123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366 |
- // Copyright 2008 Dolphin Emulator Project
- // Licensed under GPLv2+
- // Refer to the license.txt file included.
- #include <cmath>
- #include <cstring>
- #include <limits>
- #include <numeric>
- #include "Common/CommonTypes.h"
- #include "Common/MathUtil.h"
- namespace MathUtil
- {
- u32 ClassifyDouble(double dvalue)
- {
- // TODO: Optimize the below to be as fast as possible.
- IntDouble value(dvalue);
- u64 sign = value.i & DOUBLE_SIGN;
- u64 exp = value.i & DOUBLE_EXP;
- if (exp > DOUBLE_ZERO && exp < DOUBLE_EXP)
- {
- // Nice normalized number.
- return sign ? PPC_FPCLASS_NN : PPC_FPCLASS_PN;
- }
- else
- {
- u64 mantissa = value.i & DOUBLE_FRAC;
- if (mantissa)
- {
- if (exp)
- {
- return PPC_FPCLASS_QNAN;
- }
- else
- {
- // Denormalized number.
- return sign ? PPC_FPCLASS_ND : PPC_FPCLASS_PD;
- }
- }
- else if (exp)
- {
- //Infinite
- return sign ? PPC_FPCLASS_NINF : PPC_FPCLASS_PINF;
- }
- else
- {
- //Zero
- return sign ? PPC_FPCLASS_NZ : PPC_FPCLASS_PZ;
- }
- }
- }
- u32 ClassifyFloat(float fvalue)
- {
- // TODO: Optimize the below to be as fast as possible.
- IntFloat value(fvalue);
- u32 sign = value.i & FLOAT_SIGN;
- u32 exp = value.i & FLOAT_EXP;
- if (exp > FLOAT_ZERO && exp < FLOAT_EXP)
- {
- // Nice normalized number.
- return sign ? PPC_FPCLASS_NN : PPC_FPCLASS_PN;
- }
- else
- {
- u32 mantissa = value.i & FLOAT_FRAC;
- if (mantissa)
- {
- if (exp)
- {
- return PPC_FPCLASS_QNAN; // Quiet NAN
- }
- else
- {
- // Denormalized number.
- return sign ? PPC_FPCLASS_ND : PPC_FPCLASS_PD;
- }
- }
- else if (exp)
- {
- // Infinite
- return sign ? PPC_FPCLASS_NINF : PPC_FPCLASS_PINF;
- }
- else
- {
- //Zero
- return sign ? PPC_FPCLASS_NZ : PPC_FPCLASS_PZ;
- }
- }
- }
- const int frsqrte_expected_base[] =
- {
- 0x3ffa000, 0x3c29000, 0x38aa000, 0x3572000,
- 0x3279000, 0x2fb7000, 0x2d26000, 0x2ac0000,
- 0x2881000, 0x2665000, 0x2468000, 0x2287000,
- 0x20c1000, 0x1f12000, 0x1d79000, 0x1bf4000,
- 0x1a7e800, 0x17cb800, 0x1552800, 0x130c000,
- 0x10f2000, 0x0eff000, 0x0d2e000, 0x0b7c000,
- 0x09e5000, 0x0867000, 0x06ff000, 0x05ab800,
- 0x046a000, 0x0339800, 0x0218800, 0x0105800,
- };
- const int frsqrte_expected_dec[] =
- {
- 0x7a4, 0x700, 0x670, 0x5f2,
- 0x584, 0x524, 0x4cc, 0x47e,
- 0x43a, 0x3fa, 0x3c2, 0x38e,
- 0x35e, 0x332, 0x30a, 0x2e6,
- 0x568, 0x4f3, 0x48d, 0x435,
- 0x3e7, 0x3a2, 0x365, 0x32e,
- 0x2fc, 0x2d0, 0x2a8, 0x283,
- 0x261, 0x243, 0x226, 0x20b,
- };
- double ApproximateReciprocalSquareRoot(double val)
- {
- union
- {
- double valf;
- s64 vali;
- };
- valf = val;
- s64 mantissa = vali & ((1LL << 52) - 1);
- s64 sign = vali & (1ULL << 63);
- s64 exponent = vali & (0x7FFLL << 52);
- // Special case 0
- if (mantissa == 0 && exponent == 0)
- return sign ? -std::numeric_limits<double>::infinity() :
- std::numeric_limits<double>::infinity();
- // Special case NaN-ish numbers
- if (exponent == (0x7FFLL << 52))
- {
- if (mantissa == 0)
- {
- if (sign)
- return std::numeric_limits<double>::quiet_NaN();
- return 0.0;
- }
- return 0.0 + valf;
- }
- // Negative numbers return NaN
- if (sign)
- return std::numeric_limits<double>::quiet_NaN();
- if (!exponent)
- {
- // "Normalize" denormal values
- do
- {
- exponent -= 1LL << 52;
- mantissa <<= 1;
- } while (!(mantissa & (1LL << 52)));
- mantissa &= (1LL << 52) - 1;
- exponent += 1LL << 52;
- }
- bool odd_exponent = !(exponent & (1LL << 52));
- exponent = ((0x3FFLL << 52) - ((exponent - (0x3FELL << 52)) / 2)) & (0x7FFLL << 52);
- int i = (int)(mantissa >> 37);
- vali = sign | exponent;
- int index = i / 2048 + (odd_exponent ? 16 : 0);
- vali |= (s64)(frsqrte_expected_base[index] - frsqrte_expected_dec[index] * (i % 2048)) << 26;
- return valf;
- }
- const int fres_expected_base[] =
- {
- 0x7ff800, 0x783800, 0x70ea00, 0x6a0800,
- 0x638800, 0x5d6200, 0x579000, 0x520800,
- 0x4cc800, 0x47ca00, 0x430800, 0x3e8000,
- 0x3a2c00, 0x360800, 0x321400, 0x2e4a00,
- 0x2aa800, 0x272c00, 0x23d600, 0x209e00,
- 0x1d8800, 0x1a9000, 0x17ae00, 0x14f800,
- 0x124400, 0x0fbe00, 0x0d3800, 0x0ade00,
- 0x088400, 0x065000, 0x041c00, 0x020c00,
- };
- const int fres_expected_dec[] =
- {
- 0x3e1, 0x3a7, 0x371, 0x340,
- 0x313, 0x2ea, 0x2c4, 0x2a0,
- 0x27f, 0x261, 0x245, 0x22a,
- 0x212, 0x1fb, 0x1e5, 0x1d1,
- 0x1be, 0x1ac, 0x19b, 0x18b,
- 0x17c, 0x16e, 0x15b, 0x15b,
- 0x143, 0x143, 0x12d, 0x12d,
- 0x11a, 0x11a, 0x108, 0x106,
- };
- // Used by fres and ps_res.
- double ApproximateReciprocal(double val)
- {
- union
- {
- double valf;
- s64 vali;
- };
- valf = val;
- s64 mantissa = vali & ((1LL << 52) - 1);
- s64 sign = vali & (1ULL << 63);
- s64 exponent = vali & (0x7FFLL << 52);
- // Special case 0
- if (mantissa == 0 && exponent == 0)
- return sign ? -std::numeric_limits<double>::infinity() : std::numeric_limits<double>::infinity();
- // Special case NaN-ish numbers
- if (exponent == (0x7FFLL << 52))
- {
- if (mantissa == 0)
- return sign ? -0.0 : 0.0;
- return 0.0 + valf;
- }
- // Special case small inputs
- if (exponent < (895LL << 52))
- return sign ? -std::numeric_limits<float>::max() : std::numeric_limits<float>::max();
- // Special case large inputs
- if (exponent >= (1149LL << 52))
- return sign ? -0.0f : 0.0f;
- exponent = (0x7FDLL << 52) - exponent;
- int i = (int)(mantissa >> 37);
- vali = sign | exponent;
- vali |= (s64)(fres_expected_base[i / 1024] - (fres_expected_dec[i / 1024] * (i % 1024) + 1) / 2) << 29;
- return valf;
- }
- } // namespace
- inline void MatrixMul(int n, const float *a, const float *b, float *result)
- {
- for (int i = 0; i < n; ++i)
- {
- for (int j = 0; j < n; ++j)
- {
- float temp = 0;
- for (int k = 0; k < n; ++k)
- {
- temp += a[i * n + k] * b[k * n + j];
- }
- result[i * n + j] = temp;
- }
- }
- }
- // Calculate sum of a float list
- float MathFloatVectorSum(const std::vector<float>& Vec)
- {
- return std::accumulate(Vec.begin(), Vec.end(), 0.0f);
- }
- void Matrix33::LoadIdentity(Matrix33 &mtx)
- {
- memset(mtx.data, 0, sizeof(mtx.data));
- mtx.data[0] = 1.0f;
- mtx.data[4] = 1.0f;
- mtx.data[8] = 1.0f;
- }
- void Matrix33::RotateX(Matrix33 &mtx, float rad)
- {
- float s = sin(rad);
- float c = cos(rad);
- memset(mtx.data, 0, sizeof(mtx.data));
- mtx.data[0] = 1;
- mtx.data[4] = c;
- mtx.data[5] = -s;
- mtx.data[7] = s;
- mtx.data[8] = c;
- }
- void Matrix33::RotateY(Matrix33 &mtx, float rad)
- {
- float s = sin(rad);
- float c = cos(rad);
- memset(mtx.data, 0, sizeof(mtx.data));
- mtx.data[0] = c;
- mtx.data[2] = s;
- mtx.data[4] = 1;
- mtx.data[6] = -s;
- mtx.data[8] = c;
- }
- void Matrix33::Multiply(const Matrix33 &a, const Matrix33 &b, Matrix33 &result)
- {
- MatrixMul(3, a.data, b.data, result.data);
- }
- void Matrix33::Multiply(const Matrix33 &a, const float vec[3], float result[3])
- {
- for (int i = 0; i < 3; ++i)
- {
- result[i] = 0;
- for (int k = 0; k < 3; ++k)
- {
- result[i] += a.data[i * 3 + k] * vec[k];
- }
- }
- }
- void Matrix44::LoadIdentity(Matrix44 &mtx)
- {
- memset(mtx.data, 0, sizeof(mtx.data));
- mtx.data[0] = 1.0f;
- mtx.data[5] = 1.0f;
- mtx.data[10] = 1.0f;
- mtx.data[15] = 1.0f;
- }
- void Matrix44::LoadMatrix33(Matrix44 &mtx, const Matrix33 &m33)
- {
- for (int i = 0; i < 3; ++i)
- {
- for (int j = 0; j < 3; ++j)
- {
- mtx.data[i * 4 + j] = m33.data[i * 3 + j];
- }
- }
- for (int i = 0; i < 3; ++i)
- {
- mtx.data[i * 4 + 3] = 0;
- mtx.data[i + 12] = 0;
- }
- mtx.data[15] = 1.0f;
- }
- void Matrix44::Set(Matrix44 &mtx, const float mtxArray[16])
- {
- for (int i = 0; i < 16; ++i)
- {
- mtx.data[i] = mtxArray[i];
- }
- }
- void Matrix44::Translate(Matrix44 &mtx, const float vec[3])
- {
- LoadIdentity(mtx);
- mtx.data[3] = vec[0];
- mtx.data[7] = vec[1];
- mtx.data[11] = vec[2];
- }
- void Matrix44::Shear(Matrix44 &mtx, const float a, const float b)
- {
- LoadIdentity(mtx);
- mtx.data[2] = a;
- mtx.data[6] = b;
- }
- void Matrix44::Multiply(const Matrix44 &a, const Matrix44 &b, Matrix44 &result)
- {
- MatrixMul(4, a.data, b.data, result.data);
- }
|