123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846 |
- /* Elgamal.c - Elgamal Public Key encryption
- * Copyright (C) 1998, 2000, 2001, 2002, 2003,
- * 2008 Free Software Foundation, Inc.
- *
- * This file is part of Libgcrypt.
- *
- * Libgcrypt is free software; you can redistribute it and/or modify
- * it under the terms of the GNU Lesser General Public License as
- * published by the Free Software Foundation; either version 2.1 of
- * the License, or (at your option) any later version.
- *
- * Libgcrypt is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with this program; if not, see <http://www.gnu.org/licenses/>.
- *
- * For a description of the algorithm, see:
- * Bruce Schneier: Applied Cryptography. John Wiley & Sons, 1996.
- * ISBN 0-471-11709-9. Pages 476 ff.
- */
- #include <config.h>
- #include <stdio.h>
- #include <stdlib.h>
- #include <string.h>
- #include "g10lib.h"
- #include "mpi.h"
- #include "cipher.h"
- typedef struct
- {
- gcry_mpi_t p; /* prime */
- gcry_mpi_t g; /* group generator */
- gcry_mpi_t y; /* g^x mod p */
- } ELG_public_key;
- typedef struct
- {
- gcry_mpi_t p; /* prime */
- gcry_mpi_t g; /* group generator */
- gcry_mpi_t y; /* g^x mod p */
- gcry_mpi_t x; /* secret exponent */
- } ELG_secret_key;
- static int test_keys (ELG_secret_key *sk, unsigned int nbits, int nodie);
- static gcry_mpi_t gen_k (gcry_mpi_t p, int small_k);
- static void generate (ELG_secret_key *sk, unsigned nbits, gcry_mpi_t **factors);
- static int check_secret_key (ELG_secret_key *sk);
- static void do_encrypt (gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input,
- ELG_public_key *pkey);
- static void decrypt (gcry_mpi_t output, gcry_mpi_t a, gcry_mpi_t b,
- ELG_secret_key *skey);
- static void sign (gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input,
- ELG_secret_key *skey);
- static int verify (gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input,
- ELG_public_key *pkey);
- static void (*progress_cb) (void *, const char *, int, int, int);
- static void *progress_cb_data;
- void
- _gcry_register_pk_elg_progress (void (*cb) (void *, const char *,
- int, int, int),
- void *cb_data)
- {
- progress_cb = cb;
- progress_cb_data = cb_data;
- }
- static void
- progress (int c)
- {
- if (progress_cb)
- progress_cb (progress_cb_data, "pk_elg", c, 0, 0);
- }
- /****************
- * Michael Wiener's table on subgroup sizes to match field sizes.
- * (floating around somewhere, probably based on the paper from
- * Eurocrypt 96, page 332)
- */
- static unsigned int
- wiener_map( unsigned int n )
- {
- static struct { unsigned int p_n, q_n; } t[] =
- { /* p q attack cost */
- { 512, 119 }, /* 9 x 10^17 */
- { 768, 145 }, /* 6 x 10^21 */
- { 1024, 165 }, /* 7 x 10^24 */
- { 1280, 183 }, /* 3 x 10^27 */
- { 1536, 198 }, /* 7 x 10^29 */
- { 1792, 212 }, /* 9 x 10^31 */
- { 2048, 225 }, /* 8 x 10^33 */
- { 2304, 237 }, /* 5 x 10^35 */
- { 2560, 249 }, /* 3 x 10^37 */
- { 2816, 259 }, /* 1 x 10^39 */
- { 3072, 269 }, /* 3 x 10^40 */
- { 3328, 279 }, /* 8 x 10^41 */
- { 3584, 288 }, /* 2 x 10^43 */
- { 3840, 296 }, /* 4 x 10^44 */
- { 4096, 305 }, /* 7 x 10^45 */
- { 4352, 313 }, /* 1 x 10^47 */
- { 4608, 320 }, /* 2 x 10^48 */
- { 4864, 328 }, /* 2 x 10^49 */
- { 5120, 335 }, /* 3 x 10^50 */
- { 0, 0 }
- };
- int i;
- for(i=0; t[i].p_n; i++ )
- {
- if( n <= t[i].p_n )
- return t[i].q_n;
- }
- /* Not in table - use an arbitrary high number. */
- return n / 8 + 200;
- }
- static int
- test_keys ( ELG_secret_key *sk, unsigned int nbits, int nodie )
- {
- ELG_public_key pk;
- gcry_mpi_t test = gcry_mpi_new ( 0 );
- gcry_mpi_t out1_a = gcry_mpi_new ( nbits );
- gcry_mpi_t out1_b = gcry_mpi_new ( nbits );
- gcry_mpi_t out2 = gcry_mpi_new ( nbits );
- int failed = 0;
- pk.p = sk->p;
- pk.g = sk->g;
- pk.y = sk->y;
- gcry_mpi_randomize ( test, nbits, GCRY_WEAK_RANDOM );
- do_encrypt ( out1_a, out1_b, test, &pk );
- decrypt ( out2, out1_a, out1_b, sk );
- if ( mpi_cmp( test, out2 ) )
- failed |= 1;
- sign ( out1_a, out1_b, test, sk );
- if ( !verify( out1_a, out1_b, test, &pk ) )
- failed |= 2;
- gcry_mpi_release ( test );
- gcry_mpi_release ( out1_a );
- gcry_mpi_release ( out1_b );
- gcry_mpi_release ( out2 );
- if (failed && !nodie)
- log_fatal ("Elgamal test key for %s %s failed\n",
- (failed & 1)? "encrypt+decrypt":"",
- (failed & 2)? "sign+verify":"");
- if (failed && DBG_CIPHER)
- log_debug ("Elgamal test key for %s %s failed\n",
- (failed & 1)? "encrypt+decrypt":"",
- (failed & 2)? "sign+verify":"");
- return failed;
- }
- /****************
- * Generate a random secret exponent k from prime p, so that k is
- * relatively prime to p-1. With SMALL_K set, k will be selected for
- * better encryption performance - this must never be used signing!
- */
- static gcry_mpi_t
- gen_k( gcry_mpi_t p, int small_k )
- {
- gcry_mpi_t k = mpi_alloc_secure( 0 );
- gcry_mpi_t temp = mpi_alloc( mpi_get_nlimbs(p) );
- gcry_mpi_t p_1 = mpi_copy(p);
- unsigned int orig_nbits = mpi_get_nbits(p);
- unsigned int nbits, nbytes;
- char *rndbuf = NULL;
- if (small_k)
- {
- /* Using a k much lesser than p is sufficient for encryption and
- * it greatly improves the encryption performance. We use
- * Wiener's table and add a large safety margin. */
- nbits = wiener_map( orig_nbits ) * 3 / 2;
- if( nbits >= orig_nbits )
- BUG();
- }
- else
- nbits = orig_nbits;
- nbytes = (nbits+7)/8;
- if( DBG_CIPHER )
- log_debug("choosing a random k ");
- mpi_sub_ui( p_1, p, 1);
- for(;;)
- {
- if( !rndbuf || nbits < 32 )
- {
- gcry_free(rndbuf);
- rndbuf = gcry_random_bytes_secure( nbytes, GCRY_STRONG_RANDOM );
- }
- else
- {
- /* Change only some of the higher bits. We could improve
- this by directly requesting more memory at the first call
- to get_random_bytes() and use this the here maybe it is
- easier to do this directly in random.c Anyway, it is
- highly inlikely that we will ever reach this code. */
- char *pp = gcry_random_bytes_secure( 4, GCRY_STRONG_RANDOM );
- memcpy( rndbuf, pp, 4 );
- gcry_free(pp);
- }
- _gcry_mpi_set_buffer( k, rndbuf, nbytes, 0 );
- for(;;)
- {
- if( !(mpi_cmp( k, p_1 ) < 0) ) /* check: k < (p-1) */
- {
- if( DBG_CIPHER )
- progress('+');
- break; /* no */
- }
- if( !(mpi_cmp_ui( k, 0 ) > 0) ) /* check: k > 0 */
- {
- if( DBG_CIPHER )
- progress('-');
- break; /* no */
- }
- if (gcry_mpi_gcd( temp, k, p_1 ))
- goto found; /* okay, k is relative prime to (p-1) */
- mpi_add_ui( k, k, 1 );
- if( DBG_CIPHER )
- progress('.');
- }
- }
- found:
- gcry_free(rndbuf);
- if( DBG_CIPHER )
- progress('\n');
- mpi_free(p_1);
- mpi_free(temp);
- return k;
- }
- /****************
- * Generate a key pair with a key of size NBITS
- * Returns: 2 structures filled with all needed values
- * and an array with n-1 factors of (p-1)
- */
- static void
- generate ( ELG_secret_key *sk, unsigned int nbits, gcry_mpi_t **ret_factors )
- {
- gcry_mpi_t p; /* the prime */
- gcry_mpi_t p_min1;
- gcry_mpi_t g;
- gcry_mpi_t x; /* the secret exponent */
- gcry_mpi_t y;
- unsigned int qbits;
- unsigned int xbits;
- byte *rndbuf;
- p_min1 = gcry_mpi_new ( nbits );
- qbits = wiener_map( nbits );
- if( qbits & 1 ) /* better have a even one */
- qbits++;
- g = mpi_alloc(1);
- p = _gcry_generate_elg_prime( 0, nbits, qbits, g, ret_factors );
- mpi_sub_ui(p_min1, p, 1);
- /* Select a random number which has these properties:
- * 0 < x < p-1
- * This must be a very good random number because this is the
- * secret part. The prime is public and may be shared anyway,
- * so a random generator level of 1 is used for the prime.
- *
- * I don't see a reason to have a x of about the same size
- * as the p. It should be sufficient to have one about the size
- * of q or the later used k plus a large safety margin. Decryption
- * will be much faster with such an x.
- */
- xbits = qbits * 3 / 2;
- if( xbits >= nbits )
- BUG();
- x = gcry_mpi_snew ( xbits );
- if( DBG_CIPHER )
- log_debug("choosing a random x of size %u", xbits );
- rndbuf = NULL;
- do
- {
- if( DBG_CIPHER )
- progress('.');
- if( rndbuf )
- { /* Change only some of the higher bits */
- if( xbits < 16 ) /* should never happen ... */
- {
- gcry_free(rndbuf);
- rndbuf = gcry_random_bytes_secure( (xbits+7)/8,
- GCRY_VERY_STRONG_RANDOM );
- }
- else
- {
- char *r = gcry_random_bytes_secure( 2,
- GCRY_VERY_STRONG_RANDOM );
- memcpy(rndbuf, r, 2 );
- gcry_free(r);
- }
- }
- else
- {
- rndbuf = gcry_random_bytes_secure( (xbits+7)/8,
- GCRY_VERY_STRONG_RANDOM );
- }
- _gcry_mpi_set_buffer( x, rndbuf, (xbits+7)/8, 0 );
- mpi_clear_highbit( x, xbits+1 );
- }
- while( !( mpi_cmp_ui( x, 0 )>0 && mpi_cmp( x, p_min1 )<0 ) );
- gcry_free(rndbuf);
- y = gcry_mpi_new (nbits);
- gcry_mpi_powm( y, g, x, p );
- if( DBG_CIPHER )
- {
- progress('\n');
- log_mpidump("elg p= ", p );
- log_mpidump("elg g= ", g );
- log_mpidump("elg y= ", y );
- log_mpidump("elg x= ", x );
- }
- /* Copy the stuff to the key structures */
- sk->p = p;
- sk->g = g;
- sk->y = y;
- sk->x = x;
- gcry_mpi_release ( p_min1 );
- /* Now we can test our keys (this should never fail!) */
- test_keys ( sk, nbits - 64, 0 );
- }
- /* Generate a key pair with a key of size NBITS not using a random
- value for the secret key but the one given as X. This is useful to
- implement a passphrase based decryption for a public key based
- encryption. It has appliactions in backup systems.
- Returns: A structure filled with all needed values and an array
- with n-1 factors of (p-1). */
- static gcry_err_code_t
- generate_using_x (ELG_secret_key *sk, unsigned int nbits, gcry_mpi_t x,
- gcry_mpi_t **ret_factors )
- {
- gcry_mpi_t p; /* The prime. */
- gcry_mpi_t p_min1; /* The prime minus 1. */
- gcry_mpi_t g; /* The generator. */
- gcry_mpi_t y; /* g^x mod p. */
- unsigned int qbits;
- unsigned int xbits;
- sk->p = NULL;
- sk->g = NULL;
- sk->y = NULL;
- sk->x = NULL;
- /* Do a quick check to see whether X is suitable. */
- xbits = mpi_get_nbits (x);
- if ( xbits < 64 || xbits >= nbits )
- return GPG_ERR_INV_VALUE;
- p_min1 = gcry_mpi_new ( nbits );
- qbits = wiener_map ( nbits );
- if ( (qbits & 1) ) /* Better have an even one. */
- qbits++;
- g = mpi_alloc (1);
- p = _gcry_generate_elg_prime ( 0, nbits, qbits, g, ret_factors );
- mpi_sub_ui (p_min1, p, 1);
- if (DBG_CIPHER)
- log_debug ("using a supplied x of size %u", xbits );
- if ( !(mpi_cmp_ui ( x, 0 ) > 0 && mpi_cmp ( x, p_min1 ) <0 ) )
- {
- gcry_mpi_release ( p_min1 );
- gcry_mpi_release ( p );
- gcry_mpi_release ( g );
- return GPG_ERR_INV_VALUE;
- }
- y = gcry_mpi_new (nbits);
- gcry_mpi_powm ( y, g, x, p );
- if ( DBG_CIPHER )
- {
- progress ('\n');
- log_mpidump ("elg p= ", p );
- log_mpidump ("elg g= ", g );
- log_mpidump ("elg y= ", y );
- log_mpidump ("elg x= ", x );
- }
- /* Copy the stuff to the key structures */
- sk->p = p;
- sk->g = g;
- sk->y = y;
- sk->x = gcry_mpi_copy (x);
- gcry_mpi_release ( p_min1 );
- /* Now we can test our keys. */
- if ( test_keys ( sk, nbits - 64, 1 ) )
- {
- gcry_mpi_release ( sk->p ); sk->p = NULL;
- gcry_mpi_release ( sk->g ); sk->g = NULL;
- gcry_mpi_release ( sk->y ); sk->y = NULL;
- gcry_mpi_release ( sk->x ); sk->x = NULL;
- return GPG_ERR_BAD_SECKEY;
- }
- return 0;
- }
- /****************
- * Test whether the secret key is valid.
- * Returns: if this is a valid key.
- */
- static int
- check_secret_key( ELG_secret_key *sk )
- {
- int rc;
- gcry_mpi_t y = mpi_alloc( mpi_get_nlimbs(sk->y) );
- gcry_mpi_powm( y, sk->g, sk->x, sk->p );
- rc = !mpi_cmp( y, sk->y );
- mpi_free( y );
- return rc;
- }
- static void
- do_encrypt(gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input, ELG_public_key *pkey )
- {
- gcry_mpi_t k;
- /* Note: maybe we should change the interface, so that it
- * is possible to check that input is < p and return an
- * error code.
- */
- k = gen_k( pkey->p, 1 );
- gcry_mpi_powm( a, pkey->g, k, pkey->p );
- /* b = (y^k * input) mod p
- * = ((y^k mod p) * (input mod p)) mod p
- * and because input is < p
- * = ((y^k mod p) * input) mod p
- */
- gcry_mpi_powm( b, pkey->y, k, pkey->p );
- gcry_mpi_mulm( b, b, input, pkey->p );
- #if 0
- if( DBG_CIPHER )
- {
- log_mpidump("elg encrypted y= ", pkey->y);
- log_mpidump("elg encrypted p= ", pkey->p);
- log_mpidump("elg encrypted k= ", k);
- log_mpidump("elg encrypted M= ", input);
- log_mpidump("elg encrypted a= ", a);
- log_mpidump("elg encrypted b= ", b);
- }
- #endif
- mpi_free(k);
- }
- static void
- decrypt(gcry_mpi_t output, gcry_mpi_t a, gcry_mpi_t b, ELG_secret_key *skey )
- {
- gcry_mpi_t t1 = mpi_alloc_secure( mpi_get_nlimbs( skey->p ) );
- /* output = b/(a^x) mod p */
- gcry_mpi_powm( t1, a, skey->x, skey->p );
- mpi_invm( t1, t1, skey->p );
- mpi_mulm( output, b, t1, skey->p );
- #if 0
- if( DBG_CIPHER )
- {
- log_mpidump("elg decrypted x= ", skey->x);
- log_mpidump("elg decrypted p= ", skey->p);
- log_mpidump("elg decrypted a= ", a);
- log_mpidump("elg decrypted b= ", b);
- log_mpidump("elg decrypted M= ", output);
- }
- #endif
- mpi_free(t1);
- }
- /****************
- * Make an Elgamal signature out of INPUT
- */
- static void
- sign(gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input, ELG_secret_key *skey )
- {
- gcry_mpi_t k;
- gcry_mpi_t t = mpi_alloc( mpi_get_nlimbs(a) );
- gcry_mpi_t inv = mpi_alloc( mpi_get_nlimbs(a) );
- gcry_mpi_t p_1 = mpi_copy(skey->p);
- /*
- * b = (t * inv) mod (p-1)
- * b = (t * inv(k,(p-1),(p-1)) mod (p-1)
- * b = (((M-x*a) mod (p-1)) * inv(k,(p-1),(p-1))) mod (p-1)
- *
- */
- mpi_sub_ui(p_1, p_1, 1);
- k = gen_k( skey->p, 0 /* no small K ! */ );
- gcry_mpi_powm( a, skey->g, k, skey->p );
- mpi_mul(t, skey->x, a );
- mpi_subm(t, input, t, p_1 );
- mpi_invm(inv, k, p_1 );
- mpi_mulm(b, t, inv, p_1 );
- #if 0
- if( DBG_CIPHER )
- {
- log_mpidump("elg sign p= ", skey->p);
- log_mpidump("elg sign g= ", skey->g);
- log_mpidump("elg sign y= ", skey->y);
- log_mpidump("elg sign x= ", skey->x);
- log_mpidump("elg sign k= ", k);
- log_mpidump("elg sign M= ", input);
- log_mpidump("elg sign a= ", a);
- log_mpidump("elg sign b= ", b);
- }
- #endif
- mpi_free(k);
- mpi_free(t);
- mpi_free(inv);
- mpi_free(p_1);
- }
- /****************
- * Returns true if the signature composed of A and B is valid.
- */
- static int
- verify(gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input, ELG_public_key *pkey )
- {
- int rc;
- gcry_mpi_t t1;
- gcry_mpi_t t2;
- gcry_mpi_t base[4];
- gcry_mpi_t ex[4];
- if( !(mpi_cmp_ui( a, 0 ) > 0 && mpi_cmp( a, pkey->p ) < 0) )
- return 0; /* assertion 0 < a < p failed */
- t1 = mpi_alloc( mpi_get_nlimbs(a) );
- t2 = mpi_alloc( mpi_get_nlimbs(a) );
- #if 0
- /* t1 = (y^a mod p) * (a^b mod p) mod p */
- gcry_mpi_powm( t1, pkey->y, a, pkey->p );
- gcry_mpi_powm( t2, a, b, pkey->p );
- mpi_mulm( t1, t1, t2, pkey->p );
- /* t2 = g ^ input mod p */
- gcry_mpi_powm( t2, pkey->g, input, pkey->p );
- rc = !mpi_cmp( t1, t2 );
- #elif 0
- /* t1 = (y^a mod p) * (a^b mod p) mod p */
- base[0] = pkey->y; ex[0] = a;
- base[1] = a; ex[1] = b;
- base[2] = NULL; ex[2] = NULL;
- mpi_mulpowm( t1, base, ex, pkey->p );
- /* t2 = g ^ input mod p */
- gcry_mpi_powm( t2, pkey->g, input, pkey->p );
- rc = !mpi_cmp( t1, t2 );
- #else
- /* t1 = g ^ - input * y ^ a * a ^ b mod p */
- mpi_invm(t2, pkey->g, pkey->p );
- base[0] = t2 ; ex[0] = input;
- base[1] = pkey->y; ex[1] = a;
- base[2] = a; ex[2] = b;
- base[3] = NULL; ex[3] = NULL;
- mpi_mulpowm( t1, base, ex, pkey->p );
- rc = !mpi_cmp_ui( t1, 1 );
- #endif
- mpi_free(t1);
- mpi_free(t2);
- return rc;
- }
- /*********************************************
- ************** interface ******************
- *********************************************/
- static gpg_err_code_t
- elg_generate_ext (int algo, unsigned int nbits, unsigned long evalue,
- const gcry_sexp_t genparms,
- gcry_mpi_t *skey, gcry_mpi_t **retfactors,
- gcry_sexp_t *r_extrainfo)
- {
- gpg_err_code_t ec;
- ELG_secret_key sk;
- gcry_mpi_t xvalue = NULL;
- gcry_sexp_t l1;
- (void)algo;
- (void)evalue;
- (void)r_extrainfo;
- if (genparms)
- {
- /* Parse the optional xvalue element. */
- l1 = gcry_sexp_find_token (genparms, "xvalue", 0);
- if (l1)
- {
- xvalue = gcry_sexp_nth_mpi (l1, 1, 0);
- gcry_sexp_release (l1);
- if (!xvalue)
- return GPG_ERR_BAD_MPI;
- }
- }
- if (xvalue)
- ec = generate_using_x (&sk, nbits, xvalue, retfactors);
- else
- {
- generate (&sk, nbits, retfactors);
- ec = 0;
- }
- skey[0] = sk.p;
- skey[1] = sk.g;
- skey[2] = sk.y;
- skey[3] = sk.x;
- return ec;
- }
- static gcry_err_code_t
- elg_generate (int algo, unsigned int nbits, unsigned long evalue,
- gcry_mpi_t *skey, gcry_mpi_t **retfactors)
- {
- ELG_secret_key sk;
- (void)algo;
- (void)evalue;
- generate (&sk, nbits, retfactors);
- skey[0] = sk.p;
- skey[1] = sk.g;
- skey[2] = sk.y;
- skey[3] = sk.x;
- return GPG_ERR_NO_ERROR;
- }
- static gcry_err_code_t
- elg_check_secret_key (int algo, gcry_mpi_t *skey)
- {
- gcry_err_code_t err = GPG_ERR_NO_ERROR;
- ELG_secret_key sk;
- (void)algo;
- if ((! skey[0]) || (! skey[1]) || (! skey[2]) || (! skey[3]))
- err = GPG_ERR_BAD_MPI;
- else
- {
- sk.p = skey[0];
- sk.g = skey[1];
- sk.y = skey[2];
- sk.x = skey[3];
- if (! check_secret_key (&sk))
- err = GPG_ERR_BAD_SECKEY;
- }
- return err;
- }
- static gcry_err_code_t
- elg_encrypt (int algo, gcry_mpi_t *resarr,
- gcry_mpi_t data, gcry_mpi_t *pkey, int flags)
- {
- gcry_err_code_t err = GPG_ERR_NO_ERROR;
- ELG_public_key pk;
- (void)algo;
- (void)flags;
- if ((! data) || (! pkey[0]) || (! pkey[1]) || (! pkey[2]))
- err = GPG_ERR_BAD_MPI;
- else
- {
- pk.p = pkey[0];
- pk.g = pkey[1];
- pk.y = pkey[2];
- resarr[0] = mpi_alloc (mpi_get_nlimbs (pk.p));
- resarr[1] = mpi_alloc (mpi_get_nlimbs (pk.p));
- do_encrypt (resarr[0], resarr[1], data, &pk);
- }
- return err;
- }
- static gcry_err_code_t
- elg_decrypt (int algo, gcry_mpi_t *result,
- gcry_mpi_t *data, gcry_mpi_t *skey, int flags)
- {
- gcry_err_code_t err = GPG_ERR_NO_ERROR;
- ELG_secret_key sk;
- (void)algo;
- (void)flags;
- if ((! data[0]) || (! data[1])
- || (! skey[0]) || (! skey[1]) || (! skey[2]) || (! skey[3]))
- err = GPG_ERR_BAD_MPI;
- else
- {
- sk.p = skey[0];
- sk.g = skey[1];
- sk.y = skey[2];
- sk.x = skey[3];
- *result = mpi_alloc_secure (mpi_get_nlimbs (sk.p));
- decrypt (*result, data[0], data[1], &sk);
- }
- return err;
- }
- static gcry_err_code_t
- elg_sign (int algo, gcry_mpi_t *resarr, gcry_mpi_t data, gcry_mpi_t *skey)
- {
- gcry_err_code_t err = GPG_ERR_NO_ERROR;
- ELG_secret_key sk;
- (void)algo;
- if ((! data)
- || (! skey[0]) || (! skey[1]) || (! skey[2]) || (! skey[3]))
- err = GPG_ERR_BAD_MPI;
- else
- {
- sk.p = skey[0];
- sk.g = skey[1];
- sk.y = skey[2];
- sk.x = skey[3];
- resarr[0] = mpi_alloc (mpi_get_nlimbs (sk.p));
- resarr[1] = mpi_alloc (mpi_get_nlimbs (sk.p));
- sign (resarr[0], resarr[1], data, &sk);
- }
- return err;
- }
- static gcry_err_code_t
- elg_verify (int algo, gcry_mpi_t hash, gcry_mpi_t *data, gcry_mpi_t *pkey,
- int (*cmp) (void *, gcry_mpi_t), void *opaquev)
- {
- gcry_err_code_t err = GPG_ERR_NO_ERROR;
- ELG_public_key pk;
- (void)algo;
- (void)cmp;
- (void)opaquev;
- if ((! data[0]) || (! data[1]) || (! hash)
- || (! pkey[0]) || (! pkey[1]) || (! pkey[2]))
- err = GPG_ERR_BAD_MPI;
- else
- {
- pk.p = pkey[0];
- pk.g = pkey[1];
- pk.y = pkey[2];
- if (! verify (data[0], data[1], hash, &pk))
- err = GPG_ERR_BAD_SIGNATURE;
- }
- return err;
- }
- static unsigned int
- elg_get_nbits (int algo, gcry_mpi_t *pkey)
- {
- (void)algo;
- return mpi_get_nbits (pkey[0]);
- }
- static const char *elg_names[] =
- {
- "elg",
- "openpgp-elg",
- "openpgp-elg-sig",
- NULL,
- };
- gcry_pk_spec_t _gcry_pubkey_spec_elg =
- {
- "ELG", elg_names,
- "pgy", "pgyx", "ab", "rs", "pgy",
- GCRY_PK_USAGE_SIGN | GCRY_PK_USAGE_ENCR,
- elg_generate,
- elg_check_secret_key,
- elg_encrypt,
- elg_decrypt,
- elg_sign,
- elg_verify,
- elg_get_nbits
- };
- pk_extra_spec_t _gcry_pubkey_extraspec_elg =
- {
- NULL,
- elg_generate_ext,
- NULL
- };
|