. * registers and clear the dirty bit. This ensure that the host can
  180. * now use the debug registers.
  181. */
  182. static bool trap_debug_regs(struct kvm_vcpu *vcpu,
  183. struct sys_reg_params *p,
  184. const struct sys_reg_desc *r)
  185. {
  186. if (p->is_write) {
  187. vcpu_sys_reg(vcpu, r->reg) = p->regval;
  188. vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
  189. } else {
  190. p->regval = vcpu_sys_reg(vcpu, r->reg);
  191. }
  192. trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
  193. return true;
  194. }
  195. /*
  196. * reg_to_dbg/dbg_to_reg
  197. *
  198. * A 32 bit write to a debug register leave top bits alone
  199. * A 32 bit read from a debug register only returns the bottom bits
  200. *
  201. * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
  202. * hyp.S code switches between host and guest values in future.
  203. */
  204. static void reg_to_dbg(struct kvm_vcpu *vcpu,
  205. struct sys_reg_params *p,
  206. u64 *dbg_reg)
  207. {
  208. u64 val = p->regval;
  209. if (p->is_32bit) {
  210. val &= 0xffffffffUL;
  211. val |= ((*dbg_reg >> 32) << 32);
  212. }
  213. *dbg_reg = val;
  214. vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
  215. }
  216. static void dbg_to_reg(struct kvm_vcpu *vcpu,
  217. struct sys_reg_params *p,
  218. u64 *dbg_reg)
  219. {
  220. p->regval = *dbg_reg;
  221. if (p->is_32bit)
  222. p->regval &= 0xffffffffUL;
  223. }
  224. static bool trap_bvr(struct kvm_vcpu *vcpu,
  225. struct sys_reg_params *p,
  226. const struct sys_reg_desc *rd)
  227. {
  228. u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
  229. if (p->is_write)
  230. reg_to_dbg(vcpu, p, dbg_reg);
  231. else
  232. dbg_to_reg(vcpu, p, dbg_reg);
  233. trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
  234. return true;
  235. }
  236. static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
  237. const struct kvm_one_reg *reg, void __user *uaddr)
  238. {
  239. __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
  240. if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
  241. return -EFAULT;
  242. return 0;
  243. }
  244. static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
  245. const struct kvm_one_reg *reg, void __user *uaddr)
  246. {
  247. __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
  248. if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
  249. return -EFAULT;
  250. return 0;
  251. }
  252. static void reset_bvr(struct kvm_vcpu *vcpu,
  253. const struct sys_reg_desc *rd)
  254. {
  255. vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
  256. }
  257. static bool trap_bcr(struct kvm_vcpu *vcpu,
  258. struct sys_reg_params *p,
  259. const struct sys_reg_desc *rd)
  260. {
  261. u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
  262. if (p->is_write)
  263. reg_to_dbg(vcpu, p, dbg_reg);
  264. else
  265. dbg_to_reg(vcpu, p, dbg_reg);
  266. trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
  267. return true;
  268. }
  269. static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
  270. const struct kvm_one_reg *reg, void __user *uaddr)
  271. {
  272. __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
  273. if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
  274. return -EFAULT;
  275. return 0;
  276. }
  277. static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
  278. const struct kvm_one_reg *reg, void __user *uaddr)
  279. {
  280. __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
  281. if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
  282. return -EFAULT;
  283. return 0;
  284. }
  285. static void reset_bcr(struct kvm_vcpu *vcpu,
  286. const struct sys_reg_desc *rd)
  287. {
  288. vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
  289. }
  290. static bool trap_wvr(struct kvm_vcpu *vcpu,
  291. struct sys_reg_params *p,
  292. const struct sys_reg_desc *rd)
  293. {
  294. u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
  295. if (p->is_write)
  296. reg_to_dbg(vcpu, p, dbg_reg);
  297. else
  298. dbg_to_reg(vcpu, p, dbg_reg);
  299. trace_trap_reg(__func__, rd->reg, p->is_write,
  300. vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
  301. return true;
  302. }
  303. static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
  304. const struct kvm_one_reg *reg, void __user *uaddr)
  305. {
  306. __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
  307. if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
  308. return -EFAULT;
  309. return 0;
  310. }
  311. static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
  312. const struct kvm_one_reg *reg, void __user *uaddr)
  313. {
  314. __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
  315. if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
  316. return -EFAULT;
  317. return 0;
  318. }
  319. static void reset_wvr(struct kvm_vcpu *vcpu,
  320. const struct sys_reg_desc *rd)
  321. {
  322. vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
  323. }
  324. static bool trap_wcr(struct kvm_vcpu *vcpu,
  325. struct sys_reg_params *p,
  326. const struct sys_reg_desc *rd)
  327. {
  328. u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
  329. if (p->is_write)
  330. reg_to_dbg(vcpu, p, dbg_reg);
  331. else
  332. dbg_to_reg(vcpu, p, dbg_reg);
  333. trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
  334. return true;
  335. }
  336. static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
  337. const struct kvm_one_reg *reg, void __user *uaddr)
  338. {
  339. __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
  340. if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
  341. return -EFAULT;
  342. return 0;
  343. }
  344. static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
  345. const struct kvm_one_reg *reg, void __user *uaddr)
  346. {
  347. __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
  348. if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
  349. return -EFAULT;
  350. return 0;
  351. }
  352. static void reset_wcr(struct kvm_vcpu *vcpu,
  353. const struct sys_reg_desc *rd)
  354. {
  355. vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
  356. }
  357. static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
  358. {
  359. vcpu_sys_reg(vcpu, AMAIR_EL1) = read_sysreg(amair_el1);
  360. }
  361. static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
  362. {
  363. u64 mpidr;
  364. /*
  365. * Map the vcpu_id into the first three affinity level fields of
  366. * the MPIDR. We limit the number of VCPUs in level 0 due to a
  367. * limitation to 16 CPUs in that level in the ICC_SGIxR registers
  368. * of the GICv3 to be able to address each CPU directly when
  369. * sending IPIs.
  370. */
  371. mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
  372. mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
  373. mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
  374. vcpu_sys_reg(vcpu, MPIDR_EL1) = (1ULL << 31) | mpidr;
  375. }
  376. static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
  377. {
  378. u64 pmcr, val;
  379. pmcr = read_sysreg(pmcr_el0);
  380. /*
  381. * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
  382. * except PMCR.E resetting to zero.
  383. */
  384. val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
  385. | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
  386. vcpu_sys_reg(vcpu, PMCR_EL0) = val;
  387. }
  388. static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
  389. {
  390. u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
  391. return !((reg & ARMV8_PMU_USERENR_EN) || vcpu_mode_priv(vcpu));
  392. }
  393. static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
  394. {
  395. u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
  396. return !((reg & (ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN))
  397. || vcpu_mode_priv(vcpu));
  398. }
  399. static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
  400. {
  401. u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
  402. return !((reg & (ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN))
  403. || vcpu_mode_priv(vcpu));
  404. }
  405. static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
  406. {
  407. u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
  408. return !((reg & (ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN))
  409. || vcpu_mode_priv(vcpu));
  410. }
  411. static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
  412. const struct sys_reg_desc *r)
  413. {
  414. u64 val;
  415. if (!kvm_arm_pmu_v3_ready(vcpu))
  416. return trap_raz_wi(vcpu, p, r);
  417. if (pmu_access_el0_disabled(vcpu))
  418. return false;
  419. if (p->is_write) {
  420. /* Only update writeable bits of PMCR */
  421. val = vcpu_sys_reg(vcpu, PMCR_EL0);
  422. val &= ~ARMV8_PMU_PMCR_MASK;
  423. val |= p->regval & ARMV8_PMU_PMCR_MASK;
  424. vcpu_sys_reg(vcpu, PMCR_EL0) = val;
  425. kvm_pmu_handle_pmcr(vcpu, val);
  426. } else {
  427. /* PMCR.P & PMCR.C are RAZ */
  428. val = vcpu_sys_reg(vcpu, PMCR_EL0)
  429. & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
  430. p->regval = val;
  431. }
  432. return true;
  433. }
  434. static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
  435. const struct sys_reg_desc *r)
  436. {
  437. if (!kvm_arm_pmu_v3_ready(vcpu))
  438. return trap_raz_wi(vcpu, p, r);
  439. if (pmu_access_event_counter_el0_disabled(vcpu))
  440. return false;
  441. if (p->is_write)
  442. vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
  443. else
  444. /* return PMSELR.SEL field */
  445. p->regval = vcpu_sys_reg(vcpu, PMSELR_EL0)
  446. & ARMV8_PMU_COUNTER_MASK;
  447. return true;
  448. }
  449. static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
  450. const struct sys_reg_desc *r)
  451. {
  452. u64 pmceid;
  453. if (!kvm_arm_pmu_v3_ready(vcpu))
  454. return trap_raz_wi(vcpu, p, r);
  455. BUG_ON(p->is_write);
  456. if (pmu_access_el0_disabled(vcpu))
  457. return false;
  458. if (!(p->Op2 & 1))
  459. pmceid = read_sysreg(pmceid0_el0);
  460. else
  461. pmceid = read_sysreg(pmceid1_el0);
  462. p->regval = pmceid;
  463. return true;
  464. }
  465. static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
  466. {
  467. u64 pmcr, val;
  468. pmcr = vcpu_sys_reg(vcpu, PMCR_EL0);
  469. val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
  470. if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX)
  471. return false;
  472. return true;
  473. }
  474. static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
  475. struct sys_reg_params *p,
  476. const struct sys_reg_desc *r)
  477. {
  478. u64 idx;
  479. if (!kvm_arm_pmu_v3_ready(vcpu))
  480. return trap_raz_wi(vcpu, p, r);
  481. if (r->CRn == 9 && r->CRm == 13) {
  482. if (r->Op2 == 2) {
  483. /* PMXEVCNTR_EL0 */
  484. if (pmu_access_event_counter_el0_disabled(vcpu))
  485. return false;
  486. idx = vcpu_sys_reg(vcpu, PMSELR_EL0)
  487. & ARMV8_PMU_COUNTER_MASK;
  488. } else if (r->Op2 == 0) {
  489. /* PMCCNTR_EL0 */
  490. if (pmu_access_cycle_counter_el0_disabled(vcpu))
  491. return false;
  492. idx = ARMV8_PMU_CYCLE_IDX;
  493. } else {
  494. return false;
  495. }
  496. } else if (r->CRn == 0 && r->CRm == 9) {
  497. /* PMCCNTR */
  498. if (pmu_access_event_counter_el0_disabled(vcpu))
  499. return false;
  500. idx = ARMV8_PMU_CYCLE_IDX;
  501. } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
  502. /* PMEVCNTRn_EL0 */
  503. if (pmu_access_event_counter_el0_disabled(vcpu))
  504. return false;
  505. idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
  506. } else {
  507. return false;
  508. }
  509. if (!pmu_counter_idx_valid(vcpu, idx))
  510. return false;
  511. if (p->is_write) {
  512. if (pmu_access_el0_disabled(vcpu))
  513. return false;
  514. kvm_pmu_set_counter_value(vcpu, idx, p->regval);
  515. } else {
  516. p->regval = kvm_pmu_get_counter_value(vcpu, idx);
  517. }
  518. return true;
  519. }
  520. static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
  521. const struct sys_reg_desc *r)
  522. {
  523. u64 idx, reg;
  524. if (!kvm_arm_pmu_v3_ready(vcpu))
  525. return trap_raz_wi(vcpu, p, r);
  526. if (pmu_access_el0_disabled(vcpu))
  527. return false;
  528. if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
  529. /* PMXEVTYPER_EL0 */
  530. idx = vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
  531. reg = PMEVTYPER0_EL0 + idx;
  532. } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
  533. idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
  534. if (idx == ARMV8_PMU_CYCLE_IDX)
  535. reg = PMCCFILTR_EL0;
  536. else
  537. /* PMEVTYPERn_EL0 */
  538. reg = PMEVTYPER0_EL0 + idx;
  539. } else {
  540. BUG();
  541. }
  542. if (!pmu_counter_idx_valid(vcpu, idx))
  543. return false;
  544. if (p->is_write) {
  545. kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
  546. vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
  547. } else {
  548. p->regval = vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
  549. }
  550. return true;
  551. }
  552. static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
  553. const struct sys_reg_desc *r)
  554. {
  555. u64 val, mask;
  556. if (!kvm_arm_pmu_v3_ready(vcpu))
  557. return trap_raz_wi(vcpu, p, r);
  558. if (pmu_access_el0_disabled(vcpu))
  559. return false;
  560. mask = kvm_pmu_valid_counter_mask(vcpu);
  561. if (p->is_write) {
  562. val = p->regval & mask;
  563. if (r->Op2 & 0x1) {
  564. /* accessing PMCNTENSET_EL0 */
  565. vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
  566. kvm_pmu_enable_counter(vcpu, val);
  567. } else {
  568. /* accessing PMCNTENCLR_EL0 */
  569. vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
  570. kvm_pmu_disable_counter(vcpu, val);
  571. }
  572. } else {
  573. p->regval = vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
  574. }
  575. return true;
  576. }
  577. static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
  578. const struct sys_reg_desc *r)
  579. {
  580. u64 mask = kvm_pmu_valid_counter_mask(vcpu);
  581. if (!kvm_arm_pmu_v3_ready(vcpu))
  582. return trap_raz_wi(vcpu, p, r);
  583. if (!vcpu_mode_priv(vcpu))
  584. return false;
  585. if (p->is_write) {
  586. u64 val = p->regval & mask;
  587. if (r->Op2 & 0x1)
  588. /* accessing PMINTENSET_EL1 */
  589. vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
  590. else
  591. /* accessing PMINTENCLR_EL1 */
  592. vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
  593. } else {
  594. p->regval = vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
  595. }
  596. return true;
  597. }
  598. static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
  599. const struct sys_reg_desc *r)
  600. {
  601. u64 mask = kvm_pmu_valid_counter_mask(vcpu);
  602. if (!kvm_arm_pmu_v3_ready(vcpu))
  603. return trap_raz_wi(vcpu, p, r);
  604. if (pmu_access_el0_disabled(vcpu))
  605. return false;
  606. if (p->is_write) {
  607. if (r->CRm & 0x2)
  608. /* accessing PMOVSSET_EL0 */
  609. kvm_pmu_overflow_set(vcpu, p->regval & mask);
  610. else
  611. /* accessing PMOVSCLR_EL0 */
  612. vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
  613. } else {
  614. p->regval = vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
  615. }
  616. return true;
  617. }
  618. static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
  619. const struct sys_reg_desc *r)
  620. {
  621. u64 mask;
  622. if (!kvm_arm_pmu_v3_ready(vcpu))
  623. return trap_raz_wi(vcpu, p, r);
  624. if (pmu_write_swinc_el0_disabled(vcpu))
  625. return false;
  626. if (p->is_write) {
  627. mask = kvm_pmu_valid_counter_mask(vcpu);
  628. kvm_pmu_software_increment(vcpu, p->regval & mask);
  629. return true;
  630. }
  631. return false;
  632. }
  633. static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
  634. const struct sys_reg_desc *r)
  635. {
  636. if (!kvm_arm_pmu_v3_ready(vcpu))
  637. return trap_raz_wi(vcpu, p, r);
  638. if (p->is_write) {
  639. if (!vcpu_mode_priv(vcpu))
  640. return false;
  641. vcpu_sys_reg(vcpu, PMUSERENR_EL0) = p->regval
  642. & ARMV8_PMU_USERENR_MASK;
  643. } else {
  644. p->regval = vcpu_sys_reg(vcpu, PMUSERENR_EL0)
  645. & ARMV8_PMU_USERENR_MASK;
  646. }
  647. return true;
  648. }
  649. /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
  650. #define DBG_BCR_BVR_WCR_WVR_EL1(n) \
  651. /* DBGBVRn_EL1 */ \
  652. { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100), \
  653. trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr }, \
  654. /* DBGBCRn_EL1 */ \
  655. { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101), \
  656. trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr }, \
  657. /* DBGWVRn_EL1 */ \
  658. { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110), \
  659. trap_wvr, reset_wvr, n, 0, get_wvr, set_wvr }, \
  660. /* DBGWCRn_EL1 */ \
  661. { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111), \
  662. trap_wcr, reset_wcr, n, 0, get_wcr, set_wcr }
  663. /* Macro to expand the PMEVCNTRn_EL0 register */
  664. #define PMU_PMEVCNTR_EL0(n) \
  665. /* PMEVCNTRn_EL0 */ \
  666. { Op0(0b11), Op1(0b011), CRn(0b1110), \
  667. CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
  668. access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
  669. /* Macro to expand the PMEVTYPERn_EL0 register */
  670. #define PMU_PMEVTYPER_EL0(n) \
  671. /* PMEVTYPERn_EL0 */ \
  672. { Op0(0b11), Op1(0b011), CRn(0b1110), \
  673. CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
  674. access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
  675. /*
  676. * Architected system registers.
  677. * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
  678. *
  679. * Debug handling: We do trap most, if not all debug related system
  680. * registers. The implementation is good enough to ensure that a guest
  681. * can use these with minimal performance degradation. The drawback is
  682. * that we don't implement any of the external debug, none of the
  683. * OSlock protocol. This should be revisited if we ever encounter a
  684. * more demanding guest...
  685. */
  686. static const struct sys_reg_desc sys_reg_descs[] = {
  687. /* DC ISW */
  688. { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
  689. access_dcsw },
  690. /* DC CSW */
  691. { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
  692. access_dcsw },
  693. /* DC CISW */
  694. { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
  695. access_dcsw },
  696. DBG_BCR_BVR_WCR_WVR_EL1(0),
  697. DBG_BCR_BVR_WCR_WVR_EL1(1),
  698. /* MDCCINT_EL1 */
  699. { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
  700. trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
  701. /* MDSCR_EL1 */
  702. { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
  703. trap_debug_regs, reset_val, MDSCR_EL1, 0 },
  704. DBG_BCR_BVR_WCR_WVR_EL1(2),
  705. DBG_BCR_BVR_WCR_WVR_EL1(3),
  706. DBG_BCR_BVR_WCR_WVR_EL1(4),
  707. DBG_BCR_BVR_WCR_WVR_EL1(5),
  708. DBG_BCR_BVR_WCR_WVR_EL1(6),
  709. DBG_BCR_BVR_WCR_WVR_EL1(7),
  710. DBG_BCR_BVR_WCR_WVR_EL1(8),
  711. DBG_BCR_BVR_WCR_WVR_EL1(9),
  712. DBG_BCR_BVR_WCR_WVR_EL1(10),
  713. DBG_BCR_BVR_WCR_WVR_EL1(11),
  714. DBG_BCR_BVR_WCR_WVR_EL1(12),
  715. DBG_BCR_BVR_WCR_WVR_EL1(13),
  716. DBG_BCR_BVR_WCR_WVR_EL1(14),
  717. DBG_BCR_BVR_WCR_WVR_EL1(15),
  718. /* MDRAR_EL1 */
  719. { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
  720. trap_raz_wi },
  721. /* OSLAR_EL1 */
  722. { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100),
  723. trap_raz_wi },
  724. /* OSLSR_EL1 */
  725. { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100),
  726. trap_oslsr_el1 },
  727. /* OSDLR_EL1 */
  728. { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100),
  729. trap_raz_wi },
  730. /* DBGPRCR_EL1 */
  731. { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100),
  732. trap_raz_wi },
  733. /* DBGCLAIMSET_EL1 */
  734. { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110),
  735. trap_raz_wi },
  736. /* DBGCLAIMCLR_EL1 */
  737. { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110),
  738. trap_raz_wi },
  739. /* DBGAUTHSTATUS_EL1 */
  740. { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110),
  741. trap_dbgauthstatus_el1 },
  742. /* MDCCSR_EL1 */
  743. { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000),
  744. trap_raz_wi },
  745. /* DBGDTR_EL0 */
  746. { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000),
  747. trap_raz_wi },
  748. /* DBGDTR[TR]X_EL0 */
  749. { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000),
  750. trap_raz_wi },
  751. /* DBGVCR32_EL2 */
  752. { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
  753. NULL, reset_val, DBGVCR32_EL2, 0 },
  754. /* MPIDR_EL1 */
  755. { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
  756. NULL, reset_mpidr, MPIDR_EL1 },
  757. /* SCTLR_EL1 */
  758. { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
  759. access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
  760. /* CPACR_EL1 */
  761. { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
  762. NULL, reset_val, CPACR_EL1, 0 },
  763. /* TTBR0_EL1 */
  764. { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
  765. access_vm_reg, reset_unknown, TTBR0_EL1 },
  766. /* TTBR1_EL1 */
  767. { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
  768. access_vm_reg, reset_unknown, TTBR1_EL1 },
  769. /* TCR_EL1 */
  770. { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
  771. access_vm_reg, reset_val, TCR_EL1, 0 },
  772. /* AFSR0_EL1 */
  773. { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
  774. access_vm_reg, reset_unknown, AFSR0_EL1 },
  775. /* AFSR1_EL1 */
  776. { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
  777. access_vm_reg, reset_unknown, AFSR1_EL1 },
  778. /* ESR_EL1 */
  779. { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
  780. access_vm_reg, reset_unknown, ESR_EL1 },
  781. /* FAR_EL1 */
  782. { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
  783. access_vm_reg, reset_unknown, FAR_EL1 },
  784. /* PAR_EL1 */
  785. { Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
  786. NULL, reset_unknown, PAR_EL1 },
  787. /* PMINTENSET_EL1 */
  788. { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
  789. access_pminten, reset_unknown, PMINTENSET_EL1 },
  790. /* PMINTENCLR_EL1 */
  791. { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
  792. access_pminten, NULL, PMINTENSET_EL1 },
  793. /* MAIR_EL1 */
  794. { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
  795. access_vm_reg, reset_unknown, MAIR_EL1 },
  796. /* AMAIR_EL1 */
  797. { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
  798. access_vm_reg, reset_amair_el1, AMAIR_EL1 },
  799. /* VBAR_EL1 */
  800. { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
  801. NULL, reset_val, VBAR_EL1, 0 },
  802. /* ICC_SGI1R_EL1 */
  803. { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1011), Op2(0b101),
  804. access_gic_sgi },
  805. /* ICC_SRE_EL1 */
  806. { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1100), Op2(0b101),
  807. access_gic_sre },
  808. /* CONTEXTIDR_EL1 */
  809. { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
  810. access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
  811. /* TPIDR_EL1 */
  812. { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
  813. NULL, reset_unknown, TPIDR_EL1 },
  814. /* CNTKCTL_EL1 */
  815. { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
  816. NULL, reset_val, CNTKCTL_EL1, 0},
  817. /* CSSELR_EL1 */
  818. { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
  819. NULL, reset_unknown, CSSELR_EL1 },
  820. /* PMCR_EL0 */
  821. { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
  822. access_pmcr, reset_pmcr, },
  823. /* PMCNTENSET_EL0 */
  824. { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
  825. access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
  826. /* PMCNTENCLR_EL0 */
  827. { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
  828. access_pmcnten, NULL, PMCNTENSET_EL0 },
  829. /* PMOVSCLR_EL0 */
  830. { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
  831. access_pmovs, NULL, PMOVSSET_EL0 },
  832. /* PMSWINC_EL0 */
  833. { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
  834. access_pmswinc, reset_unknown, PMSWINC_EL0 },
  835. /* PMSELR_EL0 */
  836. { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
  837. access_pmselr, reset_unknown, PMSELR_EL0 },
  838. /* PMCEID0_EL0 */
  839. { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
  840. access_pmceid },
  841. /* PMCEID1_EL0 */
  842. { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
  843. access_pmceid },
  844. /* PMCCNTR_EL0 */
  845. { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
  846. access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
  847. /* PMXEVTYPER_EL0 */
  848. { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
  849. access_pmu_evtyper },
  850. /* PMXEVCNTR_EL0 */
  851. { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
  852. access_pmu_evcntr },
  853. /* PMUSERENR_EL0
  854. * This register resets as unknown in 64bit mode while it resets as zero
  855. * in 32bit mode. Here we choose to reset it as zero for consistency.
  856. */
  857. { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
  858. access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
  859. /* PMOVSSET_EL0 */
  860. { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
  861. access_pmovs, reset_unknown, PMOVSSET_EL0 },
  862. /* TPIDR_EL0 */
  863. { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
  864. NULL, reset_unknown, TPIDR_EL0 },
  865. /* TPIDRRO_EL0 */
  866. { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
  867. NULL, reset_unknown, TPIDRRO_EL0 },
  868. /* PMEVCNTRn_EL0 */
  869. PMU_PMEVCNTR_EL0(0),
  870. PMU_PMEVCNTR_EL0(1),
  871. PMU_PMEVCNTR_EL0(2),
  872. PMU_PMEVCNTR_EL0(3),
  873. PMU_PMEVCNTR_EL0(4),
  874. PMU_PMEVCNTR_EL0(5),
  875. PMU_PMEVCNTR_EL0(6),
  876. PMU_PMEVCNTR_EL0(7),
  877. PMU_PMEVCNTR_EL0(8),
  878. PMU_PMEVCNTR_EL0(9),
  879. PMU_PMEVCNTR_EL0(10),
  880. PMU_PMEVCNTR_EL0(11),
  881. PMU_PMEVCNTR_EL0(12),
  882. PMU_PMEVCNTR_EL0(13),
  883. PMU_PMEVCNTR_EL0(14),
  884. PMU_PMEVCNTR_EL0(15),
  885. PMU_PMEVCNTR_EL0(16),
  886. PMU_PMEVCNTR_EL0(17),
  887. PMU_PMEVCNTR_EL0(18),
  888. PMU_PMEVCNTR_EL0(19),
  889. PMU_PMEVCNTR_EL0(20),
  890. PMU_PMEVCNTR_EL0(21),
  891. PMU_PMEVCNTR_EL0(22),
  892. PMU_PMEVCNTR_EL0(23),
  893. PMU_PMEVCNTR_EL0(24),
  894. PMU_PMEVCNTR_EL0(25),
  895. PMU_PMEVCNTR_EL0(26),
  896. PMU_PMEVCNTR_EL0(27),
  897. PMU_PMEVCNTR_EL0(28),
  898. PMU_PMEVCNTR_EL0(29),
  899. PMU_PMEVCNTR_EL0(30),
  900. /* PMEVTYPERn_EL0 */
  901. PMU_PMEVTYPER_EL0(0),
  902. PMU_PMEVTYPER_EL0(1),
  903. PMU_PMEVTYPER_EL0(2),
  904. PMU_PMEVTYPER_EL0(3),
  905. PMU_PMEVTYPER_EL0(4),
  906. PMU_PMEVTYPER_EL0(5),
  907. PMU_PMEVTYPER_EL0(6),
  908. PMU_PMEVTYPER_EL0(7),
  909. PMU_PMEVTYPER_EL0(8),
  910. PMU_PMEVTYPER_EL0(9),
  911. PMU_PMEVTYPER_EL0(10),
  912. PMU_PMEVTYPER_EL0(11),
  913. PMU_PMEVTYPER_EL0(12),
  914. PMU_PMEVTYPER_EL0(13),
  915. PMU_PMEVTYPER_EL0(14),
  916. PMU_PMEVTYPER_EL0(15),
  917. PMU_PMEVTYPER_EL0(16),
  918. PMU_PMEVTYPER_EL0(17),
  919. PMU_PMEVTYPER_EL0(18),
  920. PMU_PMEVTYPER_EL0(19),
  921. PMU_PMEVTYPER_EL0(20),
  922. PMU_PMEVTYPER_EL0(21),
  923. PMU_PMEVTYPER_EL0(22),
  924. PMU_PMEVTYPER_EL0(23),
  925. PMU_PMEVTYPER_EL0(24),
  926. PMU_PMEVTYPER_EL0(25),
  927. PMU_PMEVTYPER_EL0(26),
  928. PMU_PMEVTYPER_EL0(27),
  929. PMU_PMEVTYPER_EL0(28),
  930. PMU_PMEVTYPER_EL0(29),
  931. PMU_PMEVTYPER_EL0(30),
  932. /* PMCCFILTR_EL0
  933. * This register resets as unknown in 64bit mode while it resets as zero
  934. * in 32bit mode. Here we choose to reset it as zero for consistency.
  935. */
  936. { Op0(0b11), Op1(0b011), CRn(0b1110), CRm(0b1111), Op2(0b111),
  937. access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
  938. /* DACR32_EL2 */
  939. { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
  940. NULL, reset_unknown, DACR32_EL2 },
  941. /* IFSR32_EL2 */
  942. { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
  943. NULL, reset_unknown, IFSR32_EL2 },
  944. /* FPEXC32_EL2 */
  945. { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
  946. NULL, reset_val, FPEXC32_EL2, 0x70 },
  947. };
  948. static bool trap_dbgidr(struct kvm_vcpu *vcpu,
  949. struct sys_reg_params *p,
  950. const struct sys_reg_desc *r)
  951. {
  952. if (p->is_write) {
  953. return ignore_write(vcpu, p);
  954. } else {
  955. u64 dfr = read_system_reg(SYS_ID_AA64DFR0_EL1);
  956. u64 pfr = read_system_reg(SYS_ID_AA64PFR0_EL1);
  957. u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
  958. p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
  959. (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
  960. (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
  961. | (6 << 16) | (el3 << 14) | (el3 << 12));
  962. return true;
  963. }
  964. }
  965. static bool trap_debug32(struct kvm_vcpu *vcpu,
  966. struct sys_reg_params *p,
  967. const struct sys_reg_desc *r)
  968. {
  969. if (p->is_write) {
  970. vcpu_cp14(vcpu, r->reg) = p->regval;
  971. vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
  972. } else {
  973. p->regval = vcpu_cp14(vcpu, r->reg);
  974. }
  975. return true;
  976. }
  977. /* AArch32 debug register mappings
  978. *
  979. * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
  980. * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
  981. *
  982. * All control registers and watchpoint value registers are mapped to
  983. * the lower 32 bits of their AArch64 equivalents. We share the trap
  984. * handlers with the above AArch64 code which checks what mode the
  985. * system is in.
  986. */
  987. static bool trap_xvr(struct kvm_vcpu *vcpu,
  988. struct sys_reg_params *p,
  989. const struct sys_reg_desc *rd)
  990. {
  991. u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
  992. if (p->is_write) {
  993. u64 val = *dbg_reg;
  994. val &= 0xffffffffUL;
  995. val |= p->regval << 32;
  996. *dbg_reg = val;
  997. vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
  998. } else {
  999. p->regval = *dbg_reg >> 32;
  1000. }
  1001. trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
  1002. return true;
  1003. }
  1004. #define DBG_BCR_BVR_WCR_WVR(n) \
  1005. /* DBGBVRn */ \
  1006. { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
  1007. /* DBGBCRn */ \
  1008. { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \
  1009. /* DBGWVRn */ \
  1010. { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \
  1011. /* DBGWCRn */ \
  1012. { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
  1013. #define DBGBXVR(n) \
  1014. { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
  1015. /*
  1016. * Trapped cp14 registers. We generally ignore most of the external
  1017. * debug, on the principle that they don't really make sense to a
  1018. * guest. Revisit this one day, would this principle change.
  1019. */
  1020. static const struct sys_reg_desc cp14_regs[] = {
  1021. /* DBGIDR */
  1022. { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
  1023. /* DBGDTRRXext */
  1024. { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
  1025. DBG_BCR_BVR_WCR_WVR(0),
  1026. /* DBGDSCRint */
  1027. { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
  1028. DBG_BCR_BVR_WCR_WVR(1),
  1029. /* DBGDCCINT */
  1030. { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
  1031. /* DBGDSCRext */
  1032. { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
  1033. DBG_BCR_BVR_WCR_WVR(2),
  1034. /* DBGDTR[RT]Xint */
  1035. { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
  1036. /* DBGDTR[RT]Xext */
  1037. { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
  1038. DBG_BCR_BVR_WCR_WVR(3),
  1039. DBG_BCR_BVR_WCR_WVR(4),
  1040. DBG_BCR_BVR_WCR_WVR(5),
  1041. /* DBGWFAR */
  1042. { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
  1043. /* DBGOSECCR */
  1044. { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
  1045. DBG_BCR_BVR_WCR_WVR(6),
  1046. /* DBGVCR */
  1047. { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
  1048. DBG_BCR_BVR_WCR_WVR(7),
  1049. DBG_BCR_BVR_WCR_WVR(8),
  1050. DBG_BCR_BVR_WCR_WVR(9),
  1051. DBG_BCR_BVR_WCR_WVR(10),
  1052. DBG_BCR_BVR_WCR_WVR(11),
  1053. DBG_BCR_BVR_WCR_WVR(12),
  1054. DBG_BCR_BVR_WCR_WVR(13),
  1055. DBG_BCR_BVR_WCR_WVR(14),
  1056. DBG_BCR_BVR_WCR_WVR(15),
  1057. /* DBGDRAR (32bit) */
  1058. { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
  1059. DBGBXVR(0),
  1060. /* DBGOSLAR */
  1061. { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
  1062. DBGBXVR(1),
  1063. /* DBGOSLSR */
  1064. { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
  1065. DBGBXVR(2),
  1066. DBGBXVR(3),
  1067. /* DBGOSDLR */
  1068. { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
  1069. DBGBXVR(4),
  1070. /* DBGPRCR */
  1071. { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
  1072. DBGBXVR(5),
  1073. DBGBXVR(6),
  1074. DBGBXVR(7),
  1075. DBGBXVR(8),
  1076. DBGBXVR(9),
  1077. DBGBXVR(10),
  1078. DBGBXVR(11),
  1079. DBGBXVR(12),
  1080. DBGBXVR(13),
  1081. DBGBXVR(14),
  1082. DBGBXVR(15),
  1083. /* DBGDSAR (32bit) */
  1084. { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
  1085. /* DBGDEVID2 */
  1086. { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
  1087. /* DBGDEVID1 */
  1088. { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
  1089. /* DBGDEVID */
  1090. { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
  1091. /* DBGCLAIMSET */
  1092. { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
  1093. /* DBGCLAIMCLR */
  1094. { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
  1095. /* DBGAUTHSTATUS */
  1096. { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
  1097. };
  1098. /* Trapped cp14 64bit registers */
  1099. static const struct sys_reg_desc cp14_64_regs[] = {
  1100. /* DBGDRAR (64bit) */
  1101. { Op1( 0), CRm( 1), .access = trap_raz_wi },
  1102. /* DBGDSAR (64bit) */
  1103. { Op1( 0), CRm( 2), .access = trap_raz_wi },
  1104. };
  1105. /* Macro to expand the PMEVCNTRn register */
  1106. #define PMU_PMEVCNTR(n) \
  1107. /* PMEVCNTRn */ \
  1108. { Op1(0), CRn(0b1110), \
  1109. CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
  1110. access_pmu_evcntr }
  1111. /* Macro to expand the PMEVTYPERn register */
  1112. #define PMU_PMEVTYPER(n) \
  1113. /* PMEVTYPERn */ \
  1114. { Op1(0), CRn(0b1110), \
  1115. CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
  1116. access_pmu_evtyper }
  1117. /*
  1118. * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
  1119. * depending on the way they are accessed (as a 32bit or a 64bit
  1120. * register).
  1121. */
  1122. static const struct sys_reg_desc cp15_regs[] = {
  1123. { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
  1124. { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
  1125. { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
  1126. { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
  1127. { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
  1128. { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
  1129. { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
  1130. { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
  1131. { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
  1132. { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
  1133. { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
  1134. { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
  1135. /*
  1136. * DC{C,I,CI}SW operations:
  1137. */
  1138. { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
  1139. { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
  1140. { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
  1141. /* PMU */
  1142. { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
  1143. { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
  1144. { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
  1145. { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
  1146. { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
  1147. { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
  1148. { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
  1149. { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
  1150. { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
  1151. { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
  1152. { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
  1153. { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
  1154. { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
  1155. { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
  1156. { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
  1157. { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
  1158. { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
  1159. { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
  1160. { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
  1161. /* ICC_SRE */
  1162. { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
  1163. { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
  1164. /* PMEVCNTRn */
  1165. PMU_PMEVCNTR(0),
  1166. PMU_PMEVCNTR(1),
  1167. PMU_PMEVCNTR(2),
  1168. PMU_PMEVCNTR(3),
  1169. PMU_PMEVCNTR(4),
  1170. PMU_PMEVCNTR(5),
  1171. PMU_PMEVCNTR(6),
  1172. PMU_PMEVCNTR(7),
  1173. PMU_PMEVCNTR(8),
  1174. PMU_PMEVCNTR(9),
  1175. PMU_PMEVCNTR(10),
  1176. PMU_PMEVCNTR(11),
  1177. PMU_PMEVCNTR(12),
  1178. PMU_PMEVCNTR(13),
  1179. PMU_PMEVCNTR(14),
  1180. PMU_PMEVCNTR(15),
  1181. PMU_PMEVCNTR(16),
  1182. PMU_PMEVCNTR(17),
  1183. PMU_PMEVCNTR(18),
  1184. PMU_PMEVCNTR(19),
  1185. PMU_PMEVCNTR(20),
  1186. PMU_PMEVCNTR(21),
  1187. PMU_PMEVCNTR(22),
  1188. PMU_PMEVCNTR(23),
  1189. PMU_PMEVCNTR(24),
  1190. PMU_PMEVCNTR(25),
  1191. PMU_PMEVCNTR(26),
  1192. PMU_PMEVCNTR(27),
  1193. PMU_PMEVCNTR(28),
  1194. PMU_PMEVCNTR(29),
  1195. PMU_PMEVCNTR(30),
  1196. /* PMEVTYPERn */
  1197. PMU_PMEVTYPER(0),
  1198. PMU_PMEVTYPER(1),
  1199. PMU_PMEVTYPER(2),
  1200. PMU_PMEVTYPER(3),
  1201. PMU_PMEVTYPER(4),
  1202. PMU_PMEVTYPER(5),
  1203. PMU_PMEVTYPER(6),
  1204. PMU_PMEVTYPER(7),
  1205. PMU_PMEVTYPER(8),
  1206. PMU_PMEVTYPER(9),
  1207. PMU_PMEVTYPER(10),
  1208. PMU_PMEVTYPER(11),
  1209. PMU_PMEVTYPER(12),
  1210. PMU_PMEVTYPER(13),
  1211. PMU_PMEVTYPER(14),
  1212. PMU_PMEVTYPER(15),
  1213. PMU_PMEVTYPER(16),
  1214. PMU_PMEVTYPER(17),
  1215. PMU_PMEVTYPER(18),
  1216. PMU_PMEVTYPER(19),
  1217. PMU_PMEVTYPER(20),
  1218. PMU_PMEVTYPER(21),
  1219. PMU_PMEVTYPER(22),
  1220. PMU_PMEVTYPER(23),
  1221. PMU_PMEVTYPER(24),
  1222. PMU_PMEVTYPER(25),
  1223. PMU_PMEVTYPER(26),
  1224. PMU_PMEVTYPER(27),
  1225. PMU_PMEVTYPER(28),
  1226. PMU_PMEVTYPER(29),
  1227. PMU_PMEVTYPER(30),
  1228. /* PMCCFILTR */
  1229. { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
  1230. };
  1231. static const struct sys_reg_desc cp15_64_regs[] = {
  1232. { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
  1233. { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
  1234. { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
  1235. { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
  1236. };
  1237. /* Target specific emulation tables */
  1238. static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
  1239. void kvm_register_target_sys_reg_table(unsigned int target,
  1240. struct kvm_sys_reg_target_table *table)
  1241. {
  1242. target_tables[target] = table;
  1243. }
  1244. /* Get specific register table for this target. */
  1245. static const struct sys_reg_desc *get_target_table(unsigned target,
  1246. bool mode_is_64,
  1247. size_t *num)
  1248. {
  1249. struct kvm_sys_reg_target_table *table;
  1250. table = target_tables[target];
  1251. if (mode_is_64) {
  1252. *num = table->table64.num;
  1253. return table->table64.table;
  1254. } else {
  1255. *num = table->table32.num;
  1256. return table->table32.table;
  1257. }
  1258. }
  1259. #define reg_to_match_value(x) \
  1260. ({ \
  1261. unsigned long val; \
  1262. val = (x)->Op0 << 14; \
  1263. val |= (x)->Op1 << 11; \
  1264. val |= (x)->CRn << 7; \
  1265. val |= (x)->CRm << 3; \
  1266. val |= (x)->Op2; \
  1267. val; \
  1268. })
  1269. static int match_sys_reg(const void *key, const void *elt)
  1270. {
  1271. const unsigned long pval = (unsigned long)key;
  1272. const struct sys_reg_desc *r = elt;
  1273. return pval - reg_to_match_value(r);
  1274. }
  1275. static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
  1276. const struct sys_reg_desc table[],
  1277. unsigned int num)
  1278. {
  1279. unsigned long pval = reg_to_match_value(params);
  1280. return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
  1281. }
  1282. int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
  1283. {
  1284. kvm_inject_undefined(vcpu);
  1285. return 1;
  1286. }
  1287. /*
  1288. * emulate_cp -- tries to match a sys_reg access in a handling table, and
  1289. * call the corresponding trap handler.
  1290. *
  1291. * @params: pointer to the descriptor of the access
  1292. * @table: array of trap descriptors
  1293. * @num: size of the trap descriptor array
  1294. *
  1295. * Return 0 if the access has been handled, and -1 if not.
  1296. */
  1297. static int emulate_cp(struct kvm_vcpu *vcpu,
  1298. struct sys_reg_params *params,
  1299. const struct sys_reg_desc *table,
  1300. size_t num)
  1301. {
  1302. const struct sys_reg_desc *r;
  1303. if (!table)
  1304. return -1; /* Not handled */
  1305. r = find_reg(params, table, num);
  1306. if (r) {
  1307. /*
  1308. * Not having an accessor means that we have
  1309. * configured a trap that we don't know how to
  1310. * handle. This certainly qualifies as a gross bug
  1311. * that should be fixed right away.
  1312. */
  1313. BUG_ON(!r->access);
  1314. if (likely(r->access(vcpu, params, r))) {
  1315. /* Skip instruction, since it was emulated */
  1316. kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
  1317. /* Handled */
  1318. return 0;
  1319. }
  1320. }
  1321. /* Not handled */
  1322. return -1;
  1323. }
  1324. static void unhandled_cp_access(struct kvm_vcpu *vcpu,
  1325. struct sys_reg_params *params)
  1326. {
  1327. u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
  1328. int cp = -1;
  1329. switch(hsr_ec) {
  1330. case ESR_ELx_EC_CP15_32:
  1331. case ESR_ELx_EC_CP15_64:
  1332. cp = 15;
  1333. break;
  1334. case ESR_ELx_EC_CP14_MR:
  1335. case ESR_ELx_EC_CP14_64:
  1336. cp = 14;
  1337. break;
  1338. default:
  1339. WARN_ON(1);
  1340. }
  1341. kvm_err("Unsupported guest CP%d access at: %08lx\n",
  1342. cp, *vcpu_pc(vcpu));
  1343. print_sys_reg_instr(params);
  1344. kvm_inject_undefined(vcpu);
  1345. }
  1346. /**
  1347. * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
  1348. * @vcpu: The VCPU pointer
  1349. * @run: The kvm_run struct
  1350. */
  1351. static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
  1352. const struct sys_reg_desc *global,
  1353. size_t nr_global,
  1354. const struct sys_reg_desc *target_specific,
  1355. size_t nr_specific)
  1356. {
  1357. struct sys_reg_params params;
  1358. u32 hsr = kvm_vcpu_get_hsr(vcpu);
  1359. int Rt = kvm_vcpu_sys_get_rt(vcpu);
  1360. int Rt2 = (hsr >> 10) & 0x1f;
  1361. params.is_aarch32 = true;
  1362. params.is_32bit = false;
  1363. params.CRm = (hsr >> 1) & 0xf;
  1364. params.is_write = ((hsr & 1) == 0);
  1365. params.Op0 = 0;
  1366. params.Op1 = (hsr >> 16) & 0xf;
  1367. params.Op2 = 0;
  1368. params.CRn = 0;
  1369. /*
  1370. * Make a 64-bit value out of Rt and Rt2. As we use the same trap
  1371. * backends between AArch32 and AArch64, we get away with it.
  1372. */
  1373. if (params.is_write) {
  1374. params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
  1375. params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
  1376. }
  1377. if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
  1378. goto out;
  1379. if (!emulate_cp(vcpu, &params, global, nr_global))
  1380. goto out;
  1381. unhandled_cp_access(vcpu, &params);
  1382. out:
  1383. /* Split up the value between registers for the read side */
  1384. if (!params.is_write) {
  1385. vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
  1386. vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
  1387. }
  1388. return 1;
  1389. }
  1390. /**
  1391. * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
  1392. * @vcpu: The VCPU pointer
  1393. * @run: The kvm_run struct
  1394. */
  1395. static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
  1396. const struct sys_reg_desc *global,
  1397. size_t nr_global,
  1398. const struct sys_reg_desc *target_specific,
  1399. size_t nr_specific)
  1400. {
  1401. struct sys_reg_params params;
  1402. u32 hsr = kvm_vcpu_get_hsr(vcpu);
  1403. int Rt = kvm_vcpu_sys_get_rt(vcpu);
  1404. params.is_aarch32 = true;
  1405. params.is_32bit = true;
  1406. params.CRm = (hsr >> 1) & 0xf;
  1407. params.regval = vcpu_get_reg(vcpu, Rt);
  1408. params.is_write = ((hsr & 1) == 0);
  1409. params.CRn = (hsr >> 10) & 0xf;
  1410. params.Op0 = 0;
  1411. params.Op1 = (hsr >> 14) & 0x7;
  1412. params.Op2 = (hsr >> 17) & 0x7;
  1413. if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
  1414. !emulate_cp(vcpu, &params, global, nr_global)) {
  1415. if (!params.is_write)
  1416. vcpu_set_reg(vcpu, Rt, params.regval);
  1417. return 1;
  1418. }
  1419. unhandled_cp_access(vcpu, &params);
  1420. return 1;
  1421. }
  1422. int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
  1423. {
  1424. const struct sys_reg_desc *target_specific;
  1425. size_t num;
  1426. target_specific = get_target_table(vcpu->arch.target, false, &num);
  1427. return kvm_handle_cp_64(vcpu,
  1428. cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
  1429. target_specific, num);
  1430. }
  1431. int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
  1432. {
  1433. const struct sys_reg_desc *target_specific;
  1434. size_t num;
  1435. target_specific = get_target_table(vcpu->arch.target, false, &num);
  1436. return kvm_handle_cp_32(vcpu,
  1437. cp15_regs, ARRAY_SIZE(cp15_regs),
  1438. target_specific, num);
  1439. }
  1440. int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
  1441. {
  1442. return kvm_handle_cp_64(vcpu,
  1443. cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
  1444. NULL, 0);
  1445. }
  1446. int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
  1447. {
  1448. return kvm_handle_cp_32(vcpu,
  1449. cp14_regs, ARRAY_SIZE(cp14_regs),
  1450. NULL, 0);
  1451. }
  1452. static int emulate_sys_reg(struct kvm_vcpu *vcpu,
  1453. struct sys_reg_params *params)
  1454. {
  1455. size_t num;
  1456. const struct sys_reg_desc *table, *r;
  1457. table = get_target_table(vcpu->arch.target, true, &num);
  1458. /* Search target-specific then generic table. */
  1459. r = find_reg(params, table, num);
  1460. if (!r)
  1461. r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
  1462. if (likely(r)) {
  1463. /*
  1464. * Not having an accessor means that we have
  1465. * configured a trap that we don't know how to
  1466. * handle. This certainly qualifies as a gross bug
  1467. * that should be fixed right away.
  1468. */
  1469. BUG_ON(!r->access);
  1470. if (likely(r->access(vcpu, params, r))) {
  1471. /* Skip instruction, since it was emulated */
  1472. kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
  1473. return 1;
  1474. }
  1475. /* If access function fails, it should complain. */
  1476. } else {
  1477. kvm_err("Unsupported guest sys_reg access at: %lx\n",
  1478. *vcpu_pc(vcpu));
  1479. print_sys_reg_instr(params);
  1480. }
  1481. kvm_inject_undefined(vcpu);
  1482. return 1;
  1483. }
  1484. static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
  1485. const struct sys_reg_desc *table, size_t num)
  1486. {
  1487. unsigned long i;
  1488. for (i = 0; i < num; i++)
  1489. if (table[i].reset)
  1490. table[i].reset(vcpu, &table[i]);
  1491. }
  1492. /**
  1493. * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
  1494. * @vcpu: The VCPU pointer
  1495. * @run: The kvm_run struct
  1496. */
  1497. int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
  1498. {
  1499. struct sys_reg_params params;
  1500. unsigned long esr = kvm_vcpu_get_hsr(vcpu);
  1501. int Rt = kvm_vcpu_sys_get_rt(vcpu);
  1502. int ret;
  1503. trace_kvm_handle_sys_reg(esr);
  1504. params.is_aarch32 = false;
  1505. params.is_32bit = false;
  1506. params.Op0 = (esr >> 20) & 3;
  1507. params.Op1 = (esr >> 14) & 0x7;
  1508. params.CRn = (esr >> 10) & 0xf;
  1509. params.CRm = (esr >> 1) & 0xf;
  1510. params.Op2 = (esr >> 17) & 0x7;
  1511. params.regval = vcpu_get_reg(vcpu, Rt);
  1512. params.is_write = !(esr & 1);
  1513. ret = emulate_sys_reg(vcpu, &params);
  1514. if (!params.is_write)
  1515. vcpu_set_reg(vcpu, Rt, params.regval);
  1516. return ret;
  1517. }
  1518. /******************************************************************************
  1519. * Userspace API
  1520. *****************************************************************************/
  1521. static bool index_to_params(u64 id, struct sys_reg_params *params)
  1522. {
  1523. switch (id & KVM_REG_SIZE_MASK) {
  1524. case KVM_REG_SIZE_U64:
  1525. /* Any unused index bits means it's not valid. */
  1526. if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
  1527. | KVM_REG_ARM_COPROC_MASK
  1528. | KVM_REG_ARM64_SYSREG_OP0_MASK
  1529. | KVM_REG_ARM64_SYSREG_OP1_MASK
  1530. | KVM_REG_ARM64_SYSREG_CRN_MASK
  1531. | KVM_REG_ARM64_SYSREG_CRM_MASK
  1532. | KVM_REG_ARM64_SYSREG_OP2_MASK))
  1533. return false;
  1534. params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
  1535. >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
  1536. params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
  1537. >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
  1538. params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
  1539. >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
  1540. params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
  1541. >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
  1542. params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
  1543. >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
  1544. return true;
  1545. default:
  1546. return false;
  1547. }
  1548. }
  1549. /* Decode an index value, and find the sys_reg_desc entry. */
  1550. static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
  1551. u64 id)
  1552. {
  1553. size_t num;
  1554. const struct sys_reg_desc *table, *r;
  1555. struct sys_reg_params params;
  1556. /* We only do sys_reg for now. */
  1557. if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
  1558. return NULL;
  1559. if (!index_to_params(id, &params))
  1560. return NULL;
  1561. table = get_target_table(vcpu->arch.target, true, &num);
  1562. r = find_reg(&params, table, num);
  1563. if (!r)
  1564. r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
  1565. /* Not saved in the sys_reg array? */
  1566. if (r && !r->reg)
  1567. r = NULL;
  1568. return r;
  1569. }
  1570. /*
  1571. * These are the invariant sys_reg registers: we let the guest see the
  1572. * host versions of these, so they're part of the guest state.
  1573. *
  1574. * A future CPU may provide a mechanism to present different values to
  1575. * the guest, or a future kvm may trap them.
  1576. */
  1577. #define FUNCTION_INVARIANT(reg) \
  1578. static void get_##reg(struct kvm_vcpu *v, \
  1579. const struct sys_reg_desc *r) \
  1580. { \
  1581. ((struct sys_reg_desc *)r)->val = read_sysreg(reg); \
  1582. }
  1583. FUNCTION_INVARIANT(midr_el1)
  1584. FUNCTION_INVARIANT(ctr_el0)
  1585. FUNCTION_INVARIANT(revidr_el1)
  1586. FUNCTION_INVARIANT(id_pfr0_el1)
  1587. FUNCTION_INVARIANT(id_pfr1_el1)
  1588. FUNCTION_INVARIANT(id_dfr0_el1)
  1589. FUNCTION_INVARIANT(id_afr0_el1)
  1590. FUNCTION_INVARIANT(id_mmfr0_el1)
  1591. FUNCTION_INVARIANT(id_mmfr1_el1)
  1592. FUNCTION_INVARIANT(id_mmfr2_el1)
  1593. FUNCTION_INVARIANT(id_mmfr3_el1)
  1594. FUNCTION_INVARIANT(id_isar0_el1)
  1595. FUNCTION_INVARIANT(id_isar1_el1)
  1596. FUNCTION_INVARIANT(id_isar2_el1)
  1597. FUNCTION_INVARIANT(id_isar3_el1)
  1598. FUNCTION_INVARIANT(id_isar4_el1)
  1599. FUNCTION_INVARIANT(id_isar5_el1)
  1600. FUNCTION_INVARIANT(clidr_el1)
  1601. FUNCTION_INVARIANT(aidr_el1)
  1602. /* ->val is filled in by kvm_sys_reg_table_init() */
  1603. static struct sys_reg_desc invariant_sys_regs[] = {
  1604. { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
  1605. NULL, get_midr_el1 },
  1606. { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
  1607. NULL, get_revidr_el1 },
  1608. { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
  1609. NULL, get_id_pfr0_el1 },
  1610. { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
  1611. NULL, get_id_pfr1_el1 },
  1612. { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
  1613. NULL, get_id_dfr0_el1 },
  1614. { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
  1615. NULL, get_id_afr0_el1 },
  1616. { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
  1617. NULL, get_id_mmfr0_el1 },
  1618. { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
  1619. NULL, get_id_mmfr1_el1 },
  1620. { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
  1621. NULL, get_id_mmfr2_el1 },
  1622. { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
  1623. NULL, get_id_mmfr3_el1 },
  1624. { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
  1625. NULL, get_id_isar0_el1 },
  1626. { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
  1627. NULL, get_id_isar1_el1 },
  1628. { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
  1629. NULL, get_id_isar2_el1 },
  1630. { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
  1631. NULL, get_id_isar3_el1 },
  1632. { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
  1633. NULL, get_id_isar4_el1 },
  1634. { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
  1635. NULL, get_id_isar5_el1 },
  1636. { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
  1637. NULL, get_clidr_el1 },
  1638. { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
  1639. NULL, get_aidr_el1 },
  1640. { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
  1641. NULL, get_ctr_el0 },
  1642. };
  1643. static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
  1644. {
  1645. if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
  1646. return -EFAULT;
  1647. return 0;
  1648. }
  1649. static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
  1650. {
  1651. if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
  1652. return -EFAULT;
  1653. return 0;
  1654. }
  1655. static int get_invariant_sys_reg(u64 id, void __user *uaddr)
  1656. {
  1657. struct sys_reg_params params;
  1658. const struct sys_reg_desc *r;
  1659. if (!index_to_params(id, &params))
  1660. return -ENOENT;
  1661. r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
  1662. if (!r)
  1663. return -ENOENT;
  1664. return reg_to_user(uaddr, &r->val, id);
  1665. }
  1666. static int set_invariant_sys_reg(u64 id, void __user *uaddr)
  1667. {
  1668. struct sys_reg_params params;
  1669. const struct sys_reg_desc *r;
  1670. int err;
  1671. u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
  1672. if (!index_to_params(id, &params))
  1673. return -ENOENT;
  1674. r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
  1675. if (!r)
  1676. return -ENOENT;
  1677. err = reg_from_user(&val, uaddr, id);
  1678. if (err)
  1679. return err;
  1680. /* This is what we mean by invariant: you can't change it. */
  1681. if (r->val != val)
  1682. return -EINVAL;
  1683. return 0;
  1684. }
  1685. static bool is_valid_cache(u32 val)
  1686. {
  1687. u32 level, ctype;
  1688. if (val >= CSSELR_MAX)
  1689. return false;
  1690. /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
  1691. level = (val >> 1);
  1692. ctype = (cache_levels >> (level * 3)) & 7;
  1693. switch (ctype) {
  1694. case 0: /* No cache */
  1695. return false;
  1696. case 1: /* Instruction cache only */
  1697. return (val & 1);
  1698. case 2: /* Data cache only */
  1699. case 4: /* Unified cache */
  1700. return !(val & 1);
  1701. case 3: /* Separate instruction and data caches */
  1702. return true;
  1703. default: /* Reserved: we can't know instruction or data. */
  1704. return false;
  1705. }
  1706. }
  1707. static int demux_c15_get(u64 id, void __user *uaddr)
  1708. {
  1709. u32 val;
  1710. u32 __user *uval = uaddr;
  1711. /* Fail if we have unknown bits set. */
  1712. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  1713. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  1714. return -ENOENT;
  1715. switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
  1716. case KVM_REG_ARM_DEMUX_ID_CCSIDR:
  1717. if (KVM_REG_SIZE(id) != 4)
  1718. return -ENOENT;
  1719. val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
  1720. >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
  1721. if (!is_valid_cache(val))
  1722. return -ENOENT;
  1723. return put_user(get_ccsidr(val), uval);
  1724. default:
  1725. return -ENOENT;
  1726. }
  1727. }
  1728. static int demux_c15_set(u64 id, void __user *uaddr)
  1729. {
  1730. u32 val, newval;
  1731. u32 __user *uval = uaddr;
  1732. /* Fail if we have unknown bits set. */
  1733. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  1734. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  1735. return -ENOENT;
  1736. switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
  1737. case KVM_REG_ARM_DEMUX_ID_CCSIDR:
  1738. if (KVM_REG_SIZE(id) != 4)
  1739. return -ENOENT;
  1740. val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
  1741. >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
  1742. if (!is_valid_cache(val))
  1743. return -ENOENT;
  1744. if (get_user(newval, uval))
  1745. return -EFAULT;
  1746. /* This is also invariant: you can't change it. */
  1747. if (newval != get_ccsidr(val))
  1748. return -EINVAL;
  1749. return 0;
  1750. default:
  1751. return -ENOENT;
  1752. }
  1753. }
  1754. int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
  1755. {
  1756. const struct sys_reg_desc *r;
  1757. void __user *uaddr = (void __user *)(unsigned long)reg->addr;
  1758. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
  1759. return demux_c15_get(reg->id, uaddr);
  1760. if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
  1761. return -ENOENT;
  1762. r = index_to_sys_reg_desc(vcpu, reg->id);
  1763. if (!r)
  1764. return get_invariant_sys_reg(reg->id, uaddr);
  1765. if (r->get_user)
  1766. return (r->get_user)(vcpu, r, reg, uaddr);
  1767. return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
  1768. }
  1769. int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
  1770. {
  1771. const struct sys_reg_desc *r;
  1772. void __user *uaddr = (void __user *)(unsigned long)reg->addr;
  1773. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
  1774. return demux_c15_set(reg->id, uaddr);
  1775. if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
  1776. return -ENOENT;
  1777. r = index_to_sys_reg_desc(vcpu, reg->id);
  1778. if (!r)
  1779. return set_invariant_sys_reg(reg->id, uaddr);
  1780. if (r->set_user)
  1781. return (r->set_user)(vcpu, r, reg, uaddr);
  1782. return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
  1783. }
  1784. static unsigned int num_demux_regs(void)
  1785. {
  1786. unsigned int i, count = 0;
  1787. for (i = 0; i < CSSELR_MAX; i++)
  1788. if (is_valid_cache(i))
  1789. count++;
  1790. return count;
  1791. }
  1792. static int write_demux_regids(u64 __user *uindices)
  1793. {
  1794. u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
  1795. unsigned int i;
  1796. val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
  1797. for (i = 0; i < CSSELR_MAX; i++) {
  1798. if (!is_valid_cache(i))
  1799. continue;
  1800. if (put_user(val | i, uindices))
  1801. return -EFAULT;
  1802. uindices++;
  1803. }
  1804. return 0;
  1805. }
  1806. static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
  1807. {
  1808. return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
  1809. KVM_REG_ARM64_SYSREG |
  1810. (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
  1811. (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
  1812. (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
  1813. (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
  1814. (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
  1815. }
  1816. static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
  1817. {
  1818. if (!*uind)
  1819. return true;
  1820. if (put_user(sys_reg_to_index(reg), *uind))
  1821. return false;
  1822. (*uind)++;
  1823. return true;
  1824. }
  1825. /* Assumed ordered tables, see kvm_sys_reg_table_init. */
  1826. static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
  1827. {
  1828. const struct sys_reg_desc *i1, *i2, *end1, *end2;
  1829. unsigned int total = 0;
  1830. size_t num;
  1831. /* We check for duplicates here, to allow arch-specific overrides. */
  1832. i1 = get_target_table(vcpu->arch.target, true, &num);
  1833. end1 = i1 + num;
  1834. i2 = sys_reg_descs;
  1835. end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
  1836. BUG_ON(i1 == end1 || i2 == end2);
  1837. /* Walk carefully, as both tables may refer to the same register. */
  1838. while (i1 || i2) {
  1839. int cmp = cmp_sys_reg(i1, i2);
  1840. /* target-specific overrides generic entry. */
  1841. if (cmp <= 0) {
  1842. /* Ignore registers we trap but don't save. */
  1843. if (i1->reg) {
  1844. if (!copy_reg_to_user(i1, &uind))
  1845. return -EFAULT;
  1846. total++;
  1847. }
  1848. } else {
  1849. /* Ignore registers we trap but don't save. */
  1850. if (i2->reg) {
  1851. if (!copy_reg_to_user(i2, &uind))
  1852. return -EFAULT;
  1853. total++;
  1854. }
  1855. }
  1856. if (cmp <= 0 && ++i1 == end1)
  1857. i1 = NULL;
  1858. if (cmp >= 0 && ++i2 == end2)
  1859. i2 = NULL;
  1860. }
  1861. return total;
  1862. }
  1863. unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
  1864. {
  1865. return ARRAY_SIZE(invariant_sys_regs)
  1866. + num_demux_regs()
  1867. + walk_sys_regs(vcpu, (u64 __user *)NULL);
  1868. }
  1869. int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
  1870. {
  1871. unsigned int i;
  1872. int err;
  1873. /* Then give them all the invariant registers' indices. */
  1874. for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
  1875. if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
  1876. return -EFAULT;
  1877. uindices++;
  1878. }
  1879. err = walk_sys_regs(vcpu, uindices);
  1880. if (err < 0)
  1881. return err;
  1882. uindices += err;
  1883. return write_demux_regids(uindices);
  1884. }
  1885. static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
  1886. {
  1887. unsigned int i;
  1888. for (i = 1; i < n; i++) {
  1889. if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
  1890. kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
  1891. return 1;
  1892. }
  1893. }
  1894. return 0;
  1895. }
  1896. void kvm_sys_reg_table_init(void)
  1897. {
  1898. unsigned int i;
  1899. struct sys_reg_desc clidr;
  1900. /* Make sure tables are unique and in order. */
  1901. BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
  1902. BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
  1903. BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
  1904. BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
  1905. BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
  1906. BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
  1907. /* We abuse the reset function to overwrite the table itself. */
  1908. for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
  1909. invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
  1910. /*
  1911. * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
  1912. *
  1913. * If software reads the Cache Type fields from Ctype1
  1914. * upwards, once it has seen a value of 0b000, no caches
  1915. * exist at further-out levels of the hierarchy. So, for
  1916. * example, if Ctype3 is the first Cache Type field with a
  1917. * value of 0b000, the values of Ctype4 to Ctype7 must be
  1918. * ignored.
  1919. */
  1920. get_clidr_el1(NULL, &clidr); /* Ugly... */
  1921. cache_levels = clidr.val;
  1922. for (i = 0; i < 7; i++)
  1923. if (((cache_levels >> (i*3)) & 7) == 0)
  1924. break;
  1925. /* Clear all higher bits. */
  1926. cache_levels &= (1 << (i*3))-1;
  1927. }
  1928. /**
  1929. * kvm_reset_sys_regs - sets system registers to reset value
  1930. * @vcpu: The VCPU pointer
  1931. *
  1932. * This function finds the right table above and sets the registers on the
  1933. * virtual CPU struct to their architecturally defined reset values.
  1934. */
  1935. void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
  1936. {
  1937. size_t num;
  1938. const struct sys_reg_desc *table;
  1939. /* Catch someone adding a register without putting in reset entry. */
  1940. memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
  1941. /* Generic chip reset first (so target could override). */
  1942. reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
  1943. table = get_target_table(vcpu->arch.target, true, &num);
  1944. reset_sys_reg_descs(vcpu, table, num);
  1945. for (num = 1; num < NR_SYS_REGS; num++)
  1946. if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
  1947. panic("Didn't reset vcpu_sys_reg(%zi)", num);
  1948. }