123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186 |
- /* xz.h - XZ decompressor */
- /*
- * GRUB -- GRand Unified Bootloader
- * Copyright (C) 2010 Free Software Foundation, Inc.
- *
- * GRUB is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * GRUB is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with GRUB. If not, see <http://www.gnu.org/licenses/>.
- */
- /*
- * This file is based on code from XZ embedded project
- * http://tukaani.org/xz/embedded.html
- */
- #ifndef XZ_H
- #define XZ_H
- #include <config.h>
- #include <stdint.h>
- #include <unistd.h>
- #include <string.h>
- #include <grub/misc.h>
- #include <stdbool.h>
- /**
- * enum xz_ret - Return codes
- * @XZ_OK: Everything is OK so far. More input or more output
- * space is required to continue.
- * @XZ_STREAM_END: Operation finished successfully.
- * @XZ_MEMLIMIT_ERROR: Not enough memory was preallocated at decoder
- * initialization time.
- * @XZ_FORMAT_ERROR: File format was not recognized (wrong magic bytes).
- * @XZ_OPTIONS_ERROR: This implementation doesn't support the requested
- * compression options. In the decoder this means that
- * the header CRC32 matches, but the header itself
- * specifies something that we don't support.
- * @XZ_DATA_ERROR: Compressed data is corrupt.
- * @XZ_BUF_ERROR: Cannot make any progress. Details are slightly
- * different between multi-call and single-call mode;
- * more information below.
- *
- * In multi-call mode, XZ_BUF_ERROR is returned when two consecutive calls
- * to XZ code cannot consume any input and cannot produce any new output.
- * This happens when there is no new input available, or the output buffer
- * is full while at least one output byte is still pending. Assuming your
- * code is not buggy, you can get this error only when decoding a compressed
- * stream that is truncated or otherwise corrupt.
- *
- * In single-call mode, XZ_BUF_ERROR is returned only when the output buffer
- * is too small, or the compressed input is corrupt in a way that makes the
- * decoder produce more output than the caller expected. When it is
- * (relatively) clear that the compressed input is truncated, XZ_DATA_ERROR
- * is used instead of XZ_BUF_ERROR.
- */
- enum xz_ret {
- XZ_OK,
- XZ_STREAM_END,
- XZ_MEMLIMIT_ERROR,
- XZ_FORMAT_ERROR,
- XZ_OPTIONS_ERROR,
- XZ_DATA_ERROR,
- XZ_BUF_ERROR
- };
- /**
- * struct xz_buf - Passing input and output buffers to XZ code
- * @in: Beginning of the input buffer. This may be NULL if and only
- * if in_pos is equal to in_size.
- * @in_pos: Current position in the input buffer. This must not exceed
- * in_size.
- * @in_size: Size of the input buffer
- * @out: Beginning of the output buffer. This may be NULL if and only
- * if out_pos is equal to out_size.
- * @out_pos: Current position in the output buffer. This must not exceed
- * out_size.
- * @out_size: Size of the output buffer
- *
- * Only the contents of the output buffer from out[out_pos] onward, and
- * the variables in_pos and out_pos are modified by the XZ code.
- */
- struct xz_buf {
- const uint8_t *in;
- size_t in_pos;
- size_t in_size;
- uint8_t *out;
- size_t out_pos;
- size_t out_size;
- };
- /**
- * struct xz_dec - Opaque type to hold the XZ decoder state
- */
- struct xz_dec;
- /**
- * xz_dec_init() - Allocate and initialize a XZ decoder state
- * @dict_max: Maximum size of the LZMA2 dictionary (history buffer) for
- * multi-call decoding, or special value of zero to indicate
- * single-call decoding mode.
- *
- * If dict_max > 0, the decoder is initialized to work in multi-call mode.
- * dict_max number of bytes of memory is preallocated for the LZMA2
- * dictionary. This way there is no risk that xz_dec_run() could run out
- * of memory, since xz_dec_run() will never allocate any memory. Instead,
- * if the preallocated dictionary is too small for decoding the given input
- * stream, xz_dec_run() will return XZ_MEMLIMIT_ERROR. Thus, it is important
- * to know what kind of data will be decoded to avoid allocating excessive
- * amount of memory for the dictionary.
- *
- * LZMA2 dictionary is always 2^n bytes or 2^n + 2^(n-1) bytes (the latter
- * sizes are less common in practice). In the kernel, dictionary sizes of
- * 64 KiB, 128 KiB, 256 KiB, 512 KiB, and 1 MiB are probably the only
- * reasonable values.
- *
- * If dict_max == 0, the decoder is initialized to work in single-call mode.
- * In single-call mode, xz_dec_run() decodes the whole stream at once. The
- * caller must provide enough output space or the decoding will fail. The
- * output space is used as the dictionary buffer, which is why there is
- * no need to allocate the dictionary as part of the decoder's internal
- * state.
- *
- * Because the output buffer is used as the workspace, streams encoded using
- * a big dictionary are not a problem in single-call. It is enough that the
- * output buffer is is big enough to hold the actual uncompressed data; it
- * can be smaller than the dictionary size stored in the stream headers.
- *
- * On success, xz_dec_init() returns a pointer to struct xz_dec, which is
- * ready to be used with xz_dec_run(). On error, xz_dec_init() returns NULL.
- */
- struct xz_dec * xz_dec_init(uint32_t dict_max);
- /**
- * xz_dec_run() - Run the XZ decoder
- * @s: Decoder state allocated using xz_dec_init()
- * @b: Input and output buffers
- *
- * In multi-call mode, this function may return any of the values listed in
- * enum xz_ret.
- *
- * In single-call mode, this function never returns XZ_OK. If an error occurs
- * in single-call mode (return value is not XZ_STREAM_END), b->in_pos and
- * b->out_pos are not modified, and the contents of the output buffer from
- * b->out[b->out_pos] onward are undefined.
- *
- * NOTE: In single-call mode, the contents of the output buffer are undefined
- * also after XZ_BUF_ERROR. This is because with some filter chains, there
- * may be a second pass over the output buffer, and this pass cannot be
- * properly done if the output buffer is truncated. Thus, you cannot give
- * the single-call decoder a too small buffer and then expect to get that
- * amount valid data from the beginning of the stream. You must use the
- * multi-call decoder if you don't want to uncompress the whole stream.
- */
- enum xz_ret xz_dec_run(struct xz_dec *s, struct xz_buf *b);
- /**
- * xz_dec_reset() - Reset an already allocated decoder state
- * @s: Decoder state allocated using xz_dec_init()
- *
- * This function can be used to reset the multi-call decoder state without
- * freeing and reallocating memory with xz_dec_end() and xz_dec_init().
- *
- * In single-call mode, xz_dec_reset() is always called in the beginning of
- * xz_dec_run(). Thus, explicit call to xz_dec_reset() is useful only in
- * multi-call mode.
- */
- void xz_dec_reset(struct xz_dec *s);
- /**
- * xz_dec_end() - Free the memory allocated for the decoder state
- * @s: Decoder state allocated using xz_dec_init(). If s is NULL,
- * this function does nothing.
- */
- void xz_dec_end(struct xz_dec *s);
- #endif
|