sched-nice-design.txt 5.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109
  1. This document explains the thinking about the revamped and streamlined
  2. nice-levels implementation in the new Linux scheduler.
  3. Nice levels were always pretty weak under Linux and people continuously
  4. pestered us to make nice +19 tasks use up much less CPU time.
  5. Unfortunately that was not that easy to implement under the old
  6. scheduler, (otherwise we'd have done it long ago) because nice level
  7. support was historically coupled to timeslice length, and timeslice
  8. units were driven by the HZ tick, so the smallest timeslice was 1/HZ.
  9. In the O(1) scheduler (in 2003) we changed negative nice levels to be
  10. much stronger than they were before in 2.4 (and people were happy about
  11. that change), and we also intentionally calibrated the linear timeslice
  12. rule so that nice +19 level would be _exactly_ 1 jiffy. To better
  13. understand it, the timeslice graph went like this (cheesy ASCII art
  14. alert!):
  15. A
  16. \ | [timeslice length]
  17. \ |
  18. \ |
  19. \ |
  20. \ |
  21. \|___100msecs
  22. |^ . _
  23. | ^ . _
  24. | ^ . _
  25. -*----------------------------------*-----> [nice level]
  26. -20 | +19
  27. |
  28. |
  29. So that if someone wanted to really renice tasks, +19 would give a much
  30. bigger hit than the normal linear rule would do. (The solution of
  31. changing the ABI to extend priorities was discarded early on.)
  32. This approach worked to some degree for some time, but later on with
  33. HZ=1000 it caused 1 jiffy to be 1 msec, which meant 0.1% CPU usage which
  34. we felt to be a bit excessive. Excessive _not_ because it's too small of
  35. a CPU utilization, but because it causes too frequent (once per
  36. millisec) rescheduling. (and would thus trash the cache, etc. Remember,
  37. this was long ago when hardware was weaker and caches were smaller, and
  38. people were running number crunching apps at nice +19.)
  39. So for HZ=1000 we changed nice +19 to 5msecs, because that felt like the
  40. right minimal granularity - and this translates to 5% CPU utilization.
  41. But the fundamental HZ-sensitive property for nice+19 still remained,
  42. and we never got a single complaint about nice +19 being too _weak_ in
  43. terms of CPU utilization, we only got complaints about it (still) being
  44. too _strong_ :-)
  45. To sum it up: we always wanted to make nice levels more consistent, but
  46. within the constraints of HZ and jiffies and their nasty design level
  47. coupling to timeslices and granularity it was not really viable.
  48. The second (less frequent but still periodically occurring) complaint
  49. about Linux's nice level support was its assymetry around the origo
  50. (which you can see demonstrated in the picture above), or more
  51. accurately: the fact that nice level behavior depended on the _absolute_
  52. nice level as well, while the nice API itself is fundamentally
  53. "relative":
  54. int nice(int inc);
  55. asmlinkage long sys_nice(int increment)
  56. (the first one is the glibc API, the second one is the syscall API.)
  57. Note that the 'inc' is relative to the current nice level. Tools like
  58. bash's "nice" command mirror this relative API.
  59. With the old scheduler, if you for example started a niced task with +1
  60. and another task with +2, the CPU split between the two tasks would
  61. depend on the nice level of the parent shell - if it was at nice -10 the
  62. CPU split was different than if it was at +5 or +10.
  63. A third complaint against Linux's nice level support was that negative
  64. nice levels were not 'punchy enough', so lots of people had to resort to
  65. run audio (and other multimedia) apps under RT priorities such as
  66. SCHED_FIFO. But this caused other problems: SCHED_FIFO is not starvation
  67. proof, and a buggy SCHED_FIFO app can also lock up the system for good.
  68. The new scheduler in v2.6.23 addresses all three types of complaints:
  69. To address the first complaint (of nice levels being not "punchy"
  70. enough), the scheduler was decoupled from 'time slice' and HZ concepts
  71. (and granularity was made a separate concept from nice levels) and thus
  72. it was possible to implement better and more consistent nice +19
  73. support: with the new scheduler nice +19 tasks get a HZ-independent
  74. 1.5%, instead of the variable 3%-5%-9% range they got in the old
  75. scheduler.
  76. To address the second complaint (of nice levels not being consistent),
  77. the new scheduler makes nice(1) have the same CPU utilization effect on
  78. tasks, regardless of their absolute nice levels. So on the new
  79. scheduler, running a nice +10 and a nice 11 task has the same CPU
  80. utilization "split" between them as running a nice -5 and a nice -4
  81. task. (one will get 55% of the CPU, the other 45%.) That is why nice
  82. levels were changed to be "multiplicative" (or exponential) - that way
  83. it does not matter which nice level you start out from, the 'relative
  84. result' will always be the same.
  85. The third complaint (of negative nice levels not being "punchy" enough
  86. and forcing audio apps to run under the more dangerous SCHED_FIFO
  87. scheduling policy) is addressed by the new scheduler almost
  88. automatically: stronger negative nice levels are an automatic
  89. side-effect of the recalibrated dynamic range of nice levels.