123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317 |
- /*
- * Copyright (c) 2014, Yawning Angel <yawning at schwanenlied dot me>
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are met:
- *
- * * Redistributions of source code must retain the above copyright notice,
- * this list of conditions and the following disclaimer.
- *
- * * Redistributions in binary form must reproduce the above copyright notice,
- * this list of conditions and the following disclaimer in the documentation
- * and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
- * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- * POSSIBILITY OF SUCH DAMAGE.
- */
- package ntor
- import (
- "bytes"
- "testing"
- "filippo.io/edwards25519"
- "filippo.io/edwards25519/field"
- "gitlab.com/yawning/edwards25519-extra/elligator2"
- )
- // TestNewKeypair tests Curve25519/Elligator keypair generation.
- func TestNewKeypair(t *testing.T) {
- // Test standard Curve25519 first.
- keypair, err := NewKeypair(false)
- if err != nil {
- t.Fatal("NewKeypair(false) failed:", err)
- }
- if keypair == nil {
- t.Fatal("NewKeypair(false) returned nil")
- }
- if keypair.HasElligator() {
- t.Fatal("NewKeypair(false) has a Elligator representative")
- }
- // Test Elligator generation.
- keypair, err = NewKeypair(true)
- if err != nil {
- t.Fatal("NewKeypair(true) failed:", err)
- }
- if keypair == nil {
- t.Fatal("NewKeypair(true) returned nil")
- }
- if !keypair.HasElligator() {
- t.Fatal("NewKeypair(true) mising an Elligator representative")
- }
- }
- // Test Client/Server handshake.
- func TestHandshake(t *testing.T) {
- clientKeypair, err := NewKeypair(true)
- if err != nil {
- t.Fatal("Failed to generate client keypair:", err)
- }
- if clientKeypair == nil {
- t.Fatal("Client keypair is nil")
- }
- serverKeypair, err := NewKeypair(true)
- if err != nil {
- t.Fatal("Failed to generate server keypair:", err)
- }
- if serverKeypair == nil {
- t.Fatal("Server keypair is nil")
- }
- idKeypair, err := NewKeypair(false)
- if err != nil {
- t.Fatal("Failed to generate identity keypair:", err)
- }
- if idKeypair == nil {
- t.Fatal("Identity keypair is nil")
- }
- nodeID, err := NewNodeID([]byte("\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10\x11\x12\x13"))
- if err != nil {
- t.Fatal("Failed to load NodeId:", err)
- }
- // ServerHandshake
- clientPublic := clientKeypair.Representative().ToPublic()
- ok, serverSeed, serverAuth := ServerHandshake(clientPublic,
- serverKeypair, idKeypair, nodeID)
- if !ok {
- t.Fatal("ServerHandshake failed")
- }
- if serverSeed == nil {
- t.Fatal("ServerHandshake returned nil KEY_SEED")
- }
- if serverAuth == nil {
- t.Fatal("ServerHandshake returned nil AUTH")
- }
- // ClientHandshake
- ok, clientSeed, clientAuth := ClientHandshake(clientKeypair,
- serverKeypair.Public(), idKeypair.Public(), nodeID)
- if !ok {
- t.Fatal("ClientHandshake failed")
- }
- if clientSeed == nil {
- t.Fatal("ClientHandshake returned nil KEY_SEED")
- }
- if clientAuth == nil {
- t.Fatal("ClientHandshake returned nil AUTH")
- }
- // WARNING: Use a constant time comparison in actual code.
- if 0 != bytes.Compare(clientSeed.Bytes()[:], serverSeed.Bytes()[:]) {
- t.Fatal("KEY_SEED mismatched between client/server")
- }
- if 0 != bytes.Compare(clientAuth.Bytes()[:], serverAuth.Bytes()[:]) {
- t.Fatal("AUTH mismatched between client/server")
- }
- }
- // TestPublicKeySubgroup tests that Elligator representatives produced by
- // NewKeypair map to public keys that are not always on the prime-order subgroup
- // of Curve25519. (And incidentally that Elligator representatives agree with
- // the public key stored in the Keypair.)
- //
- // See discussion under "Step 2" at https://elligator.org/key-exchange.
- func TestPublicKeySubgroup(t *testing.T) {
- // We will test the public keys that comes out of NewKeypair by
- // multiplying each one by L, the order of the prime-order subgroup of
- // Curve25519, then checking the order of the resulting point. The error
- // condition we are checking for specifically is output points always
- // having order 1, which means that public keys are always on the
- // prime-order subgroup of Curve25519, which would make Elligator
- // representatives distinguishable from random. More generally, we want
- // to ensure that all possible output points of low order are covered.
- //
- // We have to do some contortions to conform to the interfaces we use.
- // We do scalar multiplication by L using Edwards coordinates, rather
- // than the Montgomery coordinates output by Keypair.Public and
- // Representative.ToPublic, because the Montgomery-based
- // crypto/curve25519.X25519 clamps the scalar to be a multiple of 8,
- // which would not allow us to use the scalar we need. The Edwards-based
- // ScalarMult only accepts scalars that are strictly less than L; we
- // work around this by multiplying the point by L - 1, then adding the
- // point once to the product.
- scalarOrderMinus1, err := edwards25519.NewScalar().SetCanonicalBytes(
- // This is the same as scMinusOne in filippo.io/edwards25519.
- // https://github.com/FiloSottile/edwards25519/blob/v1.0.0/scalar.go#L34
- []byte{236, 211, 245, 92, 26, 99, 18, 88, 214, 156, 247, 162, 222, 249, 222, 20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16},
- )
- if err != nil {
- panic(err)
- }
- // Returns a new edwards25519.Point that is v multiplied by the subgroup
- // order.
- scalarMultOrder := func(v *edwards25519.Point) *edwards25519.Point {
- p := new(edwards25519.Point)
- // v * (L - 1) + v => v * L
- p.ScalarMult(scalarOrderMinus1, v)
- p.Add(p, v)
- return p
- }
- // Generates a new Keypair using NewKeypair, and returns the Keypair
- // along, with its public key as a newly allocated edwards25519.Point.
- generate := func() (*Keypair, *edwards25519.Point) {
- kp, err := NewKeypair(true)
- if err != nil {
- panic(err)
- }
- // We will be using the Edwards representation of the public key
- // (mapped from the Elligator representative) for further
- // processing. But while we're here, check that the Montgomery
- // representation output by Representative agrees with the
- // stored public key.
- if *kp.Representative().ToPublic() != *kp.Public() {
- t.Fatal(kp.Representative().ToPublic(), kp.Public())
- }
- // Do the Elligator map in Edwards coordinates.
- var clamped [32]byte
- copy(clamped[:], kp.Representative().Bytes()[:])
- clamped[31] &= 63
- repr, err := new(field.Element).SetBytes(clamped[:])
- if err != nil {
- panic(err)
- }
- ed := elligator2.EdwardsFlavor(repr)
- if !bytes.Equal(ed.BytesMontgomery(), kp.Public().Bytes()[:]) {
- panic("Failed to derive an equivalent public key in Edwards coordinates")
- }
- return kp, ed
- }
- // These are all the points of low order that may result from
- // multiplying an Elligator-mapped point by L. We will test that all of
- // them are covered.
- lowOrderPoints := [][32]byte{
- /* order 1 */ {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
- /* order 2 */ {236, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 127},
- /* order 4 */ {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
- /* order 4 */ {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 128},
- /* order 8 */ {38, 232, 149, 143, 194, 178, 39, 176, 69, 195, 244, 137, 242, 239, 152, 240, 213, 223, 172, 5, 211, 198, 51, 57, 177, 56, 2, 136, 109, 83, 252, 5},
- /* order 8 */ {38, 232, 149, 143, 194, 178, 39, 176, 69, 195, 244, 137, 242, 239, 152, 240, 213, 223, 172, 5, 211, 198, 51, 57, 177, 56, 2, 136, 109, 83, 252, 133},
- /* order 8 */ {199, 23, 106, 112, 61, 77, 216, 79, 186, 60, 11, 118, 13, 16, 103, 15, 42, 32, 83, 250, 44, 57, 204, 198, 78, 199, 253, 119, 146, 172, 3, 122},
- /* order 8 */ {199, 23, 106, 112, 61, 77, 216, 79, 186, 60, 11, 118, 13, 16, 103, 15, 42, 32, 83, 250, 44, 57, 204, 198, 78, 199, 253, 119, 146, 172, 3, 250},
- }
- counts := make(map[[32]byte]int)
- for _, b := range lowOrderPoints {
- counts[b] = 0
- }
- // Assuming a uniform distribution of representatives, the probability
- // that a specific low-order point will not be covered after n trials is
- // (7/8)^n. The probability that *any* of the 8 low-order points will
- // remain uncovered after n trials is at most 8 times that, 8*(7/8)^n.
- // We must do at least log((1e-12)/8)/log(7/8) = 222.50 trials, in the
- // worst case, to ensure a false error rate of less than 1 in a
- // trillion. In practice, we keep track of the number of covered points
- // and break the loop when it reaches 8, so when representatives are
- // actually uniform we will usually run much fewer iterations.
- numCovered := 0
- for i := 0; i < 225; i++ {
- kp, pk := generate()
- v := scalarMultOrder(pk)
- var b [32]byte
- copy(b[:], v.Bytes())
- if _, ok := counts[b]; !ok {
- t.Fatalf("map(%x)*order yielded unexpected point %v",
- *kp.Representative().Bytes(), b)
- }
- counts[b]++
- if counts[b] == 1 {
- // We just covered a new point for the first time.
- numCovered++
- if numCovered == len(lowOrderPoints) {
- break
- }
- }
- }
- for _, b := range lowOrderPoints {
- count, ok := counts[b]
- if !ok {
- panic(b)
- }
- if count == 0 {
- t.Errorf("low-order point %x not covered", b)
- }
- }
- }
- // Benchmark Client/Server handshake. The actual time taken that will be
- // observed on either the Client or Server is half the reported time per
- // operation since the benchmark does both sides.
- func BenchmarkHandshake(b *testing.B) {
- // Generate the "long lasting" identity key and NodeId.
- idKeypair, err := NewKeypair(false)
- if err != nil || idKeypair == nil {
- b.Fatal("Failed to generate identity keypair")
- }
- nodeID, err := NewNodeID([]byte("\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10\x11\x12\x13"))
- if err != nil {
- b.Fatal("Failed to load NodeId:", err)
- }
- b.ResetTimer()
- // Start the actual benchmark.
- for i := 0; i < b.N; i++ {
- // Generate the keypairs.
- serverKeypair, err := NewKeypair(true)
- if err != nil || serverKeypair == nil {
- b.Fatal("Failed to generate server keypair")
- }
- clientKeypair, err := NewKeypair(true)
- if err != nil || clientKeypair == nil {
- b.Fatal("Failed to generate client keypair")
- }
- // Server handshake.
- clientPublic := clientKeypair.Representative().ToPublic()
- ok, serverSeed, serverAuth := ServerHandshake(clientPublic,
- serverKeypair, idKeypair, nodeID)
- if !ok || serverSeed == nil || serverAuth == nil {
- b.Fatal("ServerHandshake failed")
- }
- // Client handshake.
- serverPublic := serverKeypair.Representative().ToPublic()
- ok, clientSeed, clientAuth := ClientHandshake(clientKeypair,
- serverPublic, idKeypair.Public(), nodeID)
- if !ok || clientSeed == nil || clientAuth == nil {
- b.Fatal("ClientHandshake failed")
- }
- // Validate the authenticator. Real code would pass the AUTH read off
- // the network as a slice to CompareAuth here.
- if !CompareAuth(clientAuth, serverAuth.Bytes()[:]) ||
- !CompareAuth(serverAuth, clientAuth.Bytes()[:]) {
- b.Fatal("AUTH mismatched between client/server")
- }
- }
- }
|