sha1.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662
  1. /*
  2. * FIPS-180-1 compliant SHA-1 implementation
  3. *
  4. * Copyright (C) 2006-2014, Brainspark B.V.
  5. *
  6. * This file is part of PolarSSL (http://www.polarssl.org)
  7. * Lead Maintainer: Paul Bakker <polarssl_maintainer at polarssl.org>
  8. *
  9. * All rights reserved.
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License as published by
  13. * the Free Software Foundation; either version 2 of the License, or
  14. * (at your option) any later version.
  15. *
  16. * This program is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  19. * GNU General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License along
  22. * with this program; if not, write to the Free Software Foundation, Inc.,
  23. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  24. */
  25. /*
  26. * The SHA-1 standard was published by NIST in 1993.
  27. *
  28. * http://www.itl.nist.gov/fipspubs/fip180-1.htm
  29. */
  30. #if !defined(POLARSSL_CONFIG_FILE)
  31. #include "polarssl/config.h"
  32. #else
  33. #include POLARSSL_CONFIG_FILE
  34. #endif
  35. #if defined(POLARSSL_SHA1_C)
  36. #include "polarssl/sha1.h"
  37. #if defined(POLARSSL_FS_IO) || defined(POLARSSL_SELF_TEST)
  38. #include <stdio.h>
  39. #endif
  40. #if defined(POLARSSL_PLATFORM_C)
  41. #include "polarssl/platform.h"
  42. #else
  43. #define polarssl_printf printf
  44. #endif
  45. /* Implementation that should never be optimized out by the compiler */
  46. static void polarssl_zeroize( void *v, size_t n ) {
  47. volatile unsigned char *p = v; while( n-- ) *p++ = 0;
  48. }
  49. #if !defined(POLARSSL_SHA1_ALT)
  50. /*
  51. * 32-bit integer manipulation macros (big endian)
  52. */
  53. #ifndef GET_UINT32_BE
  54. #define GET_UINT32_BE(n,b,i) \
  55. { \
  56. (n) = ( (uint32_t) (b)[(i) ] << 24 ) \
  57. | ( (uint32_t) (b)[(i) + 1] << 16 ) \
  58. | ( (uint32_t) (b)[(i) + 2] << 8 ) \
  59. | ( (uint32_t) (b)[(i) + 3] ); \
  60. }
  61. #endif
  62. #ifndef PUT_UINT32_BE
  63. #define PUT_UINT32_BE(n,b,i) \
  64. { \
  65. (b)[(i) ] = (unsigned char) ( (n) >> 24 ); \
  66. (b)[(i) + 1] = (unsigned char) ( (n) >> 16 ); \
  67. (b)[(i) + 2] = (unsigned char) ( (n) >> 8 ); \
  68. (b)[(i) + 3] = (unsigned char) ( (n) ); \
  69. }
  70. #endif
  71. void sha1_init( sha1_context *ctx )
  72. {
  73. memset( ctx, 0, sizeof( sha1_context ) );
  74. }
  75. void sha1_free( sha1_context *ctx )
  76. {
  77. if( ctx == NULL )
  78. return;
  79. polarssl_zeroize( ctx, sizeof( sha1_context ) );
  80. }
  81. /*
  82. * SHA-1 context setup
  83. */
  84. void sha1_starts( sha1_context *ctx )
  85. {
  86. ctx->total[0] = 0;
  87. ctx->total[1] = 0;
  88. ctx->state[0] = 0x67452301;
  89. ctx->state[1] = 0xEFCDAB89;
  90. ctx->state[2] = 0x98BADCFE;
  91. ctx->state[3] = 0x10325476;
  92. ctx->state[4] = 0xC3D2E1F0;
  93. }
  94. void sha1_process( sha1_context *ctx, const unsigned char data[64] )
  95. {
  96. uint32_t temp, W[16], A, B, C, D, E;
  97. GET_UINT32_BE( W[ 0], data, 0 );
  98. GET_UINT32_BE( W[ 1], data, 4 );
  99. GET_UINT32_BE( W[ 2], data, 8 );
  100. GET_UINT32_BE( W[ 3], data, 12 );
  101. GET_UINT32_BE( W[ 4], data, 16 );
  102. GET_UINT32_BE( W[ 5], data, 20 );
  103. GET_UINT32_BE( W[ 6], data, 24 );
  104. GET_UINT32_BE( W[ 7], data, 28 );
  105. GET_UINT32_BE( W[ 8], data, 32 );
  106. GET_UINT32_BE( W[ 9], data, 36 );
  107. GET_UINT32_BE( W[10], data, 40 );
  108. GET_UINT32_BE( W[11], data, 44 );
  109. GET_UINT32_BE( W[12], data, 48 );
  110. GET_UINT32_BE( W[13], data, 52 );
  111. GET_UINT32_BE( W[14], data, 56 );
  112. GET_UINT32_BE( W[15], data, 60 );
  113. #define S(x,n) ((x << n) | ((x & 0xFFFFFFFF) >> (32 - n)))
  114. #define R(t) \
  115. ( \
  116. temp = W[( t - 3 ) & 0x0F] ^ W[( t - 8 ) & 0x0F] ^ \
  117. W[( t - 14 ) & 0x0F] ^ W[ t & 0x0F], \
  118. ( W[t & 0x0F] = S(temp,1) ) \
  119. )
  120. #define P(a,b,c,d,e,x) \
  121. { \
  122. e += S(a,5) + F(b,c,d) + K + x; b = S(b,30); \
  123. }
  124. A = ctx->state[0];
  125. B = ctx->state[1];
  126. C = ctx->state[2];
  127. D = ctx->state[3];
  128. E = ctx->state[4];
  129. #define F(x,y,z) (z ^ (x & (y ^ z)))
  130. #define K 0x5A827999
  131. P( A, B, C, D, E, W[0] );
  132. P( E, A, B, C, D, W[1] );
  133. P( D, E, A, B, C, W[2] );
  134. P( C, D, E, A, B, W[3] );
  135. P( B, C, D, E, A, W[4] );
  136. P( A, B, C, D, E, W[5] );
  137. P( E, A, B, C, D, W[6] );
  138. P( D, E, A, B, C, W[7] );
  139. P( C, D, E, A, B, W[8] );
  140. P( B, C, D, E, A, W[9] );
  141. P( A, B, C, D, E, W[10] );
  142. P( E, A, B, C, D, W[11] );
  143. P( D, E, A, B, C, W[12] );
  144. P( C, D, E, A, B, W[13] );
  145. P( B, C, D, E, A, W[14] );
  146. P( A, B, C, D, E, W[15] );
  147. P( E, A, B, C, D, R(16) );
  148. P( D, E, A, B, C, R(17) );
  149. P( C, D, E, A, B, R(18) );
  150. P( B, C, D, E, A, R(19) );
  151. #undef K
  152. #undef F
  153. #define F(x,y,z) (x ^ y ^ z)
  154. #define K 0x6ED9EBA1
  155. P( A, B, C, D, E, R(20) );
  156. P( E, A, B, C, D, R(21) );
  157. P( D, E, A, B, C, R(22) );
  158. P( C, D, E, A, B, R(23) );
  159. P( B, C, D, E, A, R(24) );
  160. P( A, B, C, D, E, R(25) );
  161. P( E, A, B, C, D, R(26) );
  162. P( D, E, A, B, C, R(27) );
  163. P( C, D, E, A, B, R(28) );
  164. P( B, C, D, E, A, R(29) );
  165. P( A, B, C, D, E, R(30) );
  166. P( E, A, B, C, D, R(31) );
  167. P( D, E, A, B, C, R(32) );
  168. P( C, D, E, A, B, R(33) );
  169. P( B, C, D, E, A, R(34) );
  170. P( A, B, C, D, E, R(35) );
  171. P( E, A, B, C, D, R(36) );
  172. P( D, E, A, B, C, R(37) );
  173. P( C, D, E, A, B, R(38) );
  174. P( B, C, D, E, A, R(39) );
  175. #undef K
  176. #undef F
  177. #define F(x,y,z) ((x & y) | (z & (x | y)))
  178. #define K 0x8F1BBCDC
  179. P( A, B, C, D, E, R(40) );
  180. P( E, A, B, C, D, R(41) );
  181. P( D, E, A, B, C, R(42) );
  182. P( C, D, E, A, B, R(43) );
  183. P( B, C, D, E, A, R(44) );
  184. P( A, B, C, D, E, R(45) );
  185. P( E, A, B, C, D, R(46) );
  186. P( D, E, A, B, C, R(47) );
  187. P( C, D, E, A, B, R(48) );
  188. P( B, C, D, E, A, R(49) );
  189. P( A, B, C, D, E, R(50) );
  190. P( E, A, B, C, D, R(51) );
  191. P( D, E, A, B, C, R(52) );
  192. P( C, D, E, A, B, R(53) );
  193. P( B, C, D, E, A, R(54) );
  194. P( A, B, C, D, E, R(55) );
  195. P( E, A, B, C, D, R(56) );
  196. P( D, E, A, B, C, R(57) );
  197. P( C, D, E, A, B, R(58) );
  198. P( B, C, D, E, A, R(59) );
  199. #undef K
  200. #undef F
  201. #define F(x,y,z) (x ^ y ^ z)
  202. #define K 0xCA62C1D6
  203. P( A, B, C, D, E, R(60) );
  204. P( E, A, B, C, D, R(61) );
  205. P( D, E, A, B, C, R(62) );
  206. P( C, D, E, A, B, R(63) );
  207. P( B, C, D, E, A, R(64) );
  208. P( A, B, C, D, E, R(65) );
  209. P( E, A, B, C, D, R(66) );
  210. P( D, E, A, B, C, R(67) );
  211. P( C, D, E, A, B, R(68) );
  212. P( B, C, D, E, A, R(69) );
  213. P( A, B, C, D, E, R(70) );
  214. P( E, A, B, C, D, R(71) );
  215. P( D, E, A, B, C, R(72) );
  216. P( C, D, E, A, B, R(73) );
  217. P( B, C, D, E, A, R(74) );
  218. P( A, B, C, D, E, R(75) );
  219. P( E, A, B, C, D, R(76) );
  220. P( D, E, A, B, C, R(77) );
  221. P( C, D, E, A, B, R(78) );
  222. P( B, C, D, E, A, R(79) );
  223. #undef K
  224. #undef F
  225. ctx->state[0] += A;
  226. ctx->state[1] += B;
  227. ctx->state[2] += C;
  228. ctx->state[3] += D;
  229. ctx->state[4] += E;
  230. }
  231. /*
  232. * SHA-1 process buffer
  233. */
  234. void sha1_update( sha1_context *ctx, const unsigned char *input, size_t ilen )
  235. {
  236. size_t fill;
  237. uint32_t left;
  238. if( ilen == 0 )
  239. return;
  240. left = ctx->total[0] & 0x3F;
  241. fill = 64 - left;
  242. ctx->total[0] += (uint32_t) ilen;
  243. ctx->total[0] &= 0xFFFFFFFF;
  244. if( ctx->total[0] < (uint32_t) ilen )
  245. ctx->total[1]++;
  246. if( left && ilen >= fill )
  247. {
  248. memcpy( (void *) (ctx->buffer + left), input, fill );
  249. sha1_process( ctx, ctx->buffer );
  250. input += fill;
  251. ilen -= fill;
  252. left = 0;
  253. }
  254. while( ilen >= 64 )
  255. {
  256. sha1_process( ctx, input );
  257. input += 64;
  258. ilen -= 64;
  259. }
  260. if( ilen > 0 )
  261. memcpy( (void *) (ctx->buffer + left), input, ilen );
  262. }
  263. static const unsigned char sha1_padding[64] =
  264. {
  265. 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  266. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  267. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  268. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
  269. };
  270. /*
  271. * SHA-1 final digest
  272. */
  273. void sha1_finish( sha1_context *ctx, unsigned char output[20] )
  274. {
  275. uint32_t last, padn;
  276. uint32_t high, low;
  277. unsigned char msglen[8];
  278. high = ( ctx->total[0] >> 29 )
  279. | ( ctx->total[1] << 3 );
  280. low = ( ctx->total[0] << 3 );
  281. PUT_UINT32_BE( high, msglen, 0 );
  282. PUT_UINT32_BE( low, msglen, 4 );
  283. last = ctx->total[0] & 0x3F;
  284. padn = ( last < 56 ) ? ( 56 - last ) : ( 120 - last );
  285. sha1_update( ctx, sha1_padding, padn );
  286. sha1_update( ctx, msglen, 8 );
  287. PUT_UINT32_BE( ctx->state[0], output, 0 );
  288. PUT_UINT32_BE( ctx->state[1], output, 4 );
  289. PUT_UINT32_BE( ctx->state[2], output, 8 );
  290. PUT_UINT32_BE( ctx->state[3], output, 12 );
  291. PUT_UINT32_BE( ctx->state[4], output, 16 );
  292. }
  293. #endif /* !POLARSSL_SHA1_ALT */
  294. /*
  295. * output = SHA-1( input buffer )
  296. */
  297. void sha1( const unsigned char *input, size_t ilen, unsigned char output[20] )
  298. {
  299. sha1_context ctx;
  300. sha1_init( &ctx );
  301. sha1_starts( &ctx );
  302. sha1_update( &ctx, input, ilen );
  303. sha1_finish( &ctx, output );
  304. sha1_free( &ctx );
  305. }
  306. #if defined(POLARSSL_FS_IO)
  307. /*
  308. * output = SHA-1( file contents )
  309. */
  310. int sha1_file( const char *path, unsigned char output[20] )
  311. {
  312. FILE *f;
  313. size_t n;
  314. sha1_context ctx;
  315. unsigned char buf[1024];
  316. if( ( f = fopen( path, "rb" ) ) == NULL )
  317. return( POLARSSL_ERR_SHA1_FILE_IO_ERROR );
  318. sha1_init( &ctx );
  319. sha1_starts( &ctx );
  320. while( ( n = fread( buf, 1, sizeof( buf ), f ) ) > 0 )
  321. sha1_update( &ctx, buf, n );
  322. sha1_finish( &ctx, output );
  323. sha1_free( &ctx );
  324. if( ferror( f ) != 0 )
  325. {
  326. fclose( f );
  327. return( POLARSSL_ERR_SHA1_FILE_IO_ERROR );
  328. }
  329. fclose( f );
  330. return( 0 );
  331. }
  332. #endif /* POLARSSL_FS_IO */
  333. /*
  334. * SHA-1 HMAC context setup
  335. */
  336. void sha1_hmac_starts( sha1_context *ctx, const unsigned char *key,
  337. size_t keylen )
  338. {
  339. size_t i;
  340. unsigned char sum[20];
  341. if( keylen > 64 )
  342. {
  343. sha1( key, keylen, sum );
  344. keylen = 20;
  345. key = sum;
  346. }
  347. memset( ctx->ipad, 0x36, 64 );
  348. memset( ctx->opad, 0x5C, 64 );
  349. for( i = 0; i < keylen; i++ )
  350. {
  351. ctx->ipad[i] = (unsigned char)( ctx->ipad[i] ^ key[i] );
  352. ctx->opad[i] = (unsigned char)( ctx->opad[i] ^ key[i] );
  353. }
  354. sha1_starts( ctx );
  355. sha1_update( ctx, ctx->ipad, 64 );
  356. polarssl_zeroize( sum, sizeof( sum ) );
  357. }
  358. /*
  359. * SHA-1 HMAC process buffer
  360. */
  361. void sha1_hmac_update( sha1_context *ctx, const unsigned char *input,
  362. size_t ilen )
  363. {
  364. sha1_update( ctx, input, ilen );
  365. }
  366. /*
  367. * SHA-1 HMAC final digest
  368. */
  369. void sha1_hmac_finish( sha1_context *ctx, unsigned char output[20] )
  370. {
  371. unsigned char tmpbuf[20];
  372. sha1_finish( ctx, tmpbuf );
  373. sha1_starts( ctx );
  374. sha1_update( ctx, ctx->opad, 64 );
  375. sha1_update( ctx, tmpbuf, 20 );
  376. sha1_finish( ctx, output );
  377. polarssl_zeroize( tmpbuf, sizeof( tmpbuf ) );
  378. }
  379. /*
  380. * SHA1 HMAC context reset
  381. */
  382. void sha1_hmac_reset( sha1_context *ctx )
  383. {
  384. sha1_starts( ctx );
  385. sha1_update( ctx, ctx->ipad, 64 );
  386. }
  387. /*
  388. * output = HMAC-SHA-1( hmac key, input buffer )
  389. */
  390. void sha1_hmac( const unsigned char *key, size_t keylen,
  391. const unsigned char *input, size_t ilen,
  392. unsigned char output[20] )
  393. {
  394. sha1_context ctx;
  395. sha1_init( &ctx );
  396. sha1_hmac_starts( &ctx, key, keylen );
  397. sha1_hmac_update( &ctx, input, ilen );
  398. sha1_hmac_finish( &ctx, output );
  399. sha1_free( &ctx );
  400. }
  401. #if defined(POLARSSL_SELF_TEST)
  402. /*
  403. * FIPS-180-1 test vectors
  404. */
  405. static unsigned char sha1_test_buf[3][57] =
  406. {
  407. { "abc" },
  408. { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq" },
  409. { "" }
  410. };
  411. static const int sha1_test_buflen[3] =
  412. {
  413. 3, 56, 1000
  414. };
  415. static const unsigned char sha1_test_sum[3][20] =
  416. {
  417. { 0xA9, 0x99, 0x3E, 0x36, 0x47, 0x06, 0x81, 0x6A, 0xBA, 0x3E,
  418. 0x25, 0x71, 0x78, 0x50, 0xC2, 0x6C, 0x9C, 0xD0, 0xD8, 0x9D },
  419. { 0x84, 0x98, 0x3E, 0x44, 0x1C, 0x3B, 0xD2, 0x6E, 0xBA, 0xAE,
  420. 0x4A, 0xA1, 0xF9, 0x51, 0x29, 0xE5, 0xE5, 0x46, 0x70, 0xF1 },
  421. { 0x34, 0xAA, 0x97, 0x3C, 0xD4, 0xC4, 0xDA, 0xA4, 0xF6, 0x1E,
  422. 0xEB, 0x2B, 0xDB, 0xAD, 0x27, 0x31, 0x65, 0x34, 0x01, 0x6F }
  423. };
  424. /*
  425. * RFC 2202 test vectors
  426. */
  427. static unsigned char sha1_hmac_test_key[7][26] =
  428. {
  429. { "\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B"
  430. "\x0B\x0B\x0B\x0B" },
  431. { "Jefe" },
  432. { "\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA"
  433. "\xAA\xAA\xAA\xAA" },
  434. { "\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F\x10"
  435. "\x11\x12\x13\x14\x15\x16\x17\x18\x19" },
  436. { "\x0C\x0C\x0C\x0C\x0C\x0C\x0C\x0C\x0C\x0C\x0C\x0C\x0C\x0C\x0C\x0C"
  437. "\x0C\x0C\x0C\x0C" },
  438. { "" }, /* 0xAA 80 times */
  439. { "" }
  440. };
  441. static const int sha1_hmac_test_keylen[7] =
  442. {
  443. 20, 4, 20, 25, 20, 80, 80
  444. };
  445. static unsigned char sha1_hmac_test_buf[7][74] =
  446. {
  447. { "Hi There" },
  448. { "what do ya want for nothing?" },
  449. { "\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD"
  450. "\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD"
  451. "\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD"
  452. "\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD"
  453. "\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD" },
  454. { "\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD"
  455. "\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD"
  456. "\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD"
  457. "\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD"
  458. "\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD" },
  459. { "Test With Truncation" },
  460. { "Test Using Larger Than Block-Size Key - Hash Key First" },
  461. { "Test Using Larger Than Block-Size Key and Larger"
  462. " Than One Block-Size Data" }
  463. };
  464. static const int sha1_hmac_test_buflen[7] =
  465. {
  466. 8, 28, 50, 50, 20, 54, 73
  467. };
  468. static const unsigned char sha1_hmac_test_sum[7][20] =
  469. {
  470. { 0xB6, 0x17, 0x31, 0x86, 0x55, 0x05, 0x72, 0x64, 0xE2, 0x8B,
  471. 0xC0, 0xB6, 0xFB, 0x37, 0x8C, 0x8E, 0xF1, 0x46, 0xBE, 0x00 },
  472. { 0xEF, 0xFC, 0xDF, 0x6A, 0xE5, 0xEB, 0x2F, 0xA2, 0xD2, 0x74,
  473. 0x16, 0xD5, 0xF1, 0x84, 0xDF, 0x9C, 0x25, 0x9A, 0x7C, 0x79 },
  474. { 0x12, 0x5D, 0x73, 0x42, 0xB9, 0xAC, 0x11, 0xCD, 0x91, 0xA3,
  475. 0x9A, 0xF4, 0x8A, 0xA1, 0x7B, 0x4F, 0x63, 0xF1, 0x75, 0xD3 },
  476. { 0x4C, 0x90, 0x07, 0xF4, 0x02, 0x62, 0x50, 0xC6, 0xBC, 0x84,
  477. 0x14, 0xF9, 0xBF, 0x50, 0xC8, 0x6C, 0x2D, 0x72, 0x35, 0xDA },
  478. { 0x4C, 0x1A, 0x03, 0x42, 0x4B, 0x55, 0xE0, 0x7F, 0xE7, 0xF2,
  479. 0x7B, 0xE1 },
  480. { 0xAA, 0x4A, 0xE5, 0xE1, 0x52, 0x72, 0xD0, 0x0E, 0x95, 0x70,
  481. 0x56, 0x37, 0xCE, 0x8A, 0x3B, 0x55, 0xED, 0x40, 0x21, 0x12 },
  482. { 0xE8, 0xE9, 0x9D, 0x0F, 0x45, 0x23, 0x7D, 0x78, 0x6D, 0x6B,
  483. 0xBA, 0xA7, 0x96, 0x5C, 0x78, 0x08, 0xBB, 0xFF, 0x1A, 0x91 }
  484. };
  485. /*
  486. * Checkup routine
  487. */
  488. int sha1_self_test( int verbose )
  489. {
  490. int i, j, buflen, ret = 0;
  491. unsigned char buf[1024];
  492. unsigned char sha1sum[20];
  493. sha1_context ctx;
  494. sha1_init( &ctx );
  495. /*
  496. * SHA-1
  497. */
  498. for( i = 0; i < 3; i++ )
  499. {
  500. if( verbose != 0 )
  501. polarssl_printf( " SHA-1 test #%d: ", i + 1 );
  502. sha1_starts( &ctx );
  503. if( i == 2 )
  504. {
  505. memset( buf, 'a', buflen = 1000 );
  506. for( j = 0; j < 1000; j++ )
  507. sha1_update( &ctx, buf, buflen );
  508. }
  509. else
  510. sha1_update( &ctx, sha1_test_buf[i],
  511. sha1_test_buflen[i] );
  512. sha1_finish( &ctx, sha1sum );
  513. if( memcmp( sha1sum, sha1_test_sum[i], 20 ) != 0 )
  514. {
  515. if( verbose != 0 )
  516. polarssl_printf( "failed\n" );
  517. ret = 1;
  518. goto exit;
  519. }
  520. if( verbose != 0 )
  521. polarssl_printf( "passed\n" );
  522. }
  523. if( verbose != 0 )
  524. polarssl_printf( "\n" );
  525. for( i = 0; i < 7; i++ )
  526. {
  527. if( verbose != 0 )
  528. polarssl_printf( " HMAC-SHA-1 test #%d: ", i + 1 );
  529. if( i == 5 || i == 6 )
  530. {
  531. memset( buf, '\xAA', buflen = 80 );
  532. sha1_hmac_starts( &ctx, buf, buflen );
  533. }
  534. else
  535. sha1_hmac_starts( &ctx, sha1_hmac_test_key[i],
  536. sha1_hmac_test_keylen[i] );
  537. sha1_hmac_update( &ctx, sha1_hmac_test_buf[i],
  538. sha1_hmac_test_buflen[i] );
  539. sha1_hmac_finish( &ctx, sha1sum );
  540. buflen = ( i == 4 ) ? 12 : 20;
  541. if( memcmp( sha1sum, sha1_hmac_test_sum[i], buflen ) != 0 )
  542. {
  543. if( verbose != 0 )
  544. polarssl_printf( "failed\n" );
  545. ret = 1;
  546. goto exit;
  547. }
  548. if( verbose != 0 )
  549. polarssl_printf( "passed\n" );
  550. }
  551. if( verbose != 0 )
  552. polarssl_printf( "\n" );
  553. exit:
  554. sha1_free( &ctx );
  555. return( ret );
  556. }
  557. #endif /* POLARSSL_SELF_TEST */
  558. #endif /* POLARSSL_SHA1_C */