sha256.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743
  1. /*
  2. * FIPS-180-2 compliant SHA-256 implementation
  3. *
  4. * Copyright (C) 2006-2014, Brainspark B.V.
  5. *
  6. * This file is part of PolarSSL (http://www.polarssl.org)
  7. * Lead Maintainer: Paul Bakker <polarssl_maintainer at polarssl.org>
  8. *
  9. * All rights reserved.
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License as published by
  13. * the Free Software Foundation; either version 2 of the License, or
  14. * (at your option) any later version.
  15. *
  16. * This program is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  19. * GNU General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License along
  22. * with this program; if not, write to the Free Software Foundation, Inc.,
  23. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  24. */
  25. /*
  26. * The SHA-256 Secure Hash Standard was published by NIST in 2002.
  27. *
  28. * http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
  29. */
  30. #if !defined(POLARSSL_CONFIG_FILE)
  31. #include "polarssl/config.h"
  32. #else
  33. #include POLARSSL_CONFIG_FILE
  34. #endif
  35. #if defined(POLARSSL_SHA256_C)
  36. #include "polarssl/sha256.h"
  37. #if defined(POLARSSL_FS_IO) || defined(POLARSSL_SELF_TEST)
  38. #include <stdio.h>
  39. #endif
  40. #if defined(POLARSSL_PLATFORM_C)
  41. #include "polarssl/platform.h"
  42. #else
  43. #define polarssl_printf printf
  44. #endif
  45. /* Implementation that should never be optimized out by the compiler */
  46. static void polarssl_zeroize( void *v, size_t n ) {
  47. volatile unsigned char *p = v; while( n-- ) *p++ = 0;
  48. }
  49. #if !defined(POLARSSL_SHA256_ALT)
  50. /*
  51. * 32-bit integer manipulation macros (big endian)
  52. */
  53. #ifndef GET_UINT32_BE
  54. #define GET_UINT32_BE(n,b,i) \
  55. { \
  56. (n) = ( (uint32_t) (b)[(i) ] << 24 ) \
  57. | ( (uint32_t) (b)[(i) + 1] << 16 ) \
  58. | ( (uint32_t) (b)[(i) + 2] << 8 ) \
  59. | ( (uint32_t) (b)[(i) + 3] ); \
  60. }
  61. #endif
  62. #ifndef PUT_UINT32_BE
  63. #define PUT_UINT32_BE(n,b,i) \
  64. { \
  65. (b)[(i) ] = (unsigned char) ( (n) >> 24 ); \
  66. (b)[(i) + 1] = (unsigned char) ( (n) >> 16 ); \
  67. (b)[(i) + 2] = (unsigned char) ( (n) >> 8 ); \
  68. (b)[(i) + 3] = (unsigned char) ( (n) ); \
  69. }
  70. #endif
  71. void sha256_init( sha256_context *ctx )
  72. {
  73. memset( ctx, 0, sizeof( sha256_context ) );
  74. }
  75. void sha256_free( sha256_context *ctx )
  76. {
  77. if( ctx == NULL )
  78. return;
  79. polarssl_zeroize( ctx, sizeof( sha256_context ) );
  80. }
  81. /*
  82. * SHA-256 context setup
  83. */
  84. void sha256_starts( sha256_context *ctx, int is224 )
  85. {
  86. ctx->total[0] = 0;
  87. ctx->total[1] = 0;
  88. if( is224 == 0 )
  89. {
  90. /* SHA-256 */
  91. ctx->state[0] = 0x6A09E667;
  92. ctx->state[1] = 0xBB67AE85;
  93. ctx->state[2] = 0x3C6EF372;
  94. ctx->state[3] = 0xA54FF53A;
  95. ctx->state[4] = 0x510E527F;
  96. ctx->state[5] = 0x9B05688C;
  97. ctx->state[6] = 0x1F83D9AB;
  98. ctx->state[7] = 0x5BE0CD19;
  99. }
  100. else
  101. {
  102. /* SHA-224 */
  103. ctx->state[0] = 0xC1059ED8;
  104. ctx->state[1] = 0x367CD507;
  105. ctx->state[2] = 0x3070DD17;
  106. ctx->state[3] = 0xF70E5939;
  107. ctx->state[4] = 0xFFC00B31;
  108. ctx->state[5] = 0x68581511;
  109. ctx->state[6] = 0x64F98FA7;
  110. ctx->state[7] = 0xBEFA4FA4;
  111. }
  112. ctx->is224 = is224;
  113. }
  114. void sha256_process( sha256_context *ctx, const unsigned char data[64] )
  115. {
  116. uint32_t temp1, temp2, W[64];
  117. uint32_t A, B, C, D, E, F, G, H;
  118. GET_UINT32_BE( W[ 0], data, 0 );
  119. GET_UINT32_BE( W[ 1], data, 4 );
  120. GET_UINT32_BE( W[ 2], data, 8 );
  121. GET_UINT32_BE( W[ 3], data, 12 );
  122. GET_UINT32_BE( W[ 4], data, 16 );
  123. GET_UINT32_BE( W[ 5], data, 20 );
  124. GET_UINT32_BE( W[ 6], data, 24 );
  125. GET_UINT32_BE( W[ 7], data, 28 );
  126. GET_UINT32_BE( W[ 8], data, 32 );
  127. GET_UINT32_BE( W[ 9], data, 36 );
  128. GET_UINT32_BE( W[10], data, 40 );
  129. GET_UINT32_BE( W[11], data, 44 );
  130. GET_UINT32_BE( W[12], data, 48 );
  131. GET_UINT32_BE( W[13], data, 52 );
  132. GET_UINT32_BE( W[14], data, 56 );
  133. GET_UINT32_BE( W[15], data, 60 );
  134. #define SHR(x,n) ((x & 0xFFFFFFFF) >> n)
  135. #define ROTR(x,n) (SHR(x,n) | (x << (32 - n)))
  136. #define S0(x) (ROTR(x, 7) ^ ROTR(x,18) ^ SHR(x, 3))
  137. #define S1(x) (ROTR(x,17) ^ ROTR(x,19) ^ SHR(x,10))
  138. #define S2(x) (ROTR(x, 2) ^ ROTR(x,13) ^ ROTR(x,22))
  139. #define S3(x) (ROTR(x, 6) ^ ROTR(x,11) ^ ROTR(x,25))
  140. #define F0(x,y,z) ((x & y) | (z & (x | y)))
  141. #define F1(x,y,z) (z ^ (x & (y ^ z)))
  142. #define R(t) \
  143. ( \
  144. W[t] = S1(W[t - 2]) + W[t - 7] + \
  145. S0(W[t - 15]) + W[t - 16] \
  146. )
  147. #define P(a,b,c,d,e,f,g,h,x,K) \
  148. { \
  149. temp1 = h + S3(e) + F1(e,f,g) + K + x; \
  150. temp2 = S2(a) + F0(a,b,c); \
  151. d += temp1; h = temp1 + temp2; \
  152. }
  153. A = ctx->state[0];
  154. B = ctx->state[1];
  155. C = ctx->state[2];
  156. D = ctx->state[3];
  157. E = ctx->state[4];
  158. F = ctx->state[5];
  159. G = ctx->state[6];
  160. H = ctx->state[7];
  161. P( A, B, C, D, E, F, G, H, W[ 0], 0x428A2F98 );
  162. P( H, A, B, C, D, E, F, G, W[ 1], 0x71374491 );
  163. P( G, H, A, B, C, D, E, F, W[ 2], 0xB5C0FBCF );
  164. P( F, G, H, A, B, C, D, E, W[ 3], 0xE9B5DBA5 );
  165. P( E, F, G, H, A, B, C, D, W[ 4], 0x3956C25B );
  166. P( D, E, F, G, H, A, B, C, W[ 5], 0x59F111F1 );
  167. P( C, D, E, F, G, H, A, B, W[ 6], 0x923F82A4 );
  168. P( B, C, D, E, F, G, H, A, W[ 7], 0xAB1C5ED5 );
  169. P( A, B, C, D, E, F, G, H, W[ 8], 0xD807AA98 );
  170. P( H, A, B, C, D, E, F, G, W[ 9], 0x12835B01 );
  171. P( G, H, A, B, C, D, E, F, W[10], 0x243185BE );
  172. P( F, G, H, A, B, C, D, E, W[11], 0x550C7DC3 );
  173. P( E, F, G, H, A, B, C, D, W[12], 0x72BE5D74 );
  174. P( D, E, F, G, H, A, B, C, W[13], 0x80DEB1FE );
  175. P( C, D, E, F, G, H, A, B, W[14], 0x9BDC06A7 );
  176. P( B, C, D, E, F, G, H, A, W[15], 0xC19BF174 );
  177. P( A, B, C, D, E, F, G, H, R(16), 0xE49B69C1 );
  178. P( H, A, B, C, D, E, F, G, R(17), 0xEFBE4786 );
  179. P( G, H, A, B, C, D, E, F, R(18), 0x0FC19DC6 );
  180. P( F, G, H, A, B, C, D, E, R(19), 0x240CA1CC );
  181. P( E, F, G, H, A, B, C, D, R(20), 0x2DE92C6F );
  182. P( D, E, F, G, H, A, B, C, R(21), 0x4A7484AA );
  183. P( C, D, E, F, G, H, A, B, R(22), 0x5CB0A9DC );
  184. P( B, C, D, E, F, G, H, A, R(23), 0x76F988DA );
  185. P( A, B, C, D, E, F, G, H, R(24), 0x983E5152 );
  186. P( H, A, B, C, D, E, F, G, R(25), 0xA831C66D );
  187. P( G, H, A, B, C, D, E, F, R(26), 0xB00327C8 );
  188. P( F, G, H, A, B, C, D, E, R(27), 0xBF597FC7 );
  189. P( E, F, G, H, A, B, C, D, R(28), 0xC6E00BF3 );
  190. P( D, E, F, G, H, A, B, C, R(29), 0xD5A79147 );
  191. P( C, D, E, F, G, H, A, B, R(30), 0x06CA6351 );
  192. P( B, C, D, E, F, G, H, A, R(31), 0x14292967 );
  193. P( A, B, C, D, E, F, G, H, R(32), 0x27B70A85 );
  194. P( H, A, B, C, D, E, F, G, R(33), 0x2E1B2138 );
  195. P( G, H, A, B, C, D, E, F, R(34), 0x4D2C6DFC );
  196. P( F, G, H, A, B, C, D, E, R(35), 0x53380D13 );
  197. P( E, F, G, H, A, B, C, D, R(36), 0x650A7354 );
  198. P( D, E, F, G, H, A, B, C, R(37), 0x766A0ABB );
  199. P( C, D, E, F, G, H, A, B, R(38), 0x81C2C92E );
  200. P( B, C, D, E, F, G, H, A, R(39), 0x92722C85 );
  201. P( A, B, C, D, E, F, G, H, R(40), 0xA2BFE8A1 );
  202. P( H, A, B, C, D, E, F, G, R(41), 0xA81A664B );
  203. P( G, H, A, B, C, D, E, F, R(42), 0xC24B8B70 );
  204. P( F, G, H, A, B, C, D, E, R(43), 0xC76C51A3 );
  205. P( E, F, G, H, A, B, C, D, R(44), 0xD192E819 );
  206. P( D, E, F, G, H, A, B, C, R(45), 0xD6990624 );
  207. P( C, D, E, F, G, H, A, B, R(46), 0xF40E3585 );
  208. P( B, C, D, E, F, G, H, A, R(47), 0x106AA070 );
  209. P( A, B, C, D, E, F, G, H, R(48), 0x19A4C116 );
  210. P( H, A, B, C, D, E, F, G, R(49), 0x1E376C08 );
  211. P( G, H, A, B, C, D, E, F, R(50), 0x2748774C );
  212. P( F, G, H, A, B, C, D, E, R(51), 0x34B0BCB5 );
  213. P( E, F, G, H, A, B, C, D, R(52), 0x391C0CB3 );
  214. P( D, E, F, G, H, A, B, C, R(53), 0x4ED8AA4A );
  215. P( C, D, E, F, G, H, A, B, R(54), 0x5B9CCA4F );
  216. P( B, C, D, E, F, G, H, A, R(55), 0x682E6FF3 );
  217. P( A, B, C, D, E, F, G, H, R(56), 0x748F82EE );
  218. P( H, A, B, C, D, E, F, G, R(57), 0x78A5636F );
  219. P( G, H, A, B, C, D, E, F, R(58), 0x84C87814 );
  220. P( F, G, H, A, B, C, D, E, R(59), 0x8CC70208 );
  221. P( E, F, G, H, A, B, C, D, R(60), 0x90BEFFFA );
  222. P( D, E, F, G, H, A, B, C, R(61), 0xA4506CEB );
  223. P( C, D, E, F, G, H, A, B, R(62), 0xBEF9A3F7 );
  224. P( B, C, D, E, F, G, H, A, R(63), 0xC67178F2 );
  225. ctx->state[0] += A;
  226. ctx->state[1] += B;
  227. ctx->state[2] += C;
  228. ctx->state[3] += D;
  229. ctx->state[4] += E;
  230. ctx->state[5] += F;
  231. ctx->state[6] += G;
  232. ctx->state[7] += H;
  233. }
  234. /*
  235. * SHA-256 process buffer
  236. */
  237. void sha256_update( sha256_context *ctx, const unsigned char *input,
  238. size_t ilen )
  239. {
  240. size_t fill;
  241. uint32_t left;
  242. if( ilen == 0 )
  243. return;
  244. left = ctx->total[0] & 0x3F;
  245. fill = 64 - left;
  246. ctx->total[0] += (uint32_t) ilen;
  247. ctx->total[0] &= 0xFFFFFFFF;
  248. if( ctx->total[0] < (uint32_t) ilen )
  249. ctx->total[1]++;
  250. if( left && ilen >= fill )
  251. {
  252. memcpy( (void *) (ctx->buffer + left), input, fill );
  253. sha256_process( ctx, ctx->buffer );
  254. input += fill;
  255. ilen -= fill;
  256. left = 0;
  257. }
  258. while( ilen >= 64 )
  259. {
  260. sha256_process( ctx, input );
  261. input += 64;
  262. ilen -= 64;
  263. }
  264. if( ilen > 0 )
  265. memcpy( (void *) (ctx->buffer + left), input, ilen );
  266. }
  267. static const unsigned char sha256_padding[64] =
  268. {
  269. 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  270. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  271. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  272. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
  273. };
  274. /*
  275. * SHA-256 final digest
  276. */
  277. void sha256_finish( sha256_context *ctx, unsigned char output[32] )
  278. {
  279. uint32_t last, padn;
  280. uint32_t high, low;
  281. unsigned char msglen[8];
  282. high = ( ctx->total[0] >> 29 )
  283. | ( ctx->total[1] << 3 );
  284. low = ( ctx->total[0] << 3 );
  285. PUT_UINT32_BE( high, msglen, 0 );
  286. PUT_UINT32_BE( low, msglen, 4 );
  287. last = ctx->total[0] & 0x3F;
  288. padn = ( last < 56 ) ? ( 56 - last ) : ( 120 - last );
  289. sha256_update( ctx, sha256_padding, padn );
  290. sha256_update( ctx, msglen, 8 );
  291. PUT_UINT32_BE( ctx->state[0], output, 0 );
  292. PUT_UINT32_BE( ctx->state[1], output, 4 );
  293. PUT_UINT32_BE( ctx->state[2], output, 8 );
  294. PUT_UINT32_BE( ctx->state[3], output, 12 );
  295. PUT_UINT32_BE( ctx->state[4], output, 16 );
  296. PUT_UINT32_BE( ctx->state[5], output, 20 );
  297. PUT_UINT32_BE( ctx->state[6], output, 24 );
  298. if( ctx->is224 == 0 )
  299. PUT_UINT32_BE( ctx->state[7], output, 28 );
  300. }
  301. #endif /* !POLARSSL_SHA256_ALT */
  302. /*
  303. * output = SHA-256( input buffer )
  304. */
  305. void sha256( const unsigned char *input, size_t ilen,
  306. unsigned char output[32], int is224 )
  307. {
  308. sha256_context ctx;
  309. sha256_init( &ctx );
  310. sha256_starts( &ctx, is224 );
  311. sha256_update( &ctx, input, ilen );
  312. sha256_finish( &ctx, output );
  313. sha256_free( &ctx );
  314. }
  315. #if defined(POLARSSL_FS_IO)
  316. /*
  317. * output = SHA-256( file contents )
  318. */
  319. int sha256_file( const char *path, unsigned char output[32], int is224 )
  320. {
  321. FILE *f;
  322. size_t n;
  323. sha256_context ctx;
  324. unsigned char buf[1024];
  325. if( ( f = fopen( path, "rb" ) ) == NULL )
  326. return( POLARSSL_ERR_SHA256_FILE_IO_ERROR );
  327. sha256_init( &ctx );
  328. sha256_starts( &ctx, is224 );
  329. while( ( n = fread( buf, 1, sizeof( buf ), f ) ) > 0 )
  330. sha256_update( &ctx, buf, n );
  331. sha256_finish( &ctx, output );
  332. sha256_free( &ctx );
  333. if( ferror( f ) != 0 )
  334. {
  335. fclose( f );
  336. return( POLARSSL_ERR_SHA256_FILE_IO_ERROR );
  337. }
  338. fclose( f );
  339. return( 0 );
  340. }
  341. #endif /* POLARSSL_FS_IO */
  342. /*
  343. * SHA-256 HMAC context setup
  344. */
  345. void sha256_hmac_starts( sha256_context *ctx, const unsigned char *key,
  346. size_t keylen, int is224 )
  347. {
  348. size_t i;
  349. unsigned char sum[32];
  350. if( keylen > 64 )
  351. {
  352. sha256( key, keylen, sum, is224 );
  353. keylen = ( is224 ) ? 28 : 32;
  354. key = sum;
  355. }
  356. memset( ctx->ipad, 0x36, 64 );
  357. memset( ctx->opad, 0x5C, 64 );
  358. for( i = 0; i < keylen; i++ )
  359. {
  360. ctx->ipad[i] = (unsigned char)( ctx->ipad[i] ^ key[i] );
  361. ctx->opad[i] = (unsigned char)( ctx->opad[i] ^ key[i] );
  362. }
  363. sha256_starts( ctx, is224 );
  364. sha256_update( ctx, ctx->ipad, 64 );
  365. polarssl_zeroize( sum, sizeof( sum ) );
  366. }
  367. /*
  368. * SHA-256 HMAC process buffer
  369. */
  370. void sha256_hmac_update( sha256_context *ctx, const unsigned char *input,
  371. size_t ilen )
  372. {
  373. sha256_update( ctx, input, ilen );
  374. }
  375. /*
  376. * SHA-256 HMAC final digest
  377. */
  378. void sha256_hmac_finish( sha256_context *ctx, unsigned char output[32] )
  379. {
  380. int is224, hlen;
  381. unsigned char tmpbuf[32];
  382. is224 = ctx->is224;
  383. hlen = ( is224 == 0 ) ? 32 : 28;
  384. sha256_finish( ctx, tmpbuf );
  385. sha256_starts( ctx, is224 );
  386. sha256_update( ctx, ctx->opad, 64 );
  387. sha256_update( ctx, tmpbuf, hlen );
  388. sha256_finish( ctx, output );
  389. polarssl_zeroize( tmpbuf, sizeof( tmpbuf ) );
  390. }
  391. /*
  392. * SHA-256 HMAC context reset
  393. */
  394. void sha256_hmac_reset( sha256_context *ctx )
  395. {
  396. sha256_starts( ctx, ctx->is224 );
  397. sha256_update( ctx, ctx->ipad, 64 );
  398. }
  399. /*
  400. * output = HMAC-SHA-256( hmac key, input buffer )
  401. */
  402. void sha256_hmac( const unsigned char *key, size_t keylen,
  403. const unsigned char *input, size_t ilen,
  404. unsigned char output[32], int is224 )
  405. {
  406. sha256_context ctx;
  407. sha256_init( &ctx );
  408. sha256_hmac_starts( &ctx, key, keylen, is224 );
  409. sha256_hmac_update( &ctx, input, ilen );
  410. sha256_hmac_finish( &ctx, output );
  411. sha256_free( &ctx );
  412. }
  413. #if defined(POLARSSL_SELF_TEST)
  414. /*
  415. * FIPS-180-2 test vectors
  416. */
  417. static unsigned char sha256_test_buf[3][57] =
  418. {
  419. { "abc" },
  420. { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq" },
  421. { "" }
  422. };
  423. static const int sha256_test_buflen[3] =
  424. {
  425. 3, 56, 1000
  426. };
  427. static const unsigned char sha256_test_sum[6][32] =
  428. {
  429. /*
  430. * SHA-224 test vectors
  431. */
  432. { 0x23, 0x09, 0x7D, 0x22, 0x34, 0x05, 0xD8, 0x22,
  433. 0x86, 0x42, 0xA4, 0x77, 0xBD, 0xA2, 0x55, 0xB3,
  434. 0x2A, 0xAD, 0xBC, 0xE4, 0xBD, 0xA0, 0xB3, 0xF7,
  435. 0xE3, 0x6C, 0x9D, 0xA7 },
  436. { 0x75, 0x38, 0x8B, 0x16, 0x51, 0x27, 0x76, 0xCC,
  437. 0x5D, 0xBA, 0x5D, 0xA1, 0xFD, 0x89, 0x01, 0x50,
  438. 0xB0, 0xC6, 0x45, 0x5C, 0xB4, 0xF5, 0x8B, 0x19,
  439. 0x52, 0x52, 0x25, 0x25 },
  440. { 0x20, 0x79, 0x46, 0x55, 0x98, 0x0C, 0x91, 0xD8,
  441. 0xBB, 0xB4, 0xC1, 0xEA, 0x97, 0x61, 0x8A, 0x4B,
  442. 0xF0, 0x3F, 0x42, 0x58, 0x19, 0x48, 0xB2, 0xEE,
  443. 0x4E, 0xE7, 0xAD, 0x67 },
  444. /*
  445. * SHA-256 test vectors
  446. */
  447. { 0xBA, 0x78, 0x16, 0xBF, 0x8F, 0x01, 0xCF, 0xEA,
  448. 0x41, 0x41, 0x40, 0xDE, 0x5D, 0xAE, 0x22, 0x23,
  449. 0xB0, 0x03, 0x61, 0xA3, 0x96, 0x17, 0x7A, 0x9C,
  450. 0xB4, 0x10, 0xFF, 0x61, 0xF2, 0x00, 0x15, 0xAD },
  451. { 0x24, 0x8D, 0x6A, 0x61, 0xD2, 0x06, 0x38, 0xB8,
  452. 0xE5, 0xC0, 0x26, 0x93, 0x0C, 0x3E, 0x60, 0x39,
  453. 0xA3, 0x3C, 0xE4, 0x59, 0x64, 0xFF, 0x21, 0x67,
  454. 0xF6, 0xEC, 0xED, 0xD4, 0x19, 0xDB, 0x06, 0xC1 },
  455. { 0xCD, 0xC7, 0x6E, 0x5C, 0x99, 0x14, 0xFB, 0x92,
  456. 0x81, 0xA1, 0xC7, 0xE2, 0x84, 0xD7, 0x3E, 0x67,
  457. 0xF1, 0x80, 0x9A, 0x48, 0xA4, 0x97, 0x20, 0x0E,
  458. 0x04, 0x6D, 0x39, 0xCC, 0xC7, 0x11, 0x2C, 0xD0 }
  459. };
  460. /*
  461. * RFC 4231 test vectors
  462. */
  463. static unsigned char sha256_hmac_test_key[7][26] =
  464. {
  465. { "\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B"
  466. "\x0B\x0B\x0B\x0B" },
  467. { "Jefe" },
  468. { "\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA"
  469. "\xAA\xAA\xAA\xAA" },
  470. { "\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F\x10"
  471. "\x11\x12\x13\x14\x15\x16\x17\x18\x19" },
  472. { "\x0C\x0C\x0C\x0C\x0C\x0C\x0C\x0C\x0C\x0C\x0C\x0C\x0C\x0C\x0C\x0C"
  473. "\x0C\x0C\x0C\x0C" },
  474. { "" }, /* 0xAA 131 times */
  475. { "" }
  476. };
  477. static const int sha256_hmac_test_keylen[7] =
  478. {
  479. 20, 4, 20, 25, 20, 131, 131
  480. };
  481. static unsigned char sha256_hmac_test_buf[7][153] =
  482. {
  483. { "Hi There" },
  484. { "what do ya want for nothing?" },
  485. { "\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD"
  486. "\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD"
  487. "\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD"
  488. "\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD"
  489. "\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD" },
  490. { "\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD"
  491. "\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD"
  492. "\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD"
  493. "\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD"
  494. "\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD" },
  495. { "Test With Truncation" },
  496. { "Test Using Larger Than Block-Size Key - Hash Key First" },
  497. { "This is a test using a larger than block-size key "
  498. "and a larger than block-size data. The key needs to "
  499. "be hashed before being used by the HMAC algorithm." }
  500. };
  501. static const int sha256_hmac_test_buflen[7] =
  502. {
  503. 8, 28, 50, 50, 20, 54, 152
  504. };
  505. static const unsigned char sha256_hmac_test_sum[14][32] =
  506. {
  507. /*
  508. * HMAC-SHA-224 test vectors
  509. */
  510. { 0x89, 0x6F, 0xB1, 0x12, 0x8A, 0xBB, 0xDF, 0x19,
  511. 0x68, 0x32, 0x10, 0x7C, 0xD4, 0x9D, 0xF3, 0x3F,
  512. 0x47, 0xB4, 0xB1, 0x16, 0x99, 0x12, 0xBA, 0x4F,
  513. 0x53, 0x68, 0x4B, 0x22 },
  514. { 0xA3, 0x0E, 0x01, 0x09, 0x8B, 0xC6, 0xDB, 0xBF,
  515. 0x45, 0x69, 0x0F, 0x3A, 0x7E, 0x9E, 0x6D, 0x0F,
  516. 0x8B, 0xBE, 0xA2, 0xA3, 0x9E, 0x61, 0x48, 0x00,
  517. 0x8F, 0xD0, 0x5E, 0x44 },
  518. { 0x7F, 0xB3, 0xCB, 0x35, 0x88, 0xC6, 0xC1, 0xF6,
  519. 0xFF, 0xA9, 0x69, 0x4D, 0x7D, 0x6A, 0xD2, 0x64,
  520. 0x93, 0x65, 0xB0, 0xC1, 0xF6, 0x5D, 0x69, 0xD1,
  521. 0xEC, 0x83, 0x33, 0xEA },
  522. { 0x6C, 0x11, 0x50, 0x68, 0x74, 0x01, 0x3C, 0xAC,
  523. 0x6A, 0x2A, 0xBC, 0x1B, 0xB3, 0x82, 0x62, 0x7C,
  524. 0xEC, 0x6A, 0x90, 0xD8, 0x6E, 0xFC, 0x01, 0x2D,
  525. 0xE7, 0xAF, 0xEC, 0x5A },
  526. { 0x0E, 0x2A, 0xEA, 0x68, 0xA9, 0x0C, 0x8D, 0x37,
  527. 0xC9, 0x88, 0xBC, 0xDB, 0x9F, 0xCA, 0x6F, 0xA8 },
  528. { 0x95, 0xE9, 0xA0, 0xDB, 0x96, 0x20, 0x95, 0xAD,
  529. 0xAE, 0xBE, 0x9B, 0x2D, 0x6F, 0x0D, 0xBC, 0xE2,
  530. 0xD4, 0x99, 0xF1, 0x12, 0xF2, 0xD2, 0xB7, 0x27,
  531. 0x3F, 0xA6, 0x87, 0x0E },
  532. { 0x3A, 0x85, 0x41, 0x66, 0xAC, 0x5D, 0x9F, 0x02,
  533. 0x3F, 0x54, 0xD5, 0x17, 0xD0, 0xB3, 0x9D, 0xBD,
  534. 0x94, 0x67, 0x70, 0xDB, 0x9C, 0x2B, 0x95, 0xC9,
  535. 0xF6, 0xF5, 0x65, 0xD1 },
  536. /*
  537. * HMAC-SHA-256 test vectors
  538. */
  539. { 0xB0, 0x34, 0x4C, 0x61, 0xD8, 0xDB, 0x38, 0x53,
  540. 0x5C, 0xA8, 0xAF, 0xCE, 0xAF, 0x0B, 0xF1, 0x2B,
  541. 0x88, 0x1D, 0xC2, 0x00, 0xC9, 0x83, 0x3D, 0xA7,
  542. 0x26, 0xE9, 0x37, 0x6C, 0x2E, 0x32, 0xCF, 0xF7 },
  543. { 0x5B, 0xDC, 0xC1, 0x46, 0xBF, 0x60, 0x75, 0x4E,
  544. 0x6A, 0x04, 0x24, 0x26, 0x08, 0x95, 0x75, 0xC7,
  545. 0x5A, 0x00, 0x3F, 0x08, 0x9D, 0x27, 0x39, 0x83,
  546. 0x9D, 0xEC, 0x58, 0xB9, 0x64, 0xEC, 0x38, 0x43 },
  547. { 0x77, 0x3E, 0xA9, 0x1E, 0x36, 0x80, 0x0E, 0x46,
  548. 0x85, 0x4D, 0xB8, 0xEB, 0xD0, 0x91, 0x81, 0xA7,
  549. 0x29, 0x59, 0x09, 0x8B, 0x3E, 0xF8, 0xC1, 0x22,
  550. 0xD9, 0x63, 0x55, 0x14, 0xCE, 0xD5, 0x65, 0xFE },
  551. { 0x82, 0x55, 0x8A, 0x38, 0x9A, 0x44, 0x3C, 0x0E,
  552. 0xA4, 0xCC, 0x81, 0x98, 0x99, 0xF2, 0x08, 0x3A,
  553. 0x85, 0xF0, 0xFA, 0xA3, 0xE5, 0x78, 0xF8, 0x07,
  554. 0x7A, 0x2E, 0x3F, 0xF4, 0x67, 0x29, 0x66, 0x5B },
  555. { 0xA3, 0xB6, 0x16, 0x74, 0x73, 0x10, 0x0E, 0xE0,
  556. 0x6E, 0x0C, 0x79, 0x6C, 0x29, 0x55, 0x55, 0x2B },
  557. { 0x60, 0xE4, 0x31, 0x59, 0x1E, 0xE0, 0xB6, 0x7F,
  558. 0x0D, 0x8A, 0x26, 0xAA, 0xCB, 0xF5, 0xB7, 0x7F,
  559. 0x8E, 0x0B, 0xC6, 0x21, 0x37, 0x28, 0xC5, 0x14,
  560. 0x05, 0x46, 0x04, 0x0F, 0x0E, 0xE3, 0x7F, 0x54 },
  561. { 0x9B, 0x09, 0xFF, 0xA7, 0x1B, 0x94, 0x2F, 0xCB,
  562. 0x27, 0x63, 0x5F, 0xBC, 0xD5, 0xB0, 0xE9, 0x44,
  563. 0xBF, 0xDC, 0x63, 0x64, 0x4F, 0x07, 0x13, 0x93,
  564. 0x8A, 0x7F, 0x51, 0x53, 0x5C, 0x3A, 0x35, 0xE2 }
  565. };
  566. /*
  567. * Checkup routine
  568. */
  569. int sha256_self_test( int verbose )
  570. {
  571. int i, j, k, buflen, ret = 0;
  572. unsigned char buf[1024];
  573. unsigned char sha256sum[32];
  574. sha256_context ctx;
  575. sha256_init( &ctx );
  576. for( i = 0; i < 6; i++ )
  577. {
  578. j = i % 3;
  579. k = i < 3;
  580. if( verbose != 0 )
  581. polarssl_printf( " SHA-%d test #%d: ", 256 - k * 32, j + 1 );
  582. sha256_starts( &ctx, k );
  583. if( j == 2 )
  584. {
  585. memset( buf, 'a', buflen = 1000 );
  586. for( j = 0; j < 1000; j++ )
  587. sha256_update( &ctx, buf, buflen );
  588. }
  589. else
  590. sha256_update( &ctx, sha256_test_buf[j],
  591. sha256_test_buflen[j] );
  592. sha256_finish( &ctx, sha256sum );
  593. if( memcmp( sha256sum, sha256_test_sum[i], 32 - k * 4 ) != 0 )
  594. {
  595. if( verbose != 0 )
  596. polarssl_printf( "failed\n" );
  597. ret = 1;
  598. goto exit;
  599. }
  600. if( verbose != 0 )
  601. polarssl_printf( "passed\n" );
  602. }
  603. if( verbose != 0 )
  604. polarssl_printf( "\n" );
  605. for( i = 0; i < 14; i++ )
  606. {
  607. j = i % 7;
  608. k = i < 7;
  609. if( verbose != 0 )
  610. polarssl_printf( " HMAC-SHA-%d test #%d: ", 256 - k * 32, j + 1 );
  611. if( j == 5 || j == 6 )
  612. {
  613. memset( buf, '\xAA', buflen = 131 );
  614. sha256_hmac_starts( &ctx, buf, buflen, k );
  615. }
  616. else
  617. sha256_hmac_starts( &ctx, sha256_hmac_test_key[j],
  618. sha256_hmac_test_keylen[j], k );
  619. sha256_hmac_update( &ctx, sha256_hmac_test_buf[j],
  620. sha256_hmac_test_buflen[j] );
  621. sha256_hmac_finish( &ctx, sha256sum );
  622. buflen = ( j == 4 ) ? 16 : 32 - k * 4;
  623. if( memcmp( sha256sum, sha256_hmac_test_sum[i], buflen ) != 0 )
  624. {
  625. if( verbose != 0 )
  626. polarssl_printf( "failed\n" );
  627. ret = 1;
  628. goto exit;
  629. }
  630. if( verbose != 0 )
  631. polarssl_printf( "passed\n" );
  632. }
  633. if( verbose != 0 )
  634. polarssl_printf( "\n" );
  635. exit:
  636. sha256_free( &ctx );
  637. return( ret );
  638. }
  639. #endif /* POLARSSL_SELF_TEST */
  640. #endif /* POLARSSL_SHA256_C */