1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498 |
- ============================
- KERNEL KEY RETENTION SERVICE
- ============================
- This service allows cryptographic keys, authentication tokens, cross-domain
- user mappings, and similar to be cached in the kernel for the use of
- filesystems and other kernel services.
- Keyrings are permitted; these are a special type of key that can hold links to
- other keys. Processes each have three standard keyring subscriptions that a
- kernel service can search for relevant keys.
- The key service can be configured on by enabling:
- "Security options"/"Enable access key retention support" (CONFIG_KEYS)
- This document has the following sections:
- - Key overview
- - Key service overview
- - Key access permissions
- - SELinux support
- - New procfs files
- - Userspace system call interface
- - Kernel services
- - Notes on accessing payload contents
- - Defining a key type
- - Request-key callback service
- - Garbage collection
- ============
- KEY OVERVIEW
- ============
- In this context, keys represent units of cryptographic data, authentication
- tokens, keyrings, etc.. These are represented in the kernel by struct key.
- Each key has a number of attributes:
- - A serial number.
- - A type.
- - A description (for matching a key in a search).
- - Access control information.
- - An expiry time.
- - A payload.
- - State.
- (*) Each key is issued a serial number of type key_serial_t that is unique for
- the lifetime of that key. All serial numbers are positive non-zero 32-bit
- integers.
- Userspace programs can use a key's serial numbers as a way to gain access
- to it, subject to permission checking.
- (*) Each key is of a defined "type". Types must be registered inside the
- kernel by a kernel service (such as a filesystem) before keys of that type
- can be added or used. Userspace programs cannot define new types directly.
- Key types are represented in the kernel by struct key_type. This defines a
- number of operations that can be performed on a key of that type.
- Should a type be removed from the system, all the keys of that type will
- be invalidated.
- (*) Each key has a description. This should be a printable string. The key
- type provides an operation to perform a match between the description on a
- key and a criterion string.
- (*) Each key has an owner user ID, a group ID and a permissions mask. These
- are used to control what a process may do to a key from userspace, and
- whether a kernel service will be able to find the key.
- (*) Each key can be set to expire at a specific time by the key type's
- instantiation function. Keys can also be immortal.
- (*) Each key can have a payload. This is a quantity of data that represent the
- actual "key". In the case of a keyring, this is a list of keys to which
- the keyring links; in the case of a user-defined key, it's an arbitrary
- blob of data.
- Having a payload is not required; and the payload can, in fact, just be a
- value stored in the struct key itself.
- When a key is instantiated, the key type's instantiation function is
- called with a blob of data, and that then creates the key's payload in
- some way.
- Similarly, when userspace wants to read back the contents of the key, if
- permitted, another key type operation will be called to convert the key's
- attached payload back into a blob of data.
- (*) Each key can be in one of a number of basic states:
- (*) Uninstantiated. The key exists, but does not have any data attached.
- Keys being requested from userspace will be in this state.
- (*) Instantiated. This is the normal state. The key is fully formed, and
- has data attached.
- (*) Negative. This is a relatively short-lived state. The key acts as a
- note saying that a previous call out to userspace failed, and acts as
- a throttle on key lookups. A negative key can be updated to a normal
- state.
- (*) Expired. Keys can have lifetimes set. If their lifetime is exceeded,
- they traverse to this state. An expired key can be updated back to a
- normal state.
- (*) Revoked. A key is put in this state by userspace action. It can't be
- found or operated upon (apart from by unlinking it).
- (*) Dead. The key's type was unregistered, and so the key is now useless.
- Keys in the last three states are subject to garbage collection. See the
- section on "Garbage collection".
- ====================
- KEY SERVICE OVERVIEW
- ====================
- The key service provides a number of features besides keys:
- (*) The key service defines three special key types:
- (+) "keyring"
- Keyrings are special keys that contain a list of other keys. Keyring
- lists can be modified using various system calls. Keyrings should not
- be given a payload when created.
- (+) "user"
- A key of this type has a description and a payload that are arbitrary
- blobs of data. These can be created, updated and read by userspace,
- and aren't intended for use by kernel services.
- (+) "logon"
- Like a "user" key, a "logon" key has a payload that is an arbitrary
- blob of data. It is intended as a place to store secrets which are
- accessible to the kernel but not to userspace programs.
- The description can be arbitrary, but must be prefixed with a non-zero
- length string that describes the key "subclass". The subclass is
- separated from the rest of the description by a ':'. "logon" keys can
- be created and updated from userspace, but the payload is only
- readable from kernel space.
- (*) Each process subscribes to three keyrings: a thread-specific keyring, a
- process-specific keyring, and a session-specific keyring.
- The thread-specific keyring is discarded from the child when any sort of
- clone, fork, vfork or execve occurs. A new keyring is created only when
- required.
- The process-specific keyring is replaced with an empty one in the child on
- clone, fork, vfork unless CLONE_THREAD is supplied, in which case it is
- shared. execve also discards the process's process keyring and creates a
- new one.
- The session-specific keyring is persistent across clone, fork, vfork and
- execve, even when the latter executes a set-UID or set-GID binary. A
- process can, however, replace its current session keyring with a new one
- by using PR_JOIN_SESSION_KEYRING. It is permitted to request an anonymous
- new one, or to attempt to create or join one of a specific name.
- The ownership of the thread keyring changes when the real UID and GID of
- the thread changes.
- (*) Each user ID resident in the system holds two special keyrings: a user
- specific keyring and a default user session keyring. The default session
- keyring is initialised with a link to the user-specific keyring.
- When a process changes its real UID, if it used to have no session key, it
- will be subscribed to the default session key for the new UID.
- If a process attempts to access its session key when it doesn't have one,
- it will be subscribed to the default for its current UID.
- (*) Each user has two quotas against which the keys they own are tracked. One
- limits the total number of keys and keyrings, the other limits the total
- amount of description and payload space that can be consumed.
- The user can view information on this and other statistics through procfs
- files. The root user may also alter the quota limits through sysctl files
- (see the section "New procfs files").
- Process-specific and thread-specific keyrings are not counted towards a
- user's quota.
- If a system call that modifies a key or keyring in some way would put the
- user over quota, the operation is refused and error EDQUOT is returned.
- (*) There's a system call interface by which userspace programs can create and
- manipulate keys and keyrings.
- (*) There's a kernel interface by which services can register types and search
- for keys.
- (*) There's a way for the a search done from the kernel to call back to
- userspace to request a key that can't be found in a process's keyrings.
- (*) An optional filesystem is available through which the key database can be
- viewed and manipulated.
- ======================
- KEY ACCESS PERMISSIONS
- ======================
- Keys have an owner user ID, a group access ID, and a permissions mask. The mask
- has up to eight bits each for possessor, user, group and other access. Only
- six of each set of eight bits are defined. These permissions granted are:
- (*) View
- This permits a key or keyring's attributes to be viewed - including key
- type and description.
- (*) Read
- This permits a key's payload to be viewed or a keyring's list of linked
- keys.
- (*) Write
- This permits a key's payload to be instantiated or updated, or it allows a
- link to be added to or removed from a keyring.
- (*) Search
- This permits keyrings to be searched and keys to be found. Searches can
- only recurse into nested keyrings that have search permission set.
- (*) Link
- This permits a key or keyring to be linked to. To create a link from a
- keyring to a key, a process must have Write permission on the keyring and
- Link permission on the key.
- (*) Set Attribute
- This permits a key's UID, GID and permissions mask to be changed.
- For changing the ownership, group ID or permissions mask, being the owner of
- the key or having the sysadmin capability is sufficient.
- ===============
- SELINUX SUPPORT
- ===============
- The security class "key" has been added to SELinux so that mandatory access
- controls can be applied to keys created within various contexts. This support
- is preliminary, and is likely to change quite significantly in the near future.
- Currently, all of the basic permissions explained above are provided in SELinux
- as well; SELinux is simply invoked after all basic permission checks have been
- performed.
- The value of the file /proc/self/attr/keycreate influences the labeling of
- newly-created keys. If the contents of that file correspond to an SELinux
- security context, then the key will be assigned that context. Otherwise, the
- key will be assigned the current context of the task that invoked the key
- creation request. Tasks must be granted explicit permission to assign a
- particular context to newly-created keys, using the "create" permission in the
- key security class.
- The default keyrings associated with users will be labeled with the default
- context of the user if and only if the login programs have been instrumented to
- properly initialize keycreate during the login process. Otherwise, they will
- be labeled with the context of the login program itself.
- Note, however, that the default keyrings associated with the root user are
- labeled with the default kernel context, since they are created early in the
- boot process, before root has a chance to log in.
- The keyrings associated with new threads are each labeled with the context of
- their associated thread, and both session and process keyrings are handled
- similarly.
- ================
- NEW PROCFS FILES
- ================
- Two files have been added to procfs by which an administrator can find out
- about the status of the key service:
- (*) /proc/keys
- This lists the keys that are currently viewable by the task reading the
- file, giving information about their type, description and permissions.
- It is not possible to view the payload of the key this way, though some
- information about it may be given.
- The only keys included in the list are those that grant View permission to
- the reading process whether or not it possesses them. Note that LSM
- security checks are still performed, and may further filter out keys that
- the current process is not authorised to view.
- The contents of the file look like this:
- SERIAL FLAGS USAGE EXPY PERM UID GID TYPE DESCRIPTION: SUMMARY
- 00000001 I----- 39 perm 1f3f0000 0 0 keyring _uid_ses.0: 1/4
- 00000002 I----- 2 perm 1f3f0000 0 0 keyring _uid.0: empty
- 00000007 I----- 1 perm 1f3f0000 0 0 keyring _pid.1: empty
- 0000018d I----- 1 perm 1f3f0000 0 0 keyring _pid.412: empty
- 000004d2 I--Q-- 1 perm 1f3f0000 32 -1 keyring _uid.32: 1/4
- 000004d3 I--Q-- 3 perm 1f3f0000 32 -1 keyring _uid_ses.32: empty
- 00000892 I--QU- 1 perm 1f000000 0 0 user metal:copper: 0
- 00000893 I--Q-N 1 35s 1f3f0000 0 0 user metal:silver: 0
- 00000894 I--Q-- 1 10h 003f0000 0 0 user metal:gold: 0
- The flags are:
- I Instantiated
- R Revoked
- D Dead
- Q Contributes to user's quota
- U Under construction by callback to userspace
- N Negative key
- (*) /proc/key-users
- This file lists the tracking data for each user that has at least one key
- on the system. Such data includes quota information and statistics:
- [root@andromeda root]# cat /proc/key-users
- 0: 46 45/45 1/100 13/10000
- 29: 2 2/2 2/100 40/10000
- 32: 2 2/2 2/100 40/10000
- 38: 2 2/2 2/100 40/10000
- The format of each line is
- <UID>: User ID to which this applies
- <usage> Structure refcount
- <inst>/<keys> Total number of keys and number instantiated
- <keys>/<max> Key count quota
- <bytes>/<max> Key size quota
- Four new sysctl files have been added also for the purpose of controlling the
- quota limits on keys:
- (*) /proc/sys/kernel/keys/root_maxkeys
- /proc/sys/kernel/keys/root_maxbytes
- These files hold the maximum number of keys that root may have and the
- maximum total number of bytes of data that root may have stored in those
- keys.
- (*) /proc/sys/kernel/keys/maxkeys
- /proc/sys/kernel/keys/maxbytes
- These files hold the maximum number of keys that each non-root user may
- have and the maximum total number of bytes of data that each of those
- users may have stored in their keys.
- Root may alter these by writing each new limit as a decimal number string to
- the appropriate file.
- ===============================
- USERSPACE SYSTEM CALL INTERFACE
- ===============================
- Userspace can manipulate keys directly through three new syscalls: add_key,
- request_key and keyctl. The latter provides a number of functions for
- manipulating keys.
- When referring to a key directly, userspace programs should use the key's
- serial number (a positive 32-bit integer). However, there are some special
- values available for referring to special keys and keyrings that relate to the
- process making the call:
- CONSTANT VALUE KEY REFERENCED
- ============================== ====== ===========================
- KEY_SPEC_THREAD_KEYRING -1 thread-specific keyring
- KEY_SPEC_PROCESS_KEYRING -2 process-specific keyring
- KEY_SPEC_SESSION_KEYRING -3 session-specific keyring
- KEY_SPEC_USER_KEYRING -4 UID-specific keyring
- KEY_SPEC_USER_SESSION_KEYRING -5 UID-session keyring
- KEY_SPEC_GROUP_KEYRING -6 GID-specific keyring
- KEY_SPEC_REQKEY_AUTH_KEY -7 assumed request_key()
- authorisation key
- The main syscalls are:
- (*) Create a new key of given type, description and payload and add it to the
- nominated keyring:
- key_serial_t add_key(const char *type, const char *desc,
- const void *payload, size_t plen,
- key_serial_t keyring);
- If a key of the same type and description as that proposed already exists
- in the keyring, this will try to update it with the given payload, or it
- will return error EEXIST if that function is not supported by the key
- type. The process must also have permission to write to the key to be able
- to update it. The new key will have all user permissions granted and no
- group or third party permissions.
- Otherwise, this will attempt to create a new key of the specified type and
- description, and to instantiate it with the supplied payload and attach it
- to the keyring. In this case, an error will be generated if the process
- does not have permission to write to the keyring.
- If the key type supports it, if the description is NULL or an empty
- string, the key type will try and generate a description from the content
- of the payload.
- The payload is optional, and the pointer can be NULL if not required by
- the type. The payload is plen in size, and plen can be zero for an empty
- payload.
- A new keyring can be generated by setting type "keyring", the keyring name
- as the description (or NULL) and setting the payload to NULL.
- User defined keys can be created by specifying type "user". It is
- recommended that a user defined key's description by prefixed with a type
- ID and a colon, such as "krb5tgt:" for a Kerberos 5 ticket granting
- ticket.
- Any other type must have been registered with the kernel in advance by a
- kernel service such as a filesystem.
- The ID of the new or updated key is returned if successful.
- (*) Search the process's keyrings for a key, potentially calling out to
- userspace to create it.
- key_serial_t request_key(const char *type, const char *description,
- const char *callout_info,
- key_serial_t dest_keyring);
- This function searches all the process's keyrings in the order thread,
- process, session for a matching key. This works very much like
- KEYCTL_SEARCH, including the optional attachment of the discovered key to
- a keyring.
- If a key cannot be found, and if callout_info is not NULL, then
- /sbin/request-key will be invoked in an attempt to obtain a key. The
- callout_info string will be passed as an argument to the program.
- See also Documentation/security/keys-request-key.txt.
- The keyctl syscall functions are:
- (*) Map a special key ID to a real key ID for this process:
- key_serial_t keyctl(KEYCTL_GET_KEYRING_ID, key_serial_t id,
- int create);
- The special key specified by "id" is looked up (with the key being created
- if necessary) and the ID of the key or keyring thus found is returned if
- it exists.
- If the key does not yet exist, the key will be created if "create" is
- non-zero; and the error ENOKEY will be returned if "create" is zero.
- (*) Replace the session keyring this process subscribes to with a new one:
- key_serial_t keyctl(KEYCTL_JOIN_SESSION_KEYRING, const char *name);
- If name is NULL, an anonymous keyring is created attached to the process
- as its session keyring, displacing the old session keyring.
- If name is not NULL, if a keyring of that name exists, the process
- attempts to attach it as the session keyring, returning an error if that
- is not permitted; otherwise a new keyring of that name is created and
- attached as the session keyring.
- To attach to a named keyring, the keyring must have search permission for
- the process's ownership.
- The ID of the new session keyring is returned if successful.
- (*) Update the specified key:
- long keyctl(KEYCTL_UPDATE, key_serial_t key, const void *payload,
- size_t plen);
- This will try to update the specified key with the given payload, or it
- will return error EOPNOTSUPP if that function is not supported by the key
- type. The process must also have permission to write to the key to be able
- to update it.
- The payload is of length plen, and may be absent or empty as for
- add_key().
- (*) Revoke a key:
- long keyctl(KEYCTL_REVOKE, key_serial_t key);
- This makes a key unavailable for further operations. Further attempts to
- use the key will be met with error EKEYREVOKED, and the key will no longer
- be findable.
- (*) Change the ownership of a key:
- long keyctl(KEYCTL_CHOWN, key_serial_t key, uid_t uid, gid_t gid);
- This function permits a key's owner and group ID to be changed. Either one
- of uid or gid can be set to -1 to suppress that change.
- Only the superuser can change a key's owner to something other than the
- key's current owner. Similarly, only the superuser can change a key's
- group ID to something other than the calling process's group ID or one of
- its group list members.
- (*) Change the permissions mask on a key:
- long keyctl(KEYCTL_SETPERM, key_serial_t key, key_perm_t perm);
- This function permits the owner of a key or the superuser to change the
- permissions mask on a key.
- Only bits the available bits are permitted; if any other bits are set,
- error EINVAL will be returned.
- (*) Describe a key:
- long keyctl(KEYCTL_DESCRIBE, key_serial_t key, char *buffer,
- size_t buflen);
- This function returns a summary of the key's attributes (but not its
- payload data) as a string in the buffer provided.
- Unless there's an error, it always returns the amount of data it could
- produce, even if that's too big for the buffer, but it won't copy more
- than requested to userspace. If the buffer pointer is NULL then no copy
- will take place.
- A process must have view permission on the key for this function to be
- successful.
- If successful, a string is placed in the buffer in the following format:
- <type>;<uid>;<gid>;<perm>;<description>
- Where type and description are strings, uid and gid are decimal, and perm
- is hexadecimal. A NUL character is included at the end of the string if
- the buffer is sufficiently big.
- This can be parsed with
- sscanf(buffer, "%[^;];%d;%d;%o;%s", type, &uid, &gid, &mode, desc);
- (*) Clear out a keyring:
- long keyctl(KEYCTL_CLEAR, key_serial_t keyring);
- This function clears the list of keys attached to a keyring. The calling
- process must have write permission on the keyring, and it must be a
- keyring (or else error ENOTDIR will result).
- This function can also be used to clear special kernel keyrings if they
- are appropriately marked if the user has CAP_SYS_ADMIN capability. The
- DNS resolver cache keyring is an example of this.
- (*) Link a key into a keyring:
- long keyctl(KEYCTL_LINK, key_serial_t keyring, key_serial_t key);
- This function creates a link from the keyring to the key. The process must
- have write permission on the keyring and must have link permission on the
- key.
- Should the keyring not be a keyring, error ENOTDIR will result; and if the
- keyring is full, error ENFILE will result.
- The link procedure checks the nesting of the keyrings, returning ELOOP if
- it appears too deep or EDEADLK if the link would introduce a cycle.
- Any links within the keyring to keys that match the new key in terms of
- type and description will be discarded from the keyring as the new one is
- added.
- (*) Unlink a key or keyring from another keyring:
- long keyctl(KEYCTL_UNLINK, key_serial_t keyring, key_serial_t key);
- This function looks through the keyring for the first link to the
- specified key, and removes it if found. Subsequent links to that key are
- ignored. The process must have write permission on the keyring.
- If the keyring is not a keyring, error ENOTDIR will result; and if the key
- is not present, error ENOENT will be the result.
- (*) Search a keyring tree for a key:
- key_serial_t keyctl(KEYCTL_SEARCH, key_serial_t keyring,
- const char *type, const char *description,
- key_serial_t dest_keyring);
- This searches the keyring tree headed by the specified keyring until a key
- is found that matches the type and description criteria. Each keyring is
- checked for keys before recursion into its children occurs.
- The process must have search permission on the top level keyring, or else
- error EACCES will result. Only keyrings that the process has search
- permission on will be recursed into, and only keys and keyrings for which
- a process has search permission can be matched. If the specified keyring
- is not a keyring, ENOTDIR will result.
- If the search succeeds, the function will attempt to link the found key
- into the destination keyring if one is supplied (non-zero ID). All the
- constraints applicable to KEYCTL_LINK apply in this case too.
- Error ENOKEY, EKEYREVOKED or EKEYEXPIRED will be returned if the search
- fails. On success, the resulting key ID will be returned.
- (*) Read the payload data from a key:
- long keyctl(KEYCTL_READ, key_serial_t keyring, char *buffer,
- size_t buflen);
- This function attempts to read the payload data from the specified key
- into the buffer. The process must have read permission on the key to
- succeed.
- The returned data will be processed for presentation by the key type. For
- instance, a keyring will return an array of key_serial_t entries
- representing the IDs of all the keys to which it is subscribed. The user
- defined key type will return its data as is. If a key type does not
- implement this function, error EOPNOTSUPP will result.
- As much of the data as can be fitted into the buffer will be copied to
- userspace if the buffer pointer is not NULL.
- On a successful return, the function will always return the amount of data
- available rather than the amount copied.
- (*) Instantiate a partially constructed key.
- long keyctl(KEYCTL_INSTANTIATE, key_serial_t key,
- const void *payload, size_t plen,
- key_serial_t keyring);
- long keyctl(KEYCTL_INSTANTIATE_IOV, key_serial_t key,
- const struct iovec *payload_iov, unsigned ioc,
- key_serial_t keyring);
- If the kernel calls back to userspace to complete the instantiation of a
- key, userspace should use this call to supply data for the key before the
- invoked process returns, or else the key will be marked negative
- automatically.
- The process must have write access on the key to be able to instantiate
- it, and the key must be uninstantiated.
- If a keyring is specified (non-zero), the key will also be linked into
- that keyring, however all the constraints applying in KEYCTL_LINK apply in
- this case too.
- The payload and plen arguments describe the payload data as for add_key().
- The payload_iov and ioc arguments describe the payload data in an iovec
- array instead of a single buffer.
- (*) Negatively instantiate a partially constructed key.
- long keyctl(KEYCTL_NEGATE, key_serial_t key,
- unsigned timeout, key_serial_t keyring);
- long keyctl(KEYCTL_REJECT, key_serial_t key,
- unsigned timeout, unsigned error, key_serial_t keyring);
- If the kernel calls back to userspace to complete the instantiation of a
- key, userspace should use this call mark the key as negative before the
- invoked process returns if it is unable to fulfill the request.
- The process must have write access on the key to be able to instantiate
- it, and the key must be uninstantiated.
- If a keyring is specified (non-zero), the key will also be linked into
- that keyring, however all the constraints applying in KEYCTL_LINK apply in
- this case too.
- If the key is rejected, future searches for it will return the specified
- error code until the rejected key expires. Negating the key is the same
- as rejecting the key with ENOKEY as the error code.
- (*) Set the default request-key destination keyring.
- long keyctl(KEYCTL_SET_REQKEY_KEYRING, int reqkey_defl);
- This sets the default keyring to which implicitly requested keys will be
- attached for this thread. reqkey_defl should be one of these constants:
- CONSTANT VALUE NEW DEFAULT KEYRING
- ====================================== ====== =======================
- KEY_REQKEY_DEFL_NO_CHANGE -1 No change
- KEY_REQKEY_DEFL_DEFAULT 0 Default[1]
- KEY_REQKEY_DEFL_THREAD_KEYRING 1 Thread keyring
- KEY_REQKEY_DEFL_PROCESS_KEYRING 2 Process keyring
- KEY_REQKEY_DEFL_SESSION_KEYRING 3 Session keyring
- KEY_REQKEY_DEFL_USER_KEYRING 4 User keyring
- KEY_REQKEY_DEFL_USER_SESSION_KEYRING 5 User session keyring
- KEY_REQKEY_DEFL_GROUP_KEYRING 6 Group keyring
- The old default will be returned if successful and error EINVAL will be
- returned if reqkey_defl is not one of the above values.
- The default keyring can be overridden by the keyring indicated to the
- request_key() system call.
- Note that this setting is inherited across fork/exec.
- [1] The default is: the thread keyring if there is one, otherwise
- the process keyring if there is one, otherwise the session keyring if
- there is one, otherwise the user default session keyring.
- (*) Set the timeout on a key.
- long keyctl(KEYCTL_SET_TIMEOUT, key_serial_t key, unsigned timeout);
- This sets or clears the timeout on a key. The timeout can be 0 to clear
- the timeout or a number of seconds to set the expiry time that far into
- the future.
- The process must have attribute modification access on a key to set its
- timeout. Timeouts may not be set with this function on negative, revoked
- or expired keys.
- (*) Assume the authority granted to instantiate a key
- long keyctl(KEYCTL_ASSUME_AUTHORITY, key_serial_t key);
- This assumes or divests the authority required to instantiate the
- specified key. Authority can only be assumed if the thread has the
- authorisation key associated with the specified key in its keyrings
- somewhere.
- Once authority is assumed, searches for keys will also search the
- requester's keyrings using the requester's security label, UID, GID and
- groups.
- If the requested authority is unavailable, error EPERM will be returned,
- likewise if the authority has been revoked because the target key is
- already instantiated.
- If the specified key is 0, then any assumed authority will be divested.
- The assumed authoritative key is inherited across fork and exec.
- (*) Get the LSM security context attached to a key.
- long keyctl(KEYCTL_GET_SECURITY, key_serial_t key, char *buffer,
- size_t buflen)
- This function returns a string that represents the LSM security context
- attached to a key in the buffer provided.
- Unless there's an error, it always returns the amount of data it could
- produce, even if that's too big for the buffer, but it won't copy more
- than requested to userspace. If the buffer pointer is NULL then no copy
- will take place.
- A NUL character is included at the end of the string if the buffer is
- sufficiently big. This is included in the returned count. If no LSM is
- in force then an empty string will be returned.
- A process must have view permission on the key for this function to be
- successful.
- (*) Install the calling process's session keyring on its parent.
- long keyctl(KEYCTL_SESSION_TO_PARENT);
- This functions attempts to install the calling process's session keyring
- on to the calling process's parent, replacing the parent's current session
- keyring.
- The calling process must have the same ownership as its parent, the
- keyring must have the same ownership as the calling process, the calling
- process must have LINK permission on the keyring and the active LSM module
- mustn't deny permission, otherwise error EPERM will be returned.
- Error ENOMEM will be returned if there was insufficient memory to complete
- the operation, otherwise 0 will be returned to indicate success.
- The keyring will be replaced next time the parent process leaves the
- kernel and resumes executing userspace.
- (*) Invalidate a key.
- long keyctl(KEYCTL_INVALIDATE, key_serial_t key);
- This function marks a key as being invalidated and then wakes up the
- garbage collector. The garbage collector immediately removes invalidated
- keys from all keyrings and deletes the key when its reference count
- reaches zero.
- Keys that are marked invalidated become invisible to normal key operations
- immediately, though they are still visible in /proc/keys until deleted
- (they're marked with an 'i' flag).
- A process must have search permission on the key for this function to be
- successful.
- (*) Compute a Diffie-Hellman shared secret or public key
- long keyctl(KEYCTL_DH_COMPUTE, struct keyctl_dh_params *params,
- char *buffer, size_t buflen,
- void *reserved);
- The params struct contains serial numbers for three keys:
- - The prime, p, known to both parties
- - The local private key
- - The base integer, which is either a shared generator or the
- remote public key
- The value computed is:
- result = base ^ private (mod prime)
- If the base is the shared generator, the result is the local
- public key. If the base is the remote public key, the result is
- the shared secret.
- The reserved argument must be set to NULL.
- The buffer length must be at least the length of the prime, or zero.
- If the buffer length is nonzero, the length of the result is
- returned when it is successfully calculated and copied in to the
- buffer. When the buffer length is zero, the minimum required
- buffer length is returned.
- This function will return error EOPNOTSUPP if the key type is not
- supported, error ENOKEY if the key could not be found, or error
- EACCES if the key is not readable by the caller.
- ===============
- KERNEL SERVICES
- ===============
- The kernel services for key management are fairly simple to deal with. They can
- be broken down into two areas: keys and key types.
- Dealing with keys is fairly straightforward. Firstly, the kernel service
- registers its type, then it searches for a key of that type. It should retain
- the key as long as it has need of it, and then it should release it. For a
- filesystem or device file, a search would probably be performed during the open
- call, and the key released upon close. How to deal with conflicting keys due to
- two different users opening the same file is left to the filesystem author to
- solve.
- To access the key manager, the following header must be #included:
- <linux/key.h>
- Specific key types should have a header file under include/keys/ that should be
- used to access that type. For keys of type "user", for example, that would be:
- <keys/user-type.h>
- Note that there are two different types of pointers to keys that may be
- encountered:
- (*) struct key *
- This simply points to the key structure itself. Key structures will be at
- least four-byte aligned.
- (*) key_ref_t
- This is equivalent to a struct key *, but the least significant bit is set
- if the caller "possesses" the key. By "possession" it is meant that the
- calling processes has a searchable link to the key from one of its
- keyrings. There are three functions for dealing with these:
- key_ref_t make_key_ref(const struct key *key, bool possession);
- struct key *key_ref_to_ptr(const key_ref_t key_ref);
- bool is_key_possessed(const key_ref_t key_ref);
- The first function constructs a key reference from a key pointer and
- possession information (which must be true or false).
- The second function retrieves the key pointer from a reference and the
- third retrieves the possession flag.
- When accessing a key's payload contents, certain precautions must be taken to
- prevent access vs modification races. See the section "Notes on accessing
- payload contents" for more information.
- (*) To search for a key, call:
- struct key *request_key(const struct key_type *type,
- const char *description,
- const char *callout_info);
- This is used to request a key or keyring with a description that matches
- the description specified according to the key type's match_preparse()
- method. This permits approximate matching to occur. If callout_string is
- not NULL, then /sbin/request-key will be invoked in an attempt to obtain
- the key from userspace. In that case, callout_string will be passed as an
- argument to the program.
- Should the function fail error ENOKEY, EKEYEXPIRED or EKEYREVOKED will be
- returned.
- If successful, the key will have been attached to the default keyring for
- implicitly obtained request-key keys, as set by KEYCTL_SET_REQKEY_KEYRING.
- See also Documentation/security/keys-request-key.txt.
- (*) To search for a key, passing auxiliary data to the upcaller, call:
- struct key *request_key_with_auxdata(const struct key_type *type,
- const char *description,
- const void *callout_info,
- size_t callout_len,
- void *aux);
- This is identical to request_key(), except that the auxiliary data is
- passed to the key_type->request_key() op if it exists, and the callout_info
- is a blob of length callout_len, if given (the length may be 0).
- (*) A key can be requested asynchronously by calling one of:
- struct key *request_key_async(const struct key_type *type,
- const char *description,
- const void *callout_info,
- size_t callout_len);
- or:
- struct key *request_key_async_with_auxdata(const struct key_type *type,
- const char *description,
- const char *callout_info,
- size_t callout_len,
- void *aux);
- which are asynchronous equivalents of request_key() and
- request_key_with_auxdata() respectively.
- These two functions return with the key potentially still under
- construction. To wait for construction completion, the following should be
- called:
- int wait_for_key_construction(struct key *key, bool intr);
- The function will wait for the key to finish being constructed and then
- invokes key_validate() to return an appropriate value to indicate the state
- of the key (0 indicates the key is usable).
- If intr is true, then the wait can be interrupted by a signal, in which
- case error ERESTARTSYS will be returned.
- (*) When it is no longer required, the key should be released using:
- void key_put(struct key *key);
- Or:
- void key_ref_put(key_ref_t key_ref);
- These can be called from interrupt context. If CONFIG_KEYS is not set then
- the argument will not be parsed.
- (*) Extra references can be made to a key by calling one of the following
- functions:
- struct key *__key_get(struct key *key);
- struct key *key_get(struct key *key);
- Keys so references will need to be disposed of by calling key_put() when
- they've been finished with. The key pointer passed in will be returned.
- In the case of key_get(), if the pointer is NULL or CONFIG_KEYS is not set
- then the key will not be dereferenced and no increment will take place.
- (*) A key's serial number can be obtained by calling:
- key_serial_t key_serial(struct key *key);
- If key is NULL or if CONFIG_KEYS is not set then 0 will be returned (in the
- latter case without parsing the argument).
- (*) If a keyring was found in the search, this can be further searched by:
- key_ref_t keyring_search(key_ref_t keyring_ref,
- const struct key_type *type,
- const char *description)
- This searches the keyring tree specified for a matching key. Error ENOKEY
- is returned upon failure (use IS_ERR/PTR_ERR to determine). If successful,
- the returned key will need to be released.
- The possession attribute from the keyring reference is used to control
- access through the permissions mask and is propagated to the returned key
- reference pointer if successful.
- (*) A keyring can be created by:
- struct key *keyring_alloc(const char *description, uid_t uid, gid_t gid,
- const struct cred *cred,
- key_perm_t perm,
- int (*restrict_link)(struct key *,
- const struct key_type *,
- unsigned long,
- const union key_payload *),
- unsigned long flags,
- struct key *dest);
- This creates a keyring with the given attributes and returns it. If dest
- is not NULL, the new keyring will be linked into the keyring to which it
- points. No permission checks are made upon the destination keyring.
- Error EDQUOT can be returned if the keyring would overload the quota (pass
- KEY_ALLOC_NOT_IN_QUOTA in flags if the keyring shouldn't be accounted
- towards the user's quota). Error ENOMEM can also be returned.
- If restrict_link not NULL, it should point to a function that will be
- called each time an attempt is made to link a key into the new keyring.
- This function is called to check whether a key may be added into the keying
- or not. Callers of key_create_or_update() within the kernel can pass
- KEY_ALLOC_BYPASS_RESTRICTION to suppress the check. An example of using
- this is to manage rings of cryptographic keys that are set up when the
- kernel boots where userspace is also permitted to add keys - provided they
- can be verified by a key the kernel already has.
- When called, the restriction function will be passed the keyring being
- added to, the key flags value and the type and payload of the key being
- added. Note that when a new key is being created, this is called between
- payload preparsing and actual key creation. The function should return 0
- to allow the link or an error to reject it.
- A convenience function, restrict_link_reject, exists to always return
- -EPERM to in this case.
- (*) To check the validity of a key, this function can be called:
- int validate_key(struct key *key);
- This checks that the key in question hasn't expired or and hasn't been
- revoked. Should the key be invalid, error EKEYEXPIRED or EKEYREVOKED will
- be returned. If the key is NULL or if CONFIG_KEYS is not set then 0 will be
- returned (in the latter case without parsing the argument).
- (*) To register a key type, the following function should be called:
- int register_key_type(struct key_type *type);
- This will return error EEXIST if a type of the same name is already
- present.
- (*) To unregister a key type, call:
- void unregister_key_type(struct key_type *type);
- Under some circumstances, it may be desirable to deal with a bundle of keys.
- The facility provides access to the keyring type for managing such a bundle:
- struct key_type key_type_keyring;
- This can be used with a function such as request_key() to find a specific
- keyring in a process's keyrings. A keyring thus found can then be searched
- with keyring_search(). Note that it is not possible to use request_key() to
- search a specific keyring, so using keyrings in this way is of limited utility.
- ===================================
- NOTES ON ACCESSING PAYLOAD CONTENTS
- ===================================
- The simplest payload is just data stored in key->payload directly. In this
- case, there's no need to indulge in RCU or locking when accessing the payload.
- More complex payload contents must be allocated and pointers to them set in the
- key->payload.data[] array. One of the following ways must be selected to
- access the data:
- (1) Unmodifiable key type.
- If the key type does not have a modify method, then the key's payload can
- be accessed without any form of locking, provided that it's known to be
- instantiated (uninstantiated keys cannot be "found").
- (2) The key's semaphore.
- The semaphore could be used to govern access to the payload and to control
- the payload pointer. It must be write-locked for modifications and would
- have to be read-locked for general access. The disadvantage of doing this
- is that the accessor may be required to sleep.
- (3) RCU.
- RCU must be used when the semaphore isn't already held; if the semaphore
- is held then the contents can't change under you unexpectedly as the
- semaphore must still be used to serialise modifications to the key. The
- key management code takes care of this for the key type.
- However, this means using:
- rcu_read_lock() ... rcu_dereference() ... rcu_read_unlock()
- to read the pointer, and:
- rcu_dereference() ... rcu_assign_pointer() ... call_rcu()
- to set the pointer and dispose of the old contents after a grace period.
- Note that only the key type should ever modify a key's payload.
- Furthermore, an RCU controlled payload must hold a struct rcu_head for the
- use of call_rcu() and, if the payload is of variable size, the length of
- the payload. key->datalen cannot be relied upon to be consistent with the
- payload just dereferenced if the key's semaphore is not held.
- Note that key->payload.data[0] has a shadow that is marked for __rcu
- usage. This is called key->payload.rcu_data0. The following accessors
- wrap the RCU calls to this element:
- rcu_assign_keypointer(struct key *key, void *data);
- void *rcu_dereference_key(struct key *key);
- ===================
- DEFINING A KEY TYPE
- ===================
- A kernel service may want to define its own key type. For instance, an AFS
- filesystem might want to define a Kerberos 5 ticket key type. To do this, it
- author fills in a key_type struct and registers it with the system.
- Source files that implement key types should include the following header file:
- <linux/key-type.h>
- The structure has a number of fields, some of which are mandatory:
- (*) const char *name
- The name of the key type. This is used to translate a key type name
- supplied by userspace into a pointer to the structure.
- (*) size_t def_datalen
- This is optional - it supplies the default payload data length as
- contributed to the quota. If the key type's payload is always or almost
- always the same size, then this is a more efficient way to do things.
- The data length (and quota) on a particular key can always be changed
- during instantiation or update by calling:
- int key_payload_reserve(struct key *key, size_t datalen);
- With the revised data length. Error EDQUOT will be returned if this is not
- viable.
- (*) int (*vet_description)(const char *description);
- This optional method is called to vet a key description. If the key type
- doesn't approve of the key description, it may return an error, otherwise
- it should return 0.
- (*) int (*preparse)(struct key_preparsed_payload *prep);
- This optional method permits the key type to attempt to parse payload
- before a key is created (add key) or the key semaphore is taken (update or
- instantiate key). The structure pointed to by prep looks like:
- struct key_preparsed_payload {
- char *description;
- union key_payload payload;
- const void *data;
- size_t datalen;
- size_t quotalen;
- time_t expiry;
- };
- Before calling the method, the caller will fill in data and datalen with
- the payload blob parameters; quotalen will be filled in with the default
- quota size from the key type; expiry will be set to TIME_T_MAX and the
- rest will be cleared.
- If a description can be proposed from the payload contents, that should be
- attached as a string to the description field. This will be used for the
- key description if the caller of add_key() passes NULL or "".
- The method can attach anything it likes to payload. This is merely passed
- along to the instantiate() or update() operations. If set, the expiry
- time will be applied to the key if it is instantiated from this data.
- The method should return 0 if successful or a negative error code
- otherwise.
- (*) void (*free_preparse)(struct key_preparsed_payload *prep);
- This method is only required if the preparse() method is provided,
- otherwise it is unused. It cleans up anything attached to the description
- and payload fields of the key_preparsed_payload struct as filled in by the
- preparse() method. It will always be called after preparse() returns
- successfully, even if instantiate() or update() succeed.
- (*) int (*instantiate)(struct key *key, struct key_preparsed_payload *prep);
- This method is called to attach a payload to a key during construction.
- The payload attached need not bear any relation to the data passed to this
- function.
- The prep->data and prep->datalen fields will define the original payload
- blob. If preparse() was supplied then other fields may be filled in also.
- If the amount of data attached to the key differs from the size in
- keytype->def_datalen, then key_payload_reserve() should be called.
- This method does not have to lock the key in order to attach a payload.
- The fact that KEY_FLAG_INSTANTIATED is not set in key->flags prevents
- anything else from gaining access to the key.
- It is safe to sleep in this method.
- generic_key_instantiate() is provided to simply copy the data from
- prep->payload.data[] to key->payload.data[], with RCU-safe assignment on
- the first element. It will then clear prep->payload.data[] so that the
- free_preparse method doesn't release the data.
- (*) int (*update)(struct key *key, const void *data, size_t datalen);
- If this type of key can be updated, then this method should be provided.
- It is called to update a key's payload from the blob of data provided.
- The prep->data and prep->datalen fields will define the original payload
- blob. If preparse() was supplied then other fields may be filled in also.
- key_payload_reserve() should be called if the data length might change
- before any changes are actually made. Note that if this succeeds, the type
- is committed to changing the key because it's already been altered, so all
- memory allocation must be done first.
- The key will have its semaphore write-locked before this method is called,
- but this only deters other writers; any changes to the key's payload must
- be made under RCU conditions, and call_rcu() must be used to dispose of
- the old payload.
- key_payload_reserve() should be called before the changes are made, but
- after all allocations and other potentially failing function calls are
- made.
- It is safe to sleep in this method.
- (*) int (*match_preparse)(struct key_match_data *match_data);
- This method is optional. It is called when a key search is about to be
- performed. It is given the following structure:
- struct key_match_data {
- bool (*cmp)(const struct key *key,
- const struct key_match_data *match_data);
- const void *raw_data;
- void *preparsed;
- unsigned lookup_type;
- };
- On entry, raw_data will be pointing to the criteria to be used in matching
- a key by the caller and should not be modified. (*cmp)() will be pointing
- to the default matcher function (which does an exact description match
- against raw_data) and lookup_type will be set to indicate a direct lookup.
- The following lookup_type values are available:
- [*] KEYRING_SEARCH_LOOKUP_DIRECT - A direct lookup hashes the type and
- description to narrow down the search to a small number of keys.
- [*] KEYRING_SEARCH_LOOKUP_ITERATE - An iterative lookup walks all the
- keys in the keyring until one is matched. This must be used for any
- search that's not doing a simple direct match on the key description.
- The method may set cmp to point to a function of its choice that does some
- other form of match, may set lookup_type to KEYRING_SEARCH_LOOKUP_ITERATE
- and may attach something to the preparsed pointer for use by (*cmp)().
- (*cmp)() should return true if a key matches and false otherwise.
- If preparsed is set, it may be necessary to use the match_free() method to
- clean it up.
- The method should return 0 if successful or a negative error code
- otherwise.
- It is permitted to sleep in this method, but (*cmp)() may not sleep as
- locks will be held over it.
- If match_preparse() is not provided, keys of this type will be matched
- exactly by their description.
- (*) void (*match_free)(struct key_match_data *match_data);
- This method is optional. If given, it called to clean up
- match_data->preparsed after a successful call to match_preparse().
- (*) void (*revoke)(struct key *key);
- This method is optional. It is called to discard part of the payload
- data upon a key being revoked. The caller will have the key semaphore
- write-locked.
- It is safe to sleep in this method, though care should be taken to avoid
- a deadlock against the key semaphore.
- (*) void (*destroy)(struct key *key);
- This method is optional. It is called to discard the payload data on a key
- when it is being destroyed.
- This method does not need to lock the key to access the payload; it can
- consider the key as being inaccessible at this time. Note that the key's
- type may have been changed before this function is called.
- It is not safe to sleep in this method; the caller may hold spinlocks.
- (*) void (*describe)(const struct key *key, struct seq_file *p);
- This method is optional. It is called during /proc/keys reading to
- summarise a key's description and payload in text form.
- This method will be called with the RCU read lock held. rcu_dereference()
- should be used to read the payload pointer if the payload is to be
- accessed. key->datalen cannot be trusted to stay consistent with the
- contents of the payload.
- The description will not change, though the key's state may.
- It is not safe to sleep in this method; the RCU read lock is held by the
- caller.
- (*) long (*read)(const struct key *key, char __user *buffer, size_t buflen);
- This method is optional. It is called by KEYCTL_READ to translate the
- key's payload into something a blob of data for userspace to deal with.
- Ideally, the blob should be in the same format as that passed in to the
- instantiate and update methods.
- If successful, the blob size that could be produced should be returned
- rather than the size copied.
- This method will be called with the key's semaphore read-locked. This will
- prevent the key's payload changing. It is not necessary to use RCU locking
- when accessing the key's payload. It is safe to sleep in this method, such
- as might happen when the userspace buffer is accessed.
- (*) int (*request_key)(struct key_construction *cons, const char *op,
- void *aux);
- This method is optional. If provided, request_key() and friends will
- invoke this function rather than upcalling to /sbin/request-key to operate
- upon a key of this type.
- The aux parameter is as passed to request_key_async_with_auxdata() and
- similar or is NULL otherwise. Also passed are the construction record for
- the key to be operated upon and the operation type (currently only
- "create").
- This method is permitted to return before the upcall is complete, but the
- following function must be called under all circumstances to complete the
- instantiation process, whether or not it succeeds, whether or not there's
- an error:
- void complete_request_key(struct key_construction *cons, int error);
- The error parameter should be 0 on success, -ve on error. The
- construction record is destroyed by this action and the authorisation key
- will be revoked. If an error is indicated, the key under construction
- will be negatively instantiated if it wasn't already instantiated.
- If this method returns an error, that error will be returned to the
- caller of request_key*(). complete_request_key() must be called prior to
- returning.
- The key under construction and the authorisation key can be found in the
- key_construction struct pointed to by cons:
- (*) struct key *key;
- The key under construction.
- (*) struct key *authkey;
- The authorisation key.
- ============================
- REQUEST-KEY CALLBACK SERVICE
- ============================
- To create a new key, the kernel will attempt to execute the following command
- line:
- /sbin/request-key create <key> <uid> <gid> \
- <threadring> <processring> <sessionring> <callout_info>
- <key> is the key being constructed, and the three keyrings are the process
- keyrings from the process that caused the search to be issued. These are
- included for two reasons:
- (1) There may be an authentication token in one of the keyrings that is
- required to obtain the key, eg: a Kerberos Ticket-Granting Ticket.
- (2) The new key should probably be cached in one of these rings.
- This program should set it UID and GID to those specified before attempting to
- access any more keys. It may then look around for a user specific process to
- hand the request off to (perhaps a path held in placed in another key by, for
- example, the KDE desktop manager).
- The program (or whatever it calls) should finish construction of the key by
- calling KEYCTL_INSTANTIATE or KEYCTL_INSTANTIATE_IOV, which also permits it to
- cache the key in one of the keyrings (probably the session ring) before
- returning. Alternatively, the key can be marked as negative with KEYCTL_NEGATE
- or KEYCTL_REJECT; this also permits the key to be cached in one of the
- keyrings.
- If it returns with the key remaining in the unconstructed state, the key will
- be marked as being negative, it will be added to the session keyring, and an
- error will be returned to the key requestor.
- Supplementary information may be provided from whoever or whatever invoked this
- service. This will be passed as the <callout_info> parameter. If no such
- information was made available, then "-" will be passed as this parameter
- instead.
- Similarly, the kernel may attempt to update an expired or a soon to expire key
- by executing:
- /sbin/request-key update <key> <uid> <gid> \
- <threadring> <processring> <sessionring>
- In this case, the program isn't required to actually attach the key to a ring;
- the rings are provided for reference.
- ==================
- GARBAGE COLLECTION
- ==================
- Dead keys (for which the type has been removed) will be automatically unlinked
- from those keyrings that point to them and deleted as soon as possible by a
- background garbage collector.
- Similarly, revoked and expired keys will be garbage collected, but only after a
- certain amount of time has passed. This time is set as a number of seconds in:
- /proc/sys/kernel/keys/gc_delay
|