coproc.c 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353
  1. /*
  2. * Copyright (C) 2012 - Virtual Open Systems and Columbia University
  3. * Authors: Rusty Russell <rusty@rustcorp.com.au>
  4. * Christoffer Dall <c.dall@virtualopensystems.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License, version 2, as
  8. * published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
  18. */
  19. #include <linux/bsearch.h>
  20. #include <linux/mm.h>
  21. #include <linux/kvm_host.h>
  22. #include <linux/uaccess.h>
  23. #include <asm/kvm_arm.h>
  24. #include <asm/kvm_host.h>
  25. #include <asm/kvm_emulate.h>
  26. #include <asm/kvm_coproc.h>
  27. #include <asm/kvm_mmu.h>
  28. #include <asm/cacheflush.h>
  29. #include <asm/cputype.h>
  30. #include <trace/events/kvm.h>
  31. #include <asm/vfp.h>
  32. #include "../vfp/vfpinstr.h"
  33. #include "trace.h"
  34. #include "coproc.h"
  35. /******************************************************************************
  36. * Co-processor emulation
  37. *****************************************************************************/
  38. /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
  39. static u32 cache_levels;
  40. /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
  41. #define CSSELR_MAX 12
  42. /*
  43. * kvm_vcpu_arch.cp15 holds cp15 registers as an array of u32, but some
  44. * of cp15 registers can be viewed either as couple of two u32 registers
  45. * or one u64 register. Current u64 register encoding is that least
  46. * significant u32 word is followed by most significant u32 word.
  47. */
  48. static inline void vcpu_cp15_reg64_set(struct kvm_vcpu *vcpu,
  49. const struct coproc_reg *r,
  50. u64 val)
  51. {
  52. vcpu_cp15(vcpu, r->reg) = val & 0xffffffff;
  53. vcpu_cp15(vcpu, r->reg + 1) = val >> 32;
  54. }
  55. static inline u64 vcpu_cp15_reg64_get(struct kvm_vcpu *vcpu,
  56. const struct coproc_reg *r)
  57. {
  58. u64 val;
  59. val = vcpu_cp15(vcpu, r->reg + 1);
  60. val = val << 32;
  61. val = val | vcpu_cp15(vcpu, r->reg);
  62. return val;
  63. }
  64. int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
  65. {
  66. kvm_inject_undefined(vcpu);
  67. return 1;
  68. }
  69. int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
  70. {
  71. /*
  72. * We can get here, if the host has been built without VFPv3 support,
  73. * but the guest attempted a floating point operation.
  74. */
  75. kvm_inject_undefined(vcpu);
  76. return 1;
  77. }
  78. int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
  79. {
  80. kvm_inject_undefined(vcpu);
  81. return 1;
  82. }
  83. static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
  84. {
  85. /*
  86. * Compute guest MPIDR. We build a virtual cluster out of the
  87. * vcpu_id, but we read the 'U' bit from the underlying
  88. * hardware directly.
  89. */
  90. vcpu_cp15(vcpu, c0_MPIDR) = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK) |
  91. ((vcpu->vcpu_id >> 2) << MPIDR_LEVEL_BITS) |
  92. (vcpu->vcpu_id & 3));
  93. }
  94. /* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */
  95. static bool access_actlr(struct kvm_vcpu *vcpu,
  96. const struct coproc_params *p,
  97. const struct coproc_reg *r)
  98. {
  99. if (p->is_write)
  100. return ignore_write(vcpu, p);
  101. *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c1_ACTLR);
  102. return true;
  103. }
  104. /* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */
  105. static bool access_cbar(struct kvm_vcpu *vcpu,
  106. const struct coproc_params *p,
  107. const struct coproc_reg *r)
  108. {
  109. if (p->is_write)
  110. return write_to_read_only(vcpu, p);
  111. return read_zero(vcpu, p);
  112. }
  113. /* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */
  114. static bool access_l2ctlr(struct kvm_vcpu *vcpu,
  115. const struct coproc_params *p,
  116. const struct coproc_reg *r)
  117. {
  118. if (p->is_write)
  119. return ignore_write(vcpu, p);
  120. *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c9_L2CTLR);
  121. return true;
  122. }
  123. static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
  124. {
  125. u32 l2ctlr, ncores;
  126. asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr));
  127. l2ctlr &= ~(3 << 24);
  128. ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1;
  129. /* How many cores in the current cluster and the next ones */
  130. ncores -= (vcpu->vcpu_id & ~3);
  131. /* Cap it to the maximum number of cores in a single cluster */
  132. ncores = min(ncores, 3U);
  133. l2ctlr |= (ncores & 3) << 24;
  134. vcpu_cp15(vcpu, c9_L2CTLR) = l2ctlr;
  135. }
  136. static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
  137. {
  138. u32 actlr;
  139. /* ACTLR contains SMP bit: make sure you create all cpus first! */
  140. asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr));
  141. /* Make the SMP bit consistent with the guest configuration */
  142. if (atomic_read(&vcpu->kvm->online_vcpus) > 1)
  143. actlr |= 1U << 6;
  144. else
  145. actlr &= ~(1U << 6);
  146. vcpu_cp15(vcpu, c1_ACTLR) = actlr;
  147. }
  148. /*
  149. * TRM entries: A7:4.3.50, A15:4.3.49
  150. * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored).
  151. */
  152. static bool access_l2ectlr(struct kvm_vcpu *vcpu,
  153. const struct coproc_params *p,
  154. const struct coproc_reg *r)
  155. {
  156. if (p->is_write)
  157. return ignore_write(vcpu, p);
  158. *vcpu_reg(vcpu, p->Rt1) = 0;
  159. return true;
  160. }
  161. /*
  162. * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
  163. */
  164. static bool access_dcsw(struct kvm_vcpu *vcpu,
  165. const struct coproc_params *p,
  166. const struct coproc_reg *r)
  167. {
  168. if (!p->is_write)
  169. return read_from_write_only(vcpu, p);
  170. kvm_set_way_flush(vcpu);
  171. return true;
  172. }
  173. /*
  174. * Generic accessor for VM registers. Only called as long as HCR_TVM
  175. * is set. If the guest enables the MMU, we stop trapping the VM
  176. * sys_regs and leave it in complete control of the caches.
  177. *
  178. * Used by the cpu-specific code.
  179. */
  180. bool access_vm_reg(struct kvm_vcpu *vcpu,
  181. const struct coproc_params *p,
  182. const struct coproc_reg *r)
  183. {
  184. bool was_enabled = vcpu_has_cache_enabled(vcpu);
  185. BUG_ON(!p->is_write);
  186. vcpu_cp15(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt1);
  187. if (p->is_64bit)
  188. vcpu_cp15(vcpu, r->reg + 1) = *vcpu_reg(vcpu, p->Rt2);
  189. kvm_toggle_cache(vcpu, was_enabled);
  190. return true;
  191. }
  192. static bool access_gic_sgi(struct kvm_vcpu *vcpu,
  193. const struct coproc_params *p,
  194. const struct coproc_reg *r)
  195. {
  196. u64 reg;
  197. if (!p->is_write)
  198. return read_from_write_only(vcpu, p);
  199. reg = (u64)*vcpu_reg(vcpu, p->Rt2) << 32;
  200. reg |= *vcpu_reg(vcpu, p->Rt1) ;
  201. vgic_v3_dispatch_sgi(vcpu, reg);
  202. return true;
  203. }
  204. static bool access_gic_sre(struct kvm_vcpu *vcpu,
  205. const struct coproc_params *p,
  206. const struct coproc_reg *r)
  207. {
  208. if (p->is_write)
  209. return ignore_write(vcpu, p);
  210. *vcpu_reg(vcpu, p->Rt1) = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
  211. return true;
  212. }
  213. /*
  214. * We could trap ID_DFR0 and tell the guest we don't support performance
  215. * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
  216. * NAKed, so it will read the PMCR anyway.
  217. *
  218. * Therefore we tell the guest we have 0 counters. Unfortunately, we
  219. * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
  220. * all PM registers, which doesn't crash the guest kernel at least.
  221. */
  222. static bool pm_fake(struct kvm_vcpu *vcpu,
  223. const struct coproc_params *p,
  224. const struct coproc_reg *r)
  225. {
  226. if (p->is_write)
  227. return ignore_write(vcpu, p);
  228. else
  229. return read_zero(vcpu, p);
  230. }
  231. #define access_pmcr pm_fake
  232. #define access_pmcntenset pm_fake
  233. #define access_pmcntenclr pm_fake
  234. #define access_pmovsr pm_fake
  235. #define access_pmselr pm_fake
  236. #define access_pmceid0 pm_fake
  237. #define access_pmceid1 pm_fake
  238. #define access_pmccntr pm_fake
  239. #define access_pmxevtyper pm_fake
  240. #define access_pmxevcntr pm_fake
  241. #define access_pmuserenr pm_fake
  242. #define access_pmintenset pm_fake
  243. #define access_pmintenclr pm_fake
  244. /* Architected CP15 registers.
  245. * CRn denotes the primary register number, but is copied to the CRm in the
  246. * user space API for 64-bit register access in line with the terminology used
  247. * in the ARM ARM.
  248. * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
  249. * registers preceding 32-bit ones.
  250. */
  251. static const struct coproc_reg cp15_regs[] = {
  252. /* MPIDR: we use VMPIDR for guest access. */
  253. { CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32,
  254. NULL, reset_mpidr, c0_MPIDR },
  255. /* CSSELR: swapped by interrupt.S. */
  256. { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
  257. NULL, reset_unknown, c0_CSSELR },
  258. /* ACTLR: trapped by HCR.TAC bit. */
  259. { CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32,
  260. access_actlr, reset_actlr, c1_ACTLR },
  261. /* CPACR: swapped by interrupt.S. */
  262. { CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32,
  263. NULL, reset_val, c1_CPACR, 0x00000000 },
  264. /* TTBR0/TTBR1/TTBCR: swapped by interrupt.S. */
  265. { CRm64( 2), Op1( 0), is64, access_vm_reg, reset_unknown64, c2_TTBR0 },
  266. { CRn(2), CRm( 0), Op1( 0), Op2( 0), is32,
  267. access_vm_reg, reset_unknown, c2_TTBR0 },
  268. { CRn(2), CRm( 0), Op1( 0), Op2( 1), is32,
  269. access_vm_reg, reset_unknown, c2_TTBR1 },
  270. { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
  271. access_vm_reg, reset_val, c2_TTBCR, 0x00000000 },
  272. { CRm64( 2), Op1( 1), is64, access_vm_reg, reset_unknown64, c2_TTBR1 },
  273. /* DACR: swapped by interrupt.S. */
  274. { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
  275. access_vm_reg, reset_unknown, c3_DACR },
  276. /* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
  277. { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
  278. access_vm_reg, reset_unknown, c5_DFSR },
  279. { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
  280. access_vm_reg, reset_unknown, c5_IFSR },
  281. { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
  282. access_vm_reg, reset_unknown, c5_ADFSR },
  283. { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
  284. access_vm_reg, reset_unknown, c5_AIFSR },
  285. /* DFAR/IFAR: swapped by interrupt.S. */
  286. { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
  287. access_vm_reg, reset_unknown, c6_DFAR },
  288. { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
  289. access_vm_reg, reset_unknown, c6_IFAR },
  290. /* PAR swapped by interrupt.S */
  291. { CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR },
  292. /*
  293. * DC{C,I,CI}SW operations:
  294. */
  295. { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
  296. { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
  297. { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
  298. /*
  299. * L2CTLR access (guest wants to know #CPUs).
  300. */
  301. { CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32,
  302. access_l2ctlr, reset_l2ctlr, c9_L2CTLR },
  303. { CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr},
  304. /*
  305. * Dummy performance monitor implementation.
  306. */
  307. { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
  308. { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
  309. { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
  310. { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
  311. { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
  312. { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
  313. { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
  314. { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
  315. { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
  316. { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
  317. { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
  318. { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
  319. { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
  320. /* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
  321. { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
  322. access_vm_reg, reset_unknown, c10_PRRR},
  323. { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
  324. access_vm_reg, reset_unknown, c10_NMRR},
  325. /* AMAIR0/AMAIR1: swapped by interrupt.S. */
  326. { CRn(10), CRm( 3), Op1( 0), Op2( 0), is32,
  327. access_vm_reg, reset_unknown, c10_AMAIR0},
  328. { CRn(10), CRm( 3), Op1( 0), Op2( 1), is32,
  329. access_vm_reg, reset_unknown, c10_AMAIR1},
  330. /* ICC_SGI1R */
  331. { CRm64(12), Op1( 0), is64, access_gic_sgi},
  332. /* VBAR: swapped by interrupt.S. */
  333. { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
  334. NULL, reset_val, c12_VBAR, 0x00000000 },
  335. /* ICC_SRE */
  336. { CRn(12), CRm(12), Op1( 0), Op2(5), is32, access_gic_sre },
  337. /* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
  338. { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
  339. access_vm_reg, reset_val, c13_CID, 0x00000000 },
  340. { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
  341. NULL, reset_unknown, c13_TID_URW },
  342. { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
  343. NULL, reset_unknown, c13_TID_URO },
  344. { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
  345. NULL, reset_unknown, c13_TID_PRIV },
  346. /* CNTKCTL: swapped by interrupt.S. */
  347. { CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
  348. NULL, reset_val, c14_CNTKCTL, 0x00000000 },
  349. /* The Configuration Base Address Register. */
  350. { CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar},
  351. };
  352. static int check_reg_table(const struct coproc_reg *table, unsigned int n)
  353. {
  354. unsigned int i;
  355. for (i = 1; i < n; i++) {
  356. if (cmp_reg(&table[i-1], &table[i]) >= 0) {
  357. kvm_err("reg table %p out of order (%d)\n", table, i - 1);
  358. return 1;
  359. }
  360. }
  361. return 0;
  362. }
  363. /* Target specific emulation tables */
  364. static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
  365. void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
  366. {
  367. BUG_ON(check_reg_table(table->table, table->num));
  368. target_tables[table->target] = table;
  369. }
  370. /* Get specific register table for this target. */
  371. static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
  372. {
  373. struct kvm_coproc_target_table *table;
  374. table = target_tables[target];
  375. *num = table->num;
  376. return table->table;
  377. }
  378. #define reg_to_match_value(x) \
  379. ({ \
  380. unsigned long val; \
  381. val = (x)->CRn << 11; \
  382. val |= (x)->CRm << 7; \
  383. val |= (x)->Op1 << 4; \
  384. val |= (x)->Op2 << 1; \
  385. val |= !(x)->is_64bit; \
  386. val; \
  387. })
  388. static int match_reg(const void *key, const void *elt)
  389. {
  390. const unsigned long pval = (unsigned long)key;
  391. const struct coproc_reg *r = elt;
  392. return pval - reg_to_match_value(r);
  393. }
  394. static const struct coproc_reg *find_reg(const struct coproc_params *params,
  395. const struct coproc_reg table[],
  396. unsigned int num)
  397. {
  398. unsigned long pval = reg_to_match_value(params);
  399. return bsearch((void *)pval, table, num, sizeof(table[0]), match_reg);
  400. }
  401. static int emulate_cp15(struct kvm_vcpu *vcpu,
  402. const struct coproc_params *params)
  403. {
  404. size_t num;
  405. const struct coproc_reg *table, *r;
  406. trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
  407. params->CRm, params->Op2, params->is_write);
  408. table = get_target_table(vcpu->arch.target, &num);
  409. /* Search target-specific then generic table. */
  410. r = find_reg(params, table, num);
  411. if (!r)
  412. r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
  413. if (likely(r)) {
  414. /* If we don't have an accessor, we should never get here! */
  415. BUG_ON(!r->access);
  416. if (likely(r->access(vcpu, params, r))) {
  417. /* Skip instruction, since it was emulated */
  418. kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
  419. return 1;
  420. }
  421. /* If access function fails, it should complain. */
  422. } else {
  423. kvm_err("Unsupported guest CP15 access at: %08lx\n",
  424. *vcpu_pc(vcpu));
  425. print_cp_instr(params);
  426. }
  427. kvm_inject_undefined(vcpu);
  428. return 1;
  429. }
  430. static struct coproc_params decode_64bit_hsr(struct kvm_vcpu *vcpu)
  431. {
  432. struct coproc_params params;
  433. params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
  434. params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
  435. params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
  436. params.is_64bit = true;
  437. params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf;
  438. params.Op2 = 0;
  439. params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
  440. params.CRm = 0;
  441. return params;
  442. }
  443. /**
  444. * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
  445. * @vcpu: The VCPU pointer
  446. * @run: The kvm_run struct
  447. */
  448. int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
  449. {
  450. struct coproc_params params = decode_64bit_hsr(vcpu);
  451. return emulate_cp15(vcpu, &params);
  452. }
  453. /**
  454. * kvm_handle_cp14_64 -- handles a mrrc/mcrr trap on a guest CP14 access
  455. * @vcpu: The VCPU pointer
  456. * @run: The kvm_run struct
  457. */
  458. int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
  459. {
  460. struct coproc_params params = decode_64bit_hsr(vcpu);
  461. /* raz_wi cp14 */
  462. pm_fake(vcpu, &params, NULL);
  463. /* handled */
  464. kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
  465. return 1;
  466. }
  467. static void reset_coproc_regs(struct kvm_vcpu *vcpu,
  468. const struct coproc_reg *table, size_t num)
  469. {
  470. unsigned long i;
  471. for (i = 0; i < num; i++)
  472. if (table[i].reset)
  473. table[i].reset(vcpu, &table[i]);
  474. }
  475. static struct coproc_params decode_32bit_hsr(struct kvm_vcpu *vcpu)
  476. {
  477. struct coproc_params params;
  478. params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
  479. params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
  480. params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
  481. params.is_64bit = false;
  482. params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
  483. params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7;
  484. params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7;
  485. params.Rt2 = 0;
  486. return params;
  487. }
  488. /**
  489. * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
  490. * @vcpu: The VCPU pointer
  491. * @run: The kvm_run struct
  492. */
  493. int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
  494. {
  495. struct coproc_params params = decode_32bit_hsr(vcpu);
  496. return emulate_cp15(vcpu, &params);
  497. }
  498. /**
  499. * kvm_handle_cp14_32 -- handles a mrc/mcr trap on a guest CP14 access
  500. * @vcpu: The VCPU pointer
  501. * @run: The kvm_run struct
  502. */
  503. int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
  504. {
  505. struct coproc_params params = decode_32bit_hsr(vcpu);
  506. /* raz_wi cp14 */
  507. pm_fake(vcpu, &params, NULL);
  508. /* handled */
  509. kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
  510. return 1;
  511. }
  512. /******************************************************************************
  513. * Userspace API
  514. *****************************************************************************/
  515. static bool index_to_params(u64 id, struct coproc_params *params)
  516. {
  517. switch (id & KVM_REG_SIZE_MASK) {
  518. case KVM_REG_SIZE_U32:
  519. /* Any unused index bits means it's not valid. */
  520. if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
  521. | KVM_REG_ARM_COPROC_MASK
  522. | KVM_REG_ARM_32_CRN_MASK
  523. | KVM_REG_ARM_CRM_MASK
  524. | KVM_REG_ARM_OPC1_MASK
  525. | KVM_REG_ARM_32_OPC2_MASK))
  526. return false;
  527. params->is_64bit = false;
  528. params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
  529. >> KVM_REG_ARM_32_CRN_SHIFT);
  530. params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
  531. >> KVM_REG_ARM_CRM_SHIFT);
  532. params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
  533. >> KVM_REG_ARM_OPC1_SHIFT);
  534. params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
  535. >> KVM_REG_ARM_32_OPC2_SHIFT);
  536. return true;
  537. case KVM_REG_SIZE_U64:
  538. /* Any unused index bits means it's not valid. */
  539. if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
  540. | KVM_REG_ARM_COPROC_MASK
  541. | KVM_REG_ARM_CRM_MASK
  542. | KVM_REG_ARM_OPC1_MASK))
  543. return false;
  544. params->is_64bit = true;
  545. /* CRm to CRn: see cp15_to_index for details */
  546. params->CRn = ((id & KVM_REG_ARM_CRM_MASK)
  547. >> KVM_REG_ARM_CRM_SHIFT);
  548. params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
  549. >> KVM_REG_ARM_OPC1_SHIFT);
  550. params->Op2 = 0;
  551. params->CRm = 0;
  552. return true;
  553. default:
  554. return false;
  555. }
  556. }
  557. /* Decode an index value, and find the cp15 coproc_reg entry. */
  558. static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
  559. u64 id)
  560. {
  561. size_t num;
  562. const struct coproc_reg *table, *r;
  563. struct coproc_params params;
  564. /* We only do cp15 for now. */
  565. if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
  566. return NULL;
  567. if (!index_to_params(id, &params))
  568. return NULL;
  569. table = get_target_table(vcpu->arch.target, &num);
  570. r = find_reg(&params, table, num);
  571. if (!r)
  572. r = find_reg(&params, cp15_regs, ARRAY_SIZE(cp15_regs));
  573. /* Not saved in the cp15 array? */
  574. if (r && !r->reg)
  575. r = NULL;
  576. return r;
  577. }
  578. /*
  579. * These are the invariant cp15 registers: we let the guest see the host
  580. * versions of these, so they're part of the guest state.
  581. *
  582. * A future CPU may provide a mechanism to present different values to
  583. * the guest, or a future kvm may trap them.
  584. */
  585. /* Unfortunately, there's no register-argument for mrc, so generate. */
  586. #define FUNCTION_FOR32(crn, crm, op1, op2, name) \
  587. static void get_##name(struct kvm_vcpu *v, \
  588. const struct coproc_reg *r) \
  589. { \
  590. u32 val; \
  591. \
  592. asm volatile("mrc p15, " __stringify(op1) \
  593. ", %0, c" __stringify(crn) \
  594. ", c" __stringify(crm) \
  595. ", " __stringify(op2) "\n" : "=r" (val)); \
  596. ((struct coproc_reg *)r)->val = val; \
  597. }
  598. FUNCTION_FOR32(0, 0, 0, 0, MIDR)
  599. FUNCTION_FOR32(0, 0, 0, 1, CTR)
  600. FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
  601. FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
  602. FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
  603. FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
  604. FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
  605. FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
  606. FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
  607. FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
  608. FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
  609. FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
  610. FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
  611. FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
  612. FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
  613. FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
  614. FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
  615. FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
  616. FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
  617. FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
  618. FUNCTION_FOR32(0, 0, 1, 7, AIDR)
  619. /* ->val is filled in by kvm_invariant_coproc_table_init() */
  620. static struct coproc_reg invariant_cp15[] = {
  621. { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
  622. { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
  623. { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
  624. { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
  625. { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
  626. { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
  627. { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
  628. { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
  629. { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
  630. { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
  631. { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
  632. { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
  633. { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
  634. { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
  635. { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
  636. { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
  637. { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
  638. { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
  639. { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
  640. { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
  641. { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
  642. };
  643. /*
  644. * Reads a register value from a userspace address to a kernel
  645. * variable. Make sure that register size matches sizeof(*__val).
  646. */
  647. static int reg_from_user(void *val, const void __user *uaddr, u64 id)
  648. {
  649. if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
  650. return -EFAULT;
  651. return 0;
  652. }
  653. /*
  654. * Writes a register value to a userspace address from a kernel variable.
  655. * Make sure that register size matches sizeof(*__val).
  656. */
  657. static int reg_to_user(void __user *uaddr, const void *val, u64 id)
  658. {
  659. if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
  660. return -EFAULT;
  661. return 0;
  662. }
  663. static int get_invariant_cp15(u64 id, void __user *uaddr)
  664. {
  665. struct coproc_params params;
  666. const struct coproc_reg *r;
  667. int ret;
  668. if (!index_to_params(id, &params))
  669. return -ENOENT;
  670. r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
  671. if (!r)
  672. return -ENOENT;
  673. ret = -ENOENT;
  674. if (KVM_REG_SIZE(id) == 4) {
  675. u32 val = r->val;
  676. ret = reg_to_user(uaddr, &val, id);
  677. } else if (KVM_REG_SIZE(id) == 8) {
  678. ret = reg_to_user(uaddr, &r->val, id);
  679. }
  680. return ret;
  681. }
  682. static int set_invariant_cp15(u64 id, void __user *uaddr)
  683. {
  684. struct coproc_params params;
  685. const struct coproc_reg *r;
  686. int err;
  687. u64 val;
  688. if (!index_to_params(id, &params))
  689. return -ENOENT;
  690. r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
  691. if (!r)
  692. return -ENOENT;
  693. err = -ENOENT;
  694. if (KVM_REG_SIZE(id) == 4) {
  695. u32 val32;
  696. err = reg_from_user(&val32, uaddr, id);
  697. if (!err)
  698. val = val32;
  699. } else if (KVM_REG_SIZE(id) == 8) {
  700. err = reg_from_user(&val, uaddr, id);
  701. }
  702. if (err)
  703. return err;
  704. /* This is what we mean by invariant: you can't change it. */
  705. if (r->val != val)
  706. return -EINVAL;
  707. return 0;
  708. }
  709. static bool is_valid_cache(u32 val)
  710. {
  711. u32 level, ctype;
  712. if (val >= CSSELR_MAX)
  713. return false;
  714. /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
  715. level = (val >> 1);
  716. ctype = (cache_levels >> (level * 3)) & 7;
  717. switch (ctype) {
  718. case 0: /* No cache */
  719. return false;
  720. case 1: /* Instruction cache only */
  721. return (val & 1);
  722. case 2: /* Data cache only */
  723. case 4: /* Unified cache */
  724. return !(val & 1);
  725. case 3: /* Separate instruction and data caches */
  726. return true;
  727. default: /* Reserved: we can't know instruction or data. */
  728. return false;
  729. }
  730. }
  731. /* Which cache CCSIDR represents depends on CSSELR value. */
  732. static u32 get_ccsidr(u32 csselr)
  733. {
  734. u32 ccsidr;
  735. /* Make sure noone else changes CSSELR during this! */
  736. local_irq_disable();
  737. /* Put value into CSSELR */
  738. asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
  739. isb();
  740. /* Read result out of CCSIDR */
  741. asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
  742. local_irq_enable();
  743. return ccsidr;
  744. }
  745. static int demux_c15_get(u64 id, void __user *uaddr)
  746. {
  747. u32 val;
  748. u32 __user *uval = uaddr;
  749. /* Fail if we have unknown bits set. */
  750. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  751. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  752. return -ENOENT;
  753. switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
  754. case KVM_REG_ARM_DEMUX_ID_CCSIDR:
  755. if (KVM_REG_SIZE(id) != 4)
  756. return -ENOENT;
  757. val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
  758. >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
  759. if (!is_valid_cache(val))
  760. return -ENOENT;
  761. return put_user(get_ccsidr(val), uval);
  762. default:
  763. return -ENOENT;
  764. }
  765. }
  766. static int demux_c15_set(u64 id, void __user *uaddr)
  767. {
  768. u32 val, newval;
  769. u32 __user *uval = uaddr;
  770. /* Fail if we have unknown bits set. */
  771. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  772. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  773. return -ENOENT;
  774. switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
  775. case KVM_REG_ARM_DEMUX_ID_CCSIDR:
  776. if (KVM_REG_SIZE(id) != 4)
  777. return -ENOENT;
  778. val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
  779. >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
  780. if (!is_valid_cache(val))
  781. return -ENOENT;
  782. if (get_user(newval, uval))
  783. return -EFAULT;
  784. /* This is also invariant: you can't change it. */
  785. if (newval != get_ccsidr(val))
  786. return -EINVAL;
  787. return 0;
  788. default:
  789. return -ENOENT;
  790. }
  791. }
  792. #ifdef CONFIG_VFPv3
  793. static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
  794. KVM_REG_ARM_VFP_FPSCR,
  795. KVM_REG_ARM_VFP_FPINST,
  796. KVM_REG_ARM_VFP_FPINST2,
  797. KVM_REG_ARM_VFP_MVFR0,
  798. KVM_REG_ARM_VFP_MVFR1,
  799. KVM_REG_ARM_VFP_FPSID };
  800. static unsigned int num_fp_regs(void)
  801. {
  802. if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
  803. return 32;
  804. else
  805. return 16;
  806. }
  807. static unsigned int num_vfp_regs(void)
  808. {
  809. /* Normal FP regs + control regs. */
  810. return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
  811. }
  812. static int copy_vfp_regids(u64 __user *uindices)
  813. {
  814. unsigned int i;
  815. const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
  816. const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
  817. for (i = 0; i < num_fp_regs(); i++) {
  818. if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
  819. uindices))
  820. return -EFAULT;
  821. uindices++;
  822. }
  823. for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
  824. if (put_user(u32reg | vfp_sysregs[i], uindices))
  825. return -EFAULT;
  826. uindices++;
  827. }
  828. return num_vfp_regs();
  829. }
  830. static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
  831. {
  832. u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
  833. u32 val;
  834. /* Fail if we have unknown bits set. */
  835. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  836. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  837. return -ENOENT;
  838. if (vfpid < num_fp_regs()) {
  839. if (KVM_REG_SIZE(id) != 8)
  840. return -ENOENT;
  841. return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpregs[vfpid],
  842. id);
  843. }
  844. /* FP control registers are all 32 bit. */
  845. if (KVM_REG_SIZE(id) != 4)
  846. return -ENOENT;
  847. switch (vfpid) {
  848. case KVM_REG_ARM_VFP_FPEXC:
  849. return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpexc, id);
  850. case KVM_REG_ARM_VFP_FPSCR:
  851. return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpscr, id);
  852. case KVM_REG_ARM_VFP_FPINST:
  853. return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst, id);
  854. case KVM_REG_ARM_VFP_FPINST2:
  855. return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst2, id);
  856. case KVM_REG_ARM_VFP_MVFR0:
  857. val = fmrx(MVFR0);
  858. return reg_to_user(uaddr, &val, id);
  859. case KVM_REG_ARM_VFP_MVFR1:
  860. val = fmrx(MVFR1);
  861. return reg_to_user(uaddr, &val, id);
  862. case KVM_REG_ARM_VFP_FPSID:
  863. val = fmrx(FPSID);
  864. return reg_to_user(uaddr, &val, id);
  865. default:
  866. return -ENOENT;
  867. }
  868. }
  869. static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
  870. {
  871. u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
  872. u32 val;
  873. /* Fail if we have unknown bits set. */
  874. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  875. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  876. return -ENOENT;
  877. if (vfpid < num_fp_regs()) {
  878. if (KVM_REG_SIZE(id) != 8)
  879. return -ENOENT;
  880. return reg_from_user(&vcpu->arch.ctxt.vfp.fpregs[vfpid],
  881. uaddr, id);
  882. }
  883. /* FP control registers are all 32 bit. */
  884. if (KVM_REG_SIZE(id) != 4)
  885. return -ENOENT;
  886. switch (vfpid) {
  887. case KVM_REG_ARM_VFP_FPEXC:
  888. return reg_from_user(&vcpu->arch.ctxt.vfp.fpexc, uaddr, id);
  889. case KVM_REG_ARM_VFP_FPSCR:
  890. return reg_from_user(&vcpu->arch.ctxt.vfp.fpscr, uaddr, id);
  891. case KVM_REG_ARM_VFP_FPINST:
  892. return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst, uaddr, id);
  893. case KVM_REG_ARM_VFP_FPINST2:
  894. return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst2, uaddr, id);
  895. /* These are invariant. */
  896. case KVM_REG_ARM_VFP_MVFR0:
  897. if (reg_from_user(&val, uaddr, id))
  898. return -EFAULT;
  899. if (val != fmrx(MVFR0))
  900. return -EINVAL;
  901. return 0;
  902. case KVM_REG_ARM_VFP_MVFR1:
  903. if (reg_from_user(&val, uaddr, id))
  904. return -EFAULT;
  905. if (val != fmrx(MVFR1))
  906. return -EINVAL;
  907. return 0;
  908. case KVM_REG_ARM_VFP_FPSID:
  909. if (reg_from_user(&val, uaddr, id))
  910. return -EFAULT;
  911. if (val != fmrx(FPSID))
  912. return -EINVAL;
  913. return 0;
  914. default:
  915. return -ENOENT;
  916. }
  917. }
  918. #else /* !CONFIG_VFPv3 */
  919. static unsigned int num_vfp_regs(void)
  920. {
  921. return 0;
  922. }
  923. static int copy_vfp_regids(u64 __user *uindices)
  924. {
  925. return 0;
  926. }
  927. static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
  928. {
  929. return -ENOENT;
  930. }
  931. static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
  932. {
  933. return -ENOENT;
  934. }
  935. #endif /* !CONFIG_VFPv3 */
  936. int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
  937. {
  938. const struct coproc_reg *r;
  939. void __user *uaddr = (void __user *)(long)reg->addr;
  940. int ret;
  941. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
  942. return demux_c15_get(reg->id, uaddr);
  943. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
  944. return vfp_get_reg(vcpu, reg->id, uaddr);
  945. r = index_to_coproc_reg(vcpu, reg->id);
  946. if (!r)
  947. return get_invariant_cp15(reg->id, uaddr);
  948. ret = -ENOENT;
  949. if (KVM_REG_SIZE(reg->id) == 8) {
  950. u64 val;
  951. val = vcpu_cp15_reg64_get(vcpu, r);
  952. ret = reg_to_user(uaddr, &val, reg->id);
  953. } else if (KVM_REG_SIZE(reg->id) == 4) {
  954. ret = reg_to_user(uaddr, &vcpu_cp15(vcpu, r->reg), reg->id);
  955. }
  956. return ret;
  957. }
  958. int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
  959. {
  960. const struct coproc_reg *r;
  961. void __user *uaddr = (void __user *)(long)reg->addr;
  962. int ret;
  963. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
  964. return demux_c15_set(reg->id, uaddr);
  965. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
  966. return vfp_set_reg(vcpu, reg->id, uaddr);
  967. r = index_to_coproc_reg(vcpu, reg->id);
  968. if (!r)
  969. return set_invariant_cp15(reg->id, uaddr);
  970. ret = -ENOENT;
  971. if (KVM_REG_SIZE(reg->id) == 8) {
  972. u64 val;
  973. ret = reg_from_user(&val, uaddr, reg->id);
  974. if (!ret)
  975. vcpu_cp15_reg64_set(vcpu, r, val);
  976. } else if (KVM_REG_SIZE(reg->id) == 4) {
  977. ret = reg_from_user(&vcpu_cp15(vcpu, r->reg), uaddr, reg->id);
  978. }
  979. return ret;
  980. }
  981. static unsigned int num_demux_regs(void)
  982. {
  983. unsigned int i, count = 0;
  984. for (i = 0; i < CSSELR_MAX; i++)
  985. if (is_valid_cache(i))
  986. count++;
  987. return count;
  988. }
  989. static int write_demux_regids(u64 __user *uindices)
  990. {
  991. u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
  992. unsigned int i;
  993. val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
  994. for (i = 0; i < CSSELR_MAX; i++) {
  995. if (!is_valid_cache(i))
  996. continue;
  997. if (put_user(val | i, uindices))
  998. return -EFAULT;
  999. uindices++;
  1000. }
  1001. return 0;
  1002. }
  1003. static u64 cp15_to_index(const struct coproc_reg *reg)
  1004. {
  1005. u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
  1006. if (reg->is_64bit) {
  1007. val |= KVM_REG_SIZE_U64;
  1008. val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
  1009. /*
  1010. * CRn always denotes the primary coproc. reg. nr. for the
  1011. * in-kernel representation, but the user space API uses the
  1012. * CRm for the encoding, because it is modelled after the
  1013. * MRRC/MCRR instructions: see the ARM ARM rev. c page
  1014. * B3-1445
  1015. */
  1016. val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT);
  1017. } else {
  1018. val |= KVM_REG_SIZE_U32;
  1019. val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
  1020. val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
  1021. val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
  1022. val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
  1023. }
  1024. return val;
  1025. }
  1026. static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
  1027. {
  1028. if (!*uind)
  1029. return true;
  1030. if (put_user(cp15_to_index(reg), *uind))
  1031. return false;
  1032. (*uind)++;
  1033. return true;
  1034. }
  1035. /* Assumed ordered tables, see kvm_coproc_table_init. */
  1036. static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
  1037. {
  1038. const struct coproc_reg *i1, *i2, *end1, *end2;
  1039. unsigned int total = 0;
  1040. size_t num;
  1041. /* We check for duplicates here, to allow arch-specific overrides. */
  1042. i1 = get_target_table(vcpu->arch.target, &num);
  1043. end1 = i1 + num;
  1044. i2 = cp15_regs;
  1045. end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
  1046. BUG_ON(i1 == end1 || i2 == end2);
  1047. /* Walk carefully, as both tables may refer to the same register. */
  1048. while (i1 || i2) {
  1049. int cmp = cmp_reg(i1, i2);
  1050. /* target-specific overrides generic entry. */
  1051. if (cmp <= 0) {
  1052. /* Ignore registers we trap but don't save. */
  1053. if (i1->reg) {
  1054. if (!copy_reg_to_user(i1, &uind))
  1055. return -EFAULT;
  1056. total++;
  1057. }
  1058. } else {
  1059. /* Ignore registers we trap but don't save. */
  1060. if (i2->reg) {
  1061. if (!copy_reg_to_user(i2, &uind))
  1062. return -EFAULT;
  1063. total++;
  1064. }
  1065. }
  1066. if (cmp <= 0 && ++i1 == end1)
  1067. i1 = NULL;
  1068. if (cmp >= 0 && ++i2 == end2)
  1069. i2 = NULL;
  1070. }
  1071. return total;
  1072. }
  1073. unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
  1074. {
  1075. return ARRAY_SIZE(invariant_cp15)
  1076. + num_demux_regs()
  1077. + num_vfp_regs()
  1078. + walk_cp15(vcpu, (u64 __user *)NULL);
  1079. }
  1080. int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
  1081. {
  1082. unsigned int i;
  1083. int err;
  1084. /* Then give them all the invariant registers' indices. */
  1085. for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
  1086. if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
  1087. return -EFAULT;
  1088. uindices++;
  1089. }
  1090. err = walk_cp15(vcpu, uindices);
  1091. if (err < 0)
  1092. return err;
  1093. uindices += err;
  1094. err = copy_vfp_regids(uindices);
  1095. if (err < 0)
  1096. return err;
  1097. uindices += err;
  1098. return write_demux_regids(uindices);
  1099. }
  1100. void kvm_coproc_table_init(void)
  1101. {
  1102. unsigned int i;
  1103. /* Make sure tables are unique and in order. */
  1104. BUG_ON(check_reg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
  1105. BUG_ON(check_reg_table(invariant_cp15, ARRAY_SIZE(invariant_cp15)));
  1106. /* We abuse the reset function to overwrite the table itself. */
  1107. for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
  1108. invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
  1109. /*
  1110. * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
  1111. *
  1112. * If software reads the Cache Type fields from Ctype1
  1113. * upwards, once it has seen a value of 0b000, no caches
  1114. * exist at further-out levels of the hierarchy. So, for
  1115. * example, if Ctype3 is the first Cache Type field with a
  1116. * value of 0b000, the values of Ctype4 to Ctype7 must be
  1117. * ignored.
  1118. */
  1119. asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
  1120. for (i = 0; i < 7; i++)
  1121. if (((cache_levels >> (i*3)) & 7) == 0)
  1122. break;
  1123. /* Clear all higher bits. */
  1124. cache_levels &= (1 << (i*3))-1;
  1125. }
  1126. /**
  1127. * kvm_reset_coprocs - sets cp15 registers to reset value
  1128. * @vcpu: The VCPU pointer
  1129. *
  1130. * This function finds the right table above and sets the registers on the
  1131. * virtual CPU struct to their architecturally defined reset values.
  1132. */
  1133. void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
  1134. {
  1135. size_t num;
  1136. const struct coproc_reg *table;
  1137. /* Catch someone adding a register without putting in reset entry. */
  1138. memset(vcpu->arch.ctxt.cp15, 0x42, sizeof(vcpu->arch.ctxt.cp15));
  1139. /* Generic chip reset first (so target could override). */
  1140. reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
  1141. table = get_target_table(vcpu->arch.target, &num);
  1142. reset_coproc_regs(vcpu, table, num);
  1143. for (num = 1; num < NR_CP15_REGS; num++)
  1144. if (vcpu_cp15(vcpu, num) == 0x42424242)
  1145. panic("Didn't reset vcpu_cp15(vcpu, %zi)", num);
  1146. }