ecp_curves.c 51 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381
  1. /*
  2. * Elliptic curves over GF(p): curve-specific data and functions
  3. *
  4. * Copyright (C) 2006-2014, Brainspark B.V.
  5. *
  6. * This file is part of PolarSSL (http://www.polarssl.org)
  7. * Lead Maintainer: Paul Bakker <polarssl_maintainer at polarssl.org>
  8. *
  9. * All rights reserved.
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License as published by
  13. * the Free Software Foundation; either version 2 of the License, or
  14. * (at your option) any later version.
  15. *
  16. * This program is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  19. * GNU General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License along
  22. * with this program; if not, write to the Free Software Foundation, Inc.,
  23. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  24. */
  25. #if !defined(POLARSSL_CONFIG_FILE)
  26. #include "polarssl/config.h"
  27. #else
  28. #include POLARSSL_CONFIG_FILE
  29. #endif
  30. #if defined(POLARSSL_ECP_C)
  31. #include "polarssl/ecp.h"
  32. #if defined(_MSC_VER) && !defined(inline)
  33. #define inline _inline
  34. #else
  35. #if defined(__ARMCC_VERSION) && !defined(inline)
  36. #define inline __inline
  37. #endif /* __ARMCC_VERSION */
  38. #endif /*_MSC_VER */
  39. /*
  40. * Conversion macros for embedded constants:
  41. * build lists of t_uint's from lists of unsigned char's grouped by 8, 4 or 2
  42. */
  43. #if defined(POLARSSL_HAVE_INT8)
  44. #define BYTES_TO_T_UINT_8( a, b, c, d, e, f, g, h ) \
  45. a, b, c, d, e, f, g, h
  46. #define BYTES_TO_T_UINT_4( a, b, c, d ) \
  47. a, b, c, d
  48. #define BYTES_TO_T_UINT_2( a, b ) \
  49. a, b
  50. #elif defined(POLARSSL_HAVE_INT16)
  51. #define BYTES_TO_T_UINT_2( a, b ) \
  52. ( (t_uint) a << 0 ) | \
  53. ( (t_uint) b << 8 )
  54. #define BYTES_TO_T_UINT_4( a, b, c, d ) \
  55. BYTES_TO_T_UINT_2( a, b ), \
  56. BYTES_TO_T_UINT_2( c, d )
  57. #define BYTES_TO_T_UINT_8( a, b, c, d, e, f, g, h ) \
  58. BYTES_TO_T_UINT_2( a, b ), \
  59. BYTES_TO_T_UINT_2( c, d ), \
  60. BYTES_TO_T_UINT_2( e, f ), \
  61. BYTES_TO_T_UINT_2( g, h )
  62. #elif defined(POLARSSL_HAVE_INT32)
  63. #define BYTES_TO_T_UINT_4( a, b, c, d ) \
  64. ( (t_uint) a << 0 ) | \
  65. ( (t_uint) b << 8 ) | \
  66. ( (t_uint) c << 16 ) | \
  67. ( (t_uint) d << 24 )
  68. #define BYTES_TO_T_UINT_2( a, b ) \
  69. BYTES_TO_T_UINT_4( a, b, 0, 0 )
  70. #define BYTES_TO_T_UINT_8( a, b, c, d, e, f, g, h ) \
  71. BYTES_TO_T_UINT_4( a, b, c, d ), \
  72. BYTES_TO_T_UINT_4( e, f, g, h )
  73. #else /* 64-bits */
  74. #define BYTES_TO_T_UINT_8( a, b, c, d, e, f, g, h ) \
  75. ( (t_uint) a << 0 ) | \
  76. ( (t_uint) b << 8 ) | \
  77. ( (t_uint) c << 16 ) | \
  78. ( (t_uint) d << 24 ) | \
  79. ( (t_uint) e << 32 ) | \
  80. ( (t_uint) f << 40 ) | \
  81. ( (t_uint) g << 48 ) | \
  82. ( (t_uint) h << 56 )
  83. #define BYTES_TO_T_UINT_4( a, b, c, d ) \
  84. BYTES_TO_T_UINT_8( a, b, c, d, 0, 0, 0, 0 )
  85. #define BYTES_TO_T_UINT_2( a, b ) \
  86. BYTES_TO_T_UINT_8( a, b, 0, 0, 0, 0, 0, 0 )
  87. #endif /* bits in t_uint */
  88. /*
  89. * Note: the constants are in little-endian order
  90. * to be directly usable in MPIs
  91. */
  92. /*
  93. * Domain parameters for secp192r1
  94. */
  95. #if defined(POLARSSL_ECP_DP_SECP192R1_ENABLED)
  96. static const t_uint secp192r1_p[] = {
  97. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  98. BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  99. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  100. };
  101. static const t_uint secp192r1_b[] = {
  102. BYTES_TO_T_UINT_8( 0xB1, 0xB9, 0x46, 0xC1, 0xEC, 0xDE, 0xB8, 0xFE ),
  103. BYTES_TO_T_UINT_8( 0x49, 0x30, 0x24, 0x72, 0xAB, 0xE9, 0xA7, 0x0F ),
  104. BYTES_TO_T_UINT_8( 0xE7, 0x80, 0x9C, 0xE5, 0x19, 0x05, 0x21, 0x64 ),
  105. };
  106. static const t_uint secp192r1_gx[] = {
  107. BYTES_TO_T_UINT_8( 0x12, 0x10, 0xFF, 0x82, 0xFD, 0x0A, 0xFF, 0xF4 ),
  108. BYTES_TO_T_UINT_8( 0x00, 0x88, 0xA1, 0x43, 0xEB, 0x20, 0xBF, 0x7C ),
  109. BYTES_TO_T_UINT_8( 0xF6, 0x90, 0x30, 0xB0, 0x0E, 0xA8, 0x8D, 0x18 ),
  110. };
  111. static const t_uint secp192r1_gy[] = {
  112. BYTES_TO_T_UINT_8( 0x11, 0x48, 0x79, 0x1E, 0xA1, 0x77, 0xF9, 0x73 ),
  113. BYTES_TO_T_UINT_8( 0xD5, 0xCD, 0x24, 0x6B, 0xED, 0x11, 0x10, 0x63 ),
  114. BYTES_TO_T_UINT_8( 0x78, 0xDA, 0xC8, 0xFF, 0x95, 0x2B, 0x19, 0x07 ),
  115. };
  116. static const t_uint secp192r1_n[] = {
  117. BYTES_TO_T_UINT_8( 0x31, 0x28, 0xD2, 0xB4, 0xB1, 0xC9, 0x6B, 0x14 ),
  118. BYTES_TO_T_UINT_8( 0x36, 0xF8, 0xDE, 0x99, 0xFF, 0xFF, 0xFF, 0xFF ),
  119. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  120. };
  121. #endif /* POLARSSL_ECP_DP_SECP192R1_ENABLED */
  122. /*
  123. * Domain parameters for secp224r1
  124. */
  125. #if defined(POLARSSL_ECP_DP_SECP224R1_ENABLED)
  126. static const t_uint secp224r1_p[] = {
  127. BYTES_TO_T_UINT_8( 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
  128. BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
  129. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  130. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
  131. };
  132. static const t_uint secp224r1_b[] = {
  133. BYTES_TO_T_UINT_8( 0xB4, 0xFF, 0x55, 0x23, 0x43, 0x39, 0x0B, 0x27 ),
  134. BYTES_TO_T_UINT_8( 0xBA, 0xD8, 0xBF, 0xD7, 0xB7, 0xB0, 0x44, 0x50 ),
  135. BYTES_TO_T_UINT_8( 0x56, 0x32, 0x41, 0xF5, 0xAB, 0xB3, 0x04, 0x0C ),
  136. BYTES_TO_T_UINT_4( 0x85, 0x0A, 0x05, 0xB4 ),
  137. };
  138. static const t_uint secp224r1_gx[] = {
  139. BYTES_TO_T_UINT_8( 0x21, 0x1D, 0x5C, 0x11, 0xD6, 0x80, 0x32, 0x34 ),
  140. BYTES_TO_T_UINT_8( 0x22, 0x11, 0xC2, 0x56, 0xD3, 0xC1, 0x03, 0x4A ),
  141. BYTES_TO_T_UINT_8( 0xB9, 0x90, 0x13, 0x32, 0x7F, 0xBF, 0xB4, 0x6B ),
  142. BYTES_TO_T_UINT_4( 0xBD, 0x0C, 0x0E, 0xB7 ),
  143. };
  144. static const t_uint secp224r1_gy[] = {
  145. BYTES_TO_T_UINT_8( 0x34, 0x7E, 0x00, 0x85, 0x99, 0x81, 0xD5, 0x44 ),
  146. BYTES_TO_T_UINT_8( 0x64, 0x47, 0x07, 0x5A, 0xA0, 0x75, 0x43, 0xCD ),
  147. BYTES_TO_T_UINT_8( 0xE6, 0xDF, 0x22, 0x4C, 0xFB, 0x23, 0xF7, 0xB5 ),
  148. BYTES_TO_T_UINT_4( 0x88, 0x63, 0x37, 0xBD ),
  149. };
  150. static const t_uint secp224r1_n[] = {
  151. BYTES_TO_T_UINT_8( 0x3D, 0x2A, 0x5C, 0x5C, 0x45, 0x29, 0xDD, 0x13 ),
  152. BYTES_TO_T_UINT_8( 0x3E, 0xF0, 0xB8, 0xE0, 0xA2, 0x16, 0xFF, 0xFF ),
  153. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  154. BYTES_TO_T_UINT_4( 0xFF, 0xFF, 0xFF, 0xFF ),
  155. };
  156. #endif /* POLARSSL_ECP_DP_SECP224R1_ENABLED */
  157. /*
  158. * Domain parameters for secp256r1
  159. */
  160. #if defined(POLARSSL_ECP_DP_SECP256R1_ENABLED)
  161. static const t_uint secp256r1_p[] = {
  162. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  163. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
  164. BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
  165. BYTES_TO_T_UINT_8( 0x01, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
  166. };
  167. static const t_uint secp256r1_b[] = {
  168. BYTES_TO_T_UINT_8( 0x4B, 0x60, 0xD2, 0x27, 0x3E, 0x3C, 0xCE, 0x3B ),
  169. BYTES_TO_T_UINT_8( 0xF6, 0xB0, 0x53, 0xCC, 0xB0, 0x06, 0x1D, 0x65 ),
  170. BYTES_TO_T_UINT_8( 0xBC, 0x86, 0x98, 0x76, 0x55, 0xBD, 0xEB, 0xB3 ),
  171. BYTES_TO_T_UINT_8( 0xE7, 0x93, 0x3A, 0xAA, 0xD8, 0x35, 0xC6, 0x5A ),
  172. };
  173. static const t_uint secp256r1_gx[] = {
  174. BYTES_TO_T_UINT_8( 0x96, 0xC2, 0x98, 0xD8, 0x45, 0x39, 0xA1, 0xF4 ),
  175. BYTES_TO_T_UINT_8( 0xA0, 0x33, 0xEB, 0x2D, 0x81, 0x7D, 0x03, 0x77 ),
  176. BYTES_TO_T_UINT_8( 0xF2, 0x40, 0xA4, 0x63, 0xE5, 0xE6, 0xBC, 0xF8 ),
  177. BYTES_TO_T_UINT_8( 0x47, 0x42, 0x2C, 0xE1, 0xF2, 0xD1, 0x17, 0x6B ),
  178. };
  179. static const t_uint secp256r1_gy[] = {
  180. BYTES_TO_T_UINT_8( 0xF5, 0x51, 0xBF, 0x37, 0x68, 0x40, 0xB6, 0xCB ),
  181. BYTES_TO_T_UINT_8( 0xCE, 0x5E, 0x31, 0x6B, 0x57, 0x33, 0xCE, 0x2B ),
  182. BYTES_TO_T_UINT_8( 0x16, 0x9E, 0x0F, 0x7C, 0x4A, 0xEB, 0xE7, 0x8E ),
  183. BYTES_TO_T_UINT_8( 0x9B, 0x7F, 0x1A, 0xFE, 0xE2, 0x42, 0xE3, 0x4F ),
  184. };
  185. static const t_uint secp256r1_n[] = {
  186. BYTES_TO_T_UINT_8( 0x51, 0x25, 0x63, 0xFC, 0xC2, 0xCA, 0xB9, 0xF3 ),
  187. BYTES_TO_T_UINT_8( 0x84, 0x9E, 0x17, 0xA7, 0xAD, 0xFA, 0xE6, 0xBC ),
  188. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  189. BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
  190. };
  191. #endif /* POLARSSL_ECP_DP_SECP256R1_ENABLED */
  192. /*
  193. * Domain parameters for secp384r1
  194. */
  195. #if defined(POLARSSL_ECP_DP_SECP384R1_ENABLED)
  196. static const t_uint secp384r1_p[] = {
  197. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
  198. BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
  199. BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  200. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  201. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  202. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  203. };
  204. static const t_uint secp384r1_b[] = {
  205. BYTES_TO_T_UINT_8( 0xEF, 0x2A, 0xEC, 0xD3, 0xED, 0xC8, 0x85, 0x2A ),
  206. BYTES_TO_T_UINT_8( 0x9D, 0xD1, 0x2E, 0x8A, 0x8D, 0x39, 0x56, 0xC6 ),
  207. BYTES_TO_T_UINT_8( 0x5A, 0x87, 0x13, 0x50, 0x8F, 0x08, 0x14, 0x03 ),
  208. BYTES_TO_T_UINT_8( 0x12, 0x41, 0x81, 0xFE, 0x6E, 0x9C, 0x1D, 0x18 ),
  209. BYTES_TO_T_UINT_8( 0x19, 0x2D, 0xF8, 0xE3, 0x6B, 0x05, 0x8E, 0x98 ),
  210. BYTES_TO_T_UINT_8( 0xE4, 0xE7, 0x3E, 0xE2, 0xA7, 0x2F, 0x31, 0xB3 ),
  211. };
  212. static const t_uint secp384r1_gx[] = {
  213. BYTES_TO_T_UINT_8( 0xB7, 0x0A, 0x76, 0x72, 0x38, 0x5E, 0x54, 0x3A ),
  214. BYTES_TO_T_UINT_8( 0x6C, 0x29, 0x55, 0xBF, 0x5D, 0xF2, 0x02, 0x55 ),
  215. BYTES_TO_T_UINT_8( 0x38, 0x2A, 0x54, 0x82, 0xE0, 0x41, 0xF7, 0x59 ),
  216. BYTES_TO_T_UINT_8( 0x98, 0x9B, 0xA7, 0x8B, 0x62, 0x3B, 0x1D, 0x6E ),
  217. BYTES_TO_T_UINT_8( 0x74, 0xAD, 0x20, 0xF3, 0x1E, 0xC7, 0xB1, 0x8E ),
  218. BYTES_TO_T_UINT_8( 0x37, 0x05, 0x8B, 0xBE, 0x22, 0xCA, 0x87, 0xAA ),
  219. };
  220. static const t_uint secp384r1_gy[] = {
  221. BYTES_TO_T_UINT_8( 0x5F, 0x0E, 0xEA, 0x90, 0x7C, 0x1D, 0x43, 0x7A ),
  222. BYTES_TO_T_UINT_8( 0x9D, 0x81, 0x7E, 0x1D, 0xCE, 0xB1, 0x60, 0x0A ),
  223. BYTES_TO_T_UINT_8( 0xC0, 0xB8, 0xF0, 0xB5, 0x13, 0x31, 0xDA, 0xE9 ),
  224. BYTES_TO_T_UINT_8( 0x7C, 0x14, 0x9A, 0x28, 0xBD, 0x1D, 0xF4, 0xF8 ),
  225. BYTES_TO_T_UINT_8( 0x29, 0xDC, 0x92, 0x92, 0xBF, 0x98, 0x9E, 0x5D ),
  226. BYTES_TO_T_UINT_8( 0x6F, 0x2C, 0x26, 0x96, 0x4A, 0xDE, 0x17, 0x36 ),
  227. };
  228. static const t_uint secp384r1_n[] = {
  229. BYTES_TO_T_UINT_8( 0x73, 0x29, 0xC5, 0xCC, 0x6A, 0x19, 0xEC, 0xEC ),
  230. BYTES_TO_T_UINT_8( 0x7A, 0xA7, 0xB0, 0x48, 0xB2, 0x0D, 0x1A, 0x58 ),
  231. BYTES_TO_T_UINT_8( 0xDF, 0x2D, 0x37, 0xF4, 0x81, 0x4D, 0x63, 0xC7 ),
  232. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  233. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  234. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  235. };
  236. #endif /* POLARSSL_ECP_DP_SECP384R1_ENABLED */
  237. /*
  238. * Domain parameters for secp521r1
  239. */
  240. #if defined(POLARSSL_ECP_DP_SECP521R1_ENABLED)
  241. static const t_uint secp521r1_p[] = {
  242. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  243. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  244. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  245. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  246. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  247. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  248. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  249. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  250. BYTES_TO_T_UINT_2( 0xFF, 0x01 ),
  251. };
  252. static const t_uint secp521r1_b[] = {
  253. BYTES_TO_T_UINT_8( 0x00, 0x3F, 0x50, 0x6B, 0xD4, 0x1F, 0x45, 0xEF ),
  254. BYTES_TO_T_UINT_8( 0xF1, 0x34, 0x2C, 0x3D, 0x88, 0xDF, 0x73, 0x35 ),
  255. BYTES_TO_T_UINT_8( 0x07, 0xBF, 0xB1, 0x3B, 0xBD, 0xC0, 0x52, 0x16 ),
  256. BYTES_TO_T_UINT_8( 0x7B, 0x93, 0x7E, 0xEC, 0x51, 0x39, 0x19, 0x56 ),
  257. BYTES_TO_T_UINT_8( 0xE1, 0x09, 0xF1, 0x8E, 0x91, 0x89, 0xB4, 0xB8 ),
  258. BYTES_TO_T_UINT_8( 0xF3, 0x15, 0xB3, 0x99, 0x5B, 0x72, 0xDA, 0xA2 ),
  259. BYTES_TO_T_UINT_8( 0xEE, 0x40, 0x85, 0xB6, 0xA0, 0x21, 0x9A, 0x92 ),
  260. BYTES_TO_T_UINT_8( 0x1F, 0x9A, 0x1C, 0x8E, 0x61, 0xB9, 0x3E, 0x95 ),
  261. BYTES_TO_T_UINT_2( 0x51, 0x00 ),
  262. };
  263. static const t_uint secp521r1_gx[] = {
  264. BYTES_TO_T_UINT_8( 0x66, 0xBD, 0xE5, 0xC2, 0x31, 0x7E, 0x7E, 0xF9 ),
  265. BYTES_TO_T_UINT_8( 0x9B, 0x42, 0x6A, 0x85, 0xC1, 0xB3, 0x48, 0x33 ),
  266. BYTES_TO_T_UINT_8( 0xDE, 0xA8, 0xFF, 0xA2, 0x27, 0xC1, 0x1D, 0xFE ),
  267. BYTES_TO_T_UINT_8( 0x28, 0x59, 0xE7, 0xEF, 0x77, 0x5E, 0x4B, 0xA1 ),
  268. BYTES_TO_T_UINT_8( 0xBA, 0x3D, 0x4D, 0x6B, 0x60, 0xAF, 0x28, 0xF8 ),
  269. BYTES_TO_T_UINT_8( 0x21, 0xB5, 0x3F, 0x05, 0x39, 0x81, 0x64, 0x9C ),
  270. BYTES_TO_T_UINT_8( 0x42, 0xB4, 0x95, 0x23, 0x66, 0xCB, 0x3E, 0x9E ),
  271. BYTES_TO_T_UINT_8( 0xCD, 0xE9, 0x04, 0x04, 0xB7, 0x06, 0x8E, 0x85 ),
  272. BYTES_TO_T_UINT_2( 0xC6, 0x00 ),
  273. };
  274. static const t_uint secp521r1_gy[] = {
  275. BYTES_TO_T_UINT_8( 0x50, 0x66, 0xD1, 0x9F, 0x76, 0x94, 0xBE, 0x88 ),
  276. BYTES_TO_T_UINT_8( 0x40, 0xC2, 0x72, 0xA2, 0x86, 0x70, 0x3C, 0x35 ),
  277. BYTES_TO_T_UINT_8( 0x61, 0x07, 0xAD, 0x3F, 0x01, 0xB9, 0x50, 0xC5 ),
  278. BYTES_TO_T_UINT_8( 0x40, 0x26, 0xF4, 0x5E, 0x99, 0x72, 0xEE, 0x97 ),
  279. BYTES_TO_T_UINT_8( 0x2C, 0x66, 0x3E, 0x27, 0x17, 0xBD, 0xAF, 0x17 ),
  280. BYTES_TO_T_UINT_8( 0x68, 0x44, 0x9B, 0x57, 0x49, 0x44, 0xF5, 0x98 ),
  281. BYTES_TO_T_UINT_8( 0xD9, 0x1B, 0x7D, 0x2C, 0xB4, 0x5F, 0x8A, 0x5C ),
  282. BYTES_TO_T_UINT_8( 0x04, 0xC0, 0x3B, 0x9A, 0x78, 0x6A, 0x29, 0x39 ),
  283. BYTES_TO_T_UINT_2( 0x18, 0x01 ),
  284. };
  285. static const t_uint secp521r1_n[] = {
  286. BYTES_TO_T_UINT_8( 0x09, 0x64, 0x38, 0x91, 0x1E, 0xB7, 0x6F, 0xBB ),
  287. BYTES_TO_T_UINT_8( 0xAE, 0x47, 0x9C, 0x89, 0xB8, 0xC9, 0xB5, 0x3B ),
  288. BYTES_TO_T_UINT_8( 0xD0, 0xA5, 0x09, 0xF7, 0x48, 0x01, 0xCC, 0x7F ),
  289. BYTES_TO_T_UINT_8( 0x6B, 0x96, 0x2F, 0xBF, 0x83, 0x87, 0x86, 0x51 ),
  290. BYTES_TO_T_UINT_8( 0xFA, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  291. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  292. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  293. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  294. BYTES_TO_T_UINT_2( 0xFF, 0x01 ),
  295. };
  296. #endif /* POLARSSL_ECP_DP_SECP521R1_ENABLED */
  297. #if defined(POLARSSL_ECP_DP_SECP192K1_ENABLED)
  298. static const t_uint secp192k1_p[] = {
  299. BYTES_TO_T_UINT_8( 0x37, 0xEE, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
  300. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  301. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  302. };
  303. static const t_uint secp192k1_a[] = {
  304. BYTES_TO_T_UINT_2( 0x00, 0x00 ),
  305. };
  306. static const t_uint secp192k1_b[] = {
  307. BYTES_TO_T_UINT_2( 0x03, 0x00 ),
  308. };
  309. static const t_uint secp192k1_gx[] = {
  310. BYTES_TO_T_UINT_8( 0x7D, 0x6C, 0xE0, 0xEA, 0xB1, 0xD1, 0xA5, 0x1D ),
  311. BYTES_TO_T_UINT_8( 0x34, 0xF4, 0xB7, 0x80, 0x02, 0x7D, 0xB0, 0x26 ),
  312. BYTES_TO_T_UINT_8( 0xAE, 0xE9, 0x57, 0xC0, 0x0E, 0xF1, 0x4F, 0xDB ),
  313. };
  314. static const t_uint secp192k1_gy[] = {
  315. BYTES_TO_T_UINT_8( 0x9D, 0x2F, 0x5E, 0xD9, 0x88, 0xAA, 0x82, 0x40 ),
  316. BYTES_TO_T_UINT_8( 0x34, 0x86, 0xBE, 0x15, 0xD0, 0x63, 0x41, 0x84 ),
  317. BYTES_TO_T_UINT_8( 0xA7, 0x28, 0x56, 0x9C, 0x6D, 0x2F, 0x2F, 0x9B ),
  318. };
  319. static const t_uint secp192k1_n[] = {
  320. BYTES_TO_T_UINT_8( 0x8D, 0xFD, 0xDE, 0x74, 0x6A, 0x46, 0x69, 0x0F ),
  321. BYTES_TO_T_UINT_8( 0x17, 0xFC, 0xF2, 0x26, 0xFE, 0xFF, 0xFF, 0xFF ),
  322. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  323. };
  324. #endif /* POLARSSL_ECP_DP_SECP192K1_ENABLED */
  325. #if defined(POLARSSL_ECP_DP_SECP224K1_ENABLED)
  326. static const t_uint secp224k1_p[] = {
  327. BYTES_TO_T_UINT_8( 0x6D, 0xE5, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
  328. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  329. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  330. BYTES_TO_T_UINT_4( 0xFF, 0xFF, 0xFF, 0xFF ),
  331. };
  332. static const t_uint secp224k1_a[] = {
  333. BYTES_TO_T_UINT_2( 0x00, 0x00 ),
  334. };
  335. static const t_uint secp224k1_b[] = {
  336. BYTES_TO_T_UINT_2( 0x05, 0x00 ),
  337. };
  338. static const t_uint secp224k1_gx[] = {
  339. BYTES_TO_T_UINT_8( 0x5C, 0xA4, 0xB7, 0xB6, 0x0E, 0x65, 0x7E, 0x0F ),
  340. BYTES_TO_T_UINT_8( 0xA9, 0x75, 0x70, 0xE4, 0xE9, 0x67, 0xA4, 0x69 ),
  341. BYTES_TO_T_UINT_8( 0xA1, 0x28, 0xFC, 0x30, 0xDF, 0x99, 0xF0, 0x4D ),
  342. BYTES_TO_T_UINT_4( 0x33, 0x5B, 0x45, 0xA1 ),
  343. };
  344. static const t_uint secp224k1_gy[] = {
  345. BYTES_TO_T_UINT_8( 0xA5, 0x61, 0x6D, 0x55, 0xDB, 0x4B, 0xCA, 0xE2 ),
  346. BYTES_TO_T_UINT_8( 0x59, 0xBD, 0xB0, 0xC0, 0xF7, 0x19, 0xE3, 0xF7 ),
  347. BYTES_TO_T_UINT_8( 0xD6, 0xFB, 0xCA, 0x82, 0x42, 0x34, 0xBA, 0x7F ),
  348. BYTES_TO_T_UINT_4( 0xED, 0x9F, 0x08, 0x7E ),
  349. };
  350. static const t_uint secp224k1_n[] = {
  351. BYTES_TO_T_UINT_8( 0xF7, 0xB1, 0x9F, 0x76, 0x71, 0xA9, 0xF0, 0xCA ),
  352. BYTES_TO_T_UINT_8( 0x84, 0x61, 0xEC, 0xD2, 0xE8, 0xDC, 0x01, 0x00 ),
  353. BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
  354. BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ),
  355. };
  356. #endif /* POLARSSL_ECP_DP_SECP224K1_ENABLED */
  357. #if defined(POLARSSL_ECP_DP_SECP256K1_ENABLED)
  358. static const t_uint secp256k1_p[] = {
  359. BYTES_TO_T_UINT_8( 0x2F, 0xFC, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
  360. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  361. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  362. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  363. };
  364. static const t_uint secp256k1_a[] = {
  365. BYTES_TO_T_UINT_2( 0x00, 0x00 ),
  366. };
  367. static const t_uint secp256k1_b[] = {
  368. BYTES_TO_T_UINT_2( 0x07, 0x00 ),
  369. };
  370. static const t_uint secp256k1_gx[] = {
  371. BYTES_TO_T_UINT_8( 0x98, 0x17, 0xF8, 0x16, 0x5B, 0x81, 0xF2, 0x59 ),
  372. BYTES_TO_T_UINT_8( 0xD9, 0x28, 0xCE, 0x2D, 0xDB, 0xFC, 0x9B, 0x02 ),
  373. BYTES_TO_T_UINT_8( 0x07, 0x0B, 0x87, 0xCE, 0x95, 0x62, 0xA0, 0x55 ),
  374. BYTES_TO_T_UINT_8( 0xAC, 0xBB, 0xDC, 0xF9, 0x7E, 0x66, 0xBE, 0x79 ),
  375. };
  376. static const t_uint secp256k1_gy[] = {
  377. BYTES_TO_T_UINT_8( 0xB8, 0xD4, 0x10, 0xFB, 0x8F, 0xD0, 0x47, 0x9C ),
  378. BYTES_TO_T_UINT_8( 0x19, 0x54, 0x85, 0xA6, 0x48, 0xB4, 0x17, 0xFD ),
  379. BYTES_TO_T_UINT_8( 0xA8, 0x08, 0x11, 0x0E, 0xFC, 0xFB, 0xA4, 0x5D ),
  380. BYTES_TO_T_UINT_8( 0x65, 0xC4, 0xA3, 0x26, 0x77, 0xDA, 0x3A, 0x48 ),
  381. };
  382. static const t_uint secp256k1_n[] = {
  383. BYTES_TO_T_UINT_8( 0x41, 0x41, 0x36, 0xD0, 0x8C, 0x5E, 0xD2, 0xBF ),
  384. BYTES_TO_T_UINT_8( 0x3B, 0xA0, 0x48, 0xAF, 0xE6, 0xDC, 0xAE, 0xBA ),
  385. BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  386. BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  387. };
  388. #endif /* POLARSSL_ECP_DP_SECP256K1_ENABLED */
  389. /*
  390. * Domain parameters for brainpoolP256r1 (RFC 5639 3.4)
  391. */
  392. #if defined(POLARSSL_ECP_DP_BP256R1_ENABLED)
  393. static const t_uint brainpoolP256r1_p[] = {
  394. BYTES_TO_T_UINT_8( 0x77, 0x53, 0x6E, 0x1F, 0x1D, 0x48, 0x13, 0x20 ),
  395. BYTES_TO_T_UINT_8( 0x28, 0x20, 0x26, 0xD5, 0x23, 0xF6, 0x3B, 0x6E ),
  396. BYTES_TO_T_UINT_8( 0x72, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E ),
  397. BYTES_TO_T_UINT_8( 0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9 ),
  398. };
  399. static const t_uint brainpoolP256r1_a[] = {
  400. BYTES_TO_T_UINT_8( 0xD9, 0xB5, 0x30, 0xF3, 0x44, 0x4B, 0x4A, 0xE9 ),
  401. BYTES_TO_T_UINT_8( 0x6C, 0x5C, 0xDC, 0x26, 0xC1, 0x55, 0x80, 0xFB ),
  402. BYTES_TO_T_UINT_8( 0xE7, 0xFF, 0x7A, 0x41, 0x30, 0x75, 0xF6, 0xEE ),
  403. BYTES_TO_T_UINT_8( 0x57, 0x30, 0x2C, 0xFC, 0x75, 0x09, 0x5A, 0x7D ),
  404. };
  405. static const t_uint brainpoolP256r1_b[] = {
  406. BYTES_TO_T_UINT_8( 0xB6, 0x07, 0x8C, 0xFF, 0x18, 0xDC, 0xCC, 0x6B ),
  407. BYTES_TO_T_UINT_8( 0xCE, 0xE1, 0xF7, 0x5C, 0x29, 0x16, 0x84, 0x95 ),
  408. BYTES_TO_T_UINT_8( 0xBF, 0x7C, 0xD7, 0xBB, 0xD9, 0xB5, 0x30, 0xF3 ),
  409. BYTES_TO_T_UINT_8( 0x44, 0x4B, 0x4A, 0xE9, 0x6C, 0x5C, 0xDC, 0x26 ),
  410. };
  411. static const t_uint brainpoolP256r1_gx[] = {
  412. BYTES_TO_T_UINT_8( 0x62, 0x32, 0xCE, 0x9A, 0xBD, 0x53, 0x44, 0x3A ),
  413. BYTES_TO_T_UINT_8( 0xC2, 0x23, 0xBD, 0xE3, 0xE1, 0x27, 0xDE, 0xB9 ),
  414. BYTES_TO_T_UINT_8( 0xAF, 0xB7, 0x81, 0xFC, 0x2F, 0x48, 0x4B, 0x2C ),
  415. BYTES_TO_T_UINT_8( 0xCB, 0x57, 0x7E, 0xCB, 0xB9, 0xAE, 0xD2, 0x8B ),
  416. };
  417. static const t_uint brainpoolP256r1_gy[] = {
  418. BYTES_TO_T_UINT_8( 0x97, 0x69, 0x04, 0x2F, 0xC7, 0x54, 0x1D, 0x5C ),
  419. BYTES_TO_T_UINT_8( 0x54, 0x8E, 0xED, 0x2D, 0x13, 0x45, 0x77, 0xC2 ),
  420. BYTES_TO_T_UINT_8( 0xC9, 0x1D, 0x61, 0x14, 0x1A, 0x46, 0xF8, 0x97 ),
  421. BYTES_TO_T_UINT_8( 0xFD, 0xC4, 0xDA, 0xC3, 0x35, 0xF8, 0x7E, 0x54 ),
  422. };
  423. static const t_uint brainpoolP256r1_n[] = {
  424. BYTES_TO_T_UINT_8( 0xA7, 0x56, 0x48, 0x97, 0x82, 0x0E, 0x1E, 0x90 ),
  425. BYTES_TO_T_UINT_8( 0xF7, 0xA6, 0x61, 0xB5, 0xA3, 0x7A, 0x39, 0x8C ),
  426. BYTES_TO_T_UINT_8( 0x71, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E ),
  427. BYTES_TO_T_UINT_8( 0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9 ),
  428. };
  429. #endif /* POLARSSL_ECP_DP_BP256R1_ENABLED */
  430. /*
  431. * Domain parameters for brainpoolP384r1 (RFC 5639 3.6)
  432. */
  433. #if defined(POLARSSL_ECP_DP_BP384R1_ENABLED)
  434. static const t_uint brainpoolP384r1_p[] = {
  435. BYTES_TO_T_UINT_8( 0x53, 0xEC, 0x07, 0x31, 0x13, 0x00, 0x47, 0x87 ),
  436. BYTES_TO_T_UINT_8( 0x71, 0x1A, 0x1D, 0x90, 0x29, 0xA7, 0xD3, 0xAC ),
  437. BYTES_TO_T_UINT_8( 0x23, 0x11, 0xB7, 0x7F, 0x19, 0xDA, 0xB1, 0x12 ),
  438. BYTES_TO_T_UINT_8( 0xB4, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15 ),
  439. BYTES_TO_T_UINT_8( 0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F ),
  440. BYTES_TO_T_UINT_8( 0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C ),
  441. };
  442. static const t_uint brainpoolP384r1_a[] = {
  443. BYTES_TO_T_UINT_8( 0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04 ),
  444. BYTES_TO_T_UINT_8( 0xEB, 0xD4, 0x3A, 0x50, 0x4A, 0x81, 0xA5, 0x8A ),
  445. BYTES_TO_T_UINT_8( 0x0F, 0xF9, 0x91, 0xBA, 0xEF, 0x65, 0x91, 0x13 ),
  446. BYTES_TO_T_UINT_8( 0x87, 0x27, 0xB2, 0x4F, 0x8E, 0xA2, 0xBE, 0xC2 ),
  447. BYTES_TO_T_UINT_8( 0xA0, 0xAF, 0x05, 0xCE, 0x0A, 0x08, 0x72, 0x3C ),
  448. BYTES_TO_T_UINT_8( 0x0C, 0x15, 0x8C, 0x3D, 0xC6, 0x82, 0xC3, 0x7B ),
  449. };
  450. static const t_uint brainpoolP384r1_b[] = {
  451. BYTES_TO_T_UINT_8( 0x11, 0x4C, 0x50, 0xFA, 0x96, 0x86, 0xB7, 0x3A ),
  452. BYTES_TO_T_UINT_8( 0x94, 0xC9, 0xDB, 0x95, 0x02, 0x39, 0xB4, 0x7C ),
  453. BYTES_TO_T_UINT_8( 0xD5, 0x62, 0xEB, 0x3E, 0xA5, 0x0E, 0x88, 0x2E ),
  454. BYTES_TO_T_UINT_8( 0xA6, 0xD2, 0xDC, 0x07, 0xE1, 0x7D, 0xB7, 0x2F ),
  455. BYTES_TO_T_UINT_8( 0x7C, 0x44, 0xF0, 0x16, 0x54, 0xB5, 0x39, 0x8B ),
  456. BYTES_TO_T_UINT_8( 0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04 ),
  457. };
  458. static const t_uint brainpoolP384r1_gx[] = {
  459. BYTES_TO_T_UINT_8( 0x1E, 0xAF, 0xD4, 0x47, 0xE2, 0xB2, 0x87, 0xEF ),
  460. BYTES_TO_T_UINT_8( 0xAA, 0x46, 0xD6, 0x36, 0x34, 0xE0, 0x26, 0xE8 ),
  461. BYTES_TO_T_UINT_8( 0xE8, 0x10, 0xBD, 0x0C, 0xFE, 0xCA, 0x7F, 0xDB ),
  462. BYTES_TO_T_UINT_8( 0xE3, 0x4F, 0xF1, 0x7E, 0xE7, 0xA3, 0x47, 0x88 ),
  463. BYTES_TO_T_UINT_8( 0x6B, 0x3F, 0xC1, 0xB7, 0x81, 0x3A, 0xA6, 0xA2 ),
  464. BYTES_TO_T_UINT_8( 0xFF, 0x45, 0xCF, 0x68, 0xF0, 0x64, 0x1C, 0x1D ),
  465. };
  466. static const t_uint brainpoolP384r1_gy[] = {
  467. BYTES_TO_T_UINT_8( 0x15, 0x53, 0x3C, 0x26, 0x41, 0x03, 0x82, 0x42 ),
  468. BYTES_TO_T_UINT_8( 0x11, 0x81, 0x91, 0x77, 0x21, 0x46, 0x46, 0x0E ),
  469. BYTES_TO_T_UINT_8( 0x28, 0x29, 0x91, 0xF9, 0x4F, 0x05, 0x9C, 0xE1 ),
  470. BYTES_TO_T_UINT_8( 0x64, 0x58, 0xEC, 0xFE, 0x29, 0x0B, 0xB7, 0x62 ),
  471. BYTES_TO_T_UINT_8( 0x52, 0xD5, 0xCF, 0x95, 0x8E, 0xEB, 0xB1, 0x5C ),
  472. BYTES_TO_T_UINT_8( 0xA4, 0xC2, 0xF9, 0x20, 0x75, 0x1D, 0xBE, 0x8A ),
  473. };
  474. static const t_uint brainpoolP384r1_n[] = {
  475. BYTES_TO_T_UINT_8( 0x65, 0x65, 0x04, 0xE9, 0x02, 0x32, 0x88, 0x3B ),
  476. BYTES_TO_T_UINT_8( 0x10, 0xC3, 0x7F, 0x6B, 0xAF, 0xB6, 0x3A, 0xCF ),
  477. BYTES_TO_T_UINT_8( 0xA7, 0x25, 0x04, 0xAC, 0x6C, 0x6E, 0x16, 0x1F ),
  478. BYTES_TO_T_UINT_8( 0xB3, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15 ),
  479. BYTES_TO_T_UINT_8( 0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F ),
  480. BYTES_TO_T_UINT_8( 0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C ),
  481. };
  482. #endif /* POLARSSL_ECP_DP_BP384R1_ENABLED */
  483. /*
  484. * Domain parameters for brainpoolP512r1 (RFC 5639 3.7)
  485. */
  486. #if defined(POLARSSL_ECP_DP_BP512R1_ENABLED)
  487. static const t_uint brainpoolP512r1_p[] = {
  488. BYTES_TO_T_UINT_8( 0xF3, 0x48, 0x3A, 0x58, 0x56, 0x60, 0xAA, 0x28 ),
  489. BYTES_TO_T_UINT_8( 0x85, 0xC6, 0x82, 0x2D, 0x2F, 0xFF, 0x81, 0x28 ),
  490. BYTES_TO_T_UINT_8( 0xE6, 0x80, 0xA3, 0xE6, 0x2A, 0xA1, 0xCD, 0xAE ),
  491. BYTES_TO_T_UINT_8( 0x42, 0x68, 0xC6, 0x9B, 0x00, 0x9B, 0x4D, 0x7D ),
  492. BYTES_TO_T_UINT_8( 0x71, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6 ),
  493. BYTES_TO_T_UINT_8( 0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB ),
  494. BYTES_TO_T_UINT_8( 0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F ),
  495. BYTES_TO_T_UINT_8( 0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA ),
  496. };
  497. static const t_uint brainpoolP512r1_a[] = {
  498. BYTES_TO_T_UINT_8( 0xCA, 0x94, 0xFC, 0x77, 0x4D, 0xAC, 0xC1, 0xE7 ),
  499. BYTES_TO_T_UINT_8( 0xB9, 0xC7, 0xF2, 0x2B, 0xA7, 0x17, 0x11, 0x7F ),
  500. BYTES_TO_T_UINT_8( 0xB5, 0xC8, 0x9A, 0x8B, 0xC9, 0xF1, 0x2E, 0x0A ),
  501. BYTES_TO_T_UINT_8( 0xA1, 0x3A, 0x25, 0xA8, 0x5A, 0x5D, 0xED, 0x2D ),
  502. BYTES_TO_T_UINT_8( 0xBC, 0x63, 0x98, 0xEA, 0xCA, 0x41, 0x34, 0xA8 ),
  503. BYTES_TO_T_UINT_8( 0x10, 0x16, 0xF9, 0x3D, 0x8D, 0xDD, 0xCB, 0x94 ),
  504. BYTES_TO_T_UINT_8( 0xC5, 0x4C, 0x23, 0xAC, 0x45, 0x71, 0x32, 0xE2 ),
  505. BYTES_TO_T_UINT_8( 0x89, 0x3B, 0x60, 0x8B, 0x31, 0xA3, 0x30, 0x78 ),
  506. };
  507. static const t_uint brainpoolP512r1_b[] = {
  508. BYTES_TO_T_UINT_8( 0x23, 0xF7, 0x16, 0x80, 0x63, 0xBD, 0x09, 0x28 ),
  509. BYTES_TO_T_UINT_8( 0xDD, 0xE5, 0xBA, 0x5E, 0xB7, 0x50, 0x40, 0x98 ),
  510. BYTES_TO_T_UINT_8( 0x67, 0x3E, 0x08, 0xDC, 0xCA, 0x94, 0xFC, 0x77 ),
  511. BYTES_TO_T_UINT_8( 0x4D, 0xAC, 0xC1, 0xE7, 0xB9, 0xC7, 0xF2, 0x2B ),
  512. BYTES_TO_T_UINT_8( 0xA7, 0x17, 0x11, 0x7F, 0xB5, 0xC8, 0x9A, 0x8B ),
  513. BYTES_TO_T_UINT_8( 0xC9, 0xF1, 0x2E, 0x0A, 0xA1, 0x3A, 0x25, 0xA8 ),
  514. BYTES_TO_T_UINT_8( 0x5A, 0x5D, 0xED, 0x2D, 0xBC, 0x63, 0x98, 0xEA ),
  515. BYTES_TO_T_UINT_8( 0xCA, 0x41, 0x34, 0xA8, 0x10, 0x16, 0xF9, 0x3D ),
  516. };
  517. static const t_uint brainpoolP512r1_gx[] = {
  518. BYTES_TO_T_UINT_8( 0x22, 0xF8, 0xB9, 0xBC, 0x09, 0x22, 0x35, 0x8B ),
  519. BYTES_TO_T_UINT_8( 0x68, 0x5E, 0x6A, 0x40, 0x47, 0x50, 0x6D, 0x7C ),
  520. BYTES_TO_T_UINT_8( 0x5F, 0x7D, 0xB9, 0x93, 0x7B, 0x68, 0xD1, 0x50 ),
  521. BYTES_TO_T_UINT_8( 0x8D, 0xD4, 0xD0, 0xE2, 0x78, 0x1F, 0x3B, 0xFF ),
  522. BYTES_TO_T_UINT_8( 0x8E, 0x09, 0xD0, 0xF4, 0xEE, 0x62, 0x3B, 0xB4 ),
  523. BYTES_TO_T_UINT_8( 0xC1, 0x16, 0xD9, 0xB5, 0x70, 0x9F, 0xED, 0x85 ),
  524. BYTES_TO_T_UINT_8( 0x93, 0x6A, 0x4C, 0x9C, 0x2E, 0x32, 0x21, 0x5A ),
  525. BYTES_TO_T_UINT_8( 0x64, 0xD9, 0x2E, 0xD8, 0xBD, 0xE4, 0xAE, 0x81 ),
  526. };
  527. static const t_uint brainpoolP512r1_gy[] = {
  528. BYTES_TO_T_UINT_8( 0x92, 0x08, 0xD8, 0x3A, 0x0F, 0x1E, 0xCD, 0x78 ),
  529. BYTES_TO_T_UINT_8( 0x06, 0x54, 0xF0, 0xA8, 0x2F, 0x2B, 0xCA, 0xD1 ),
  530. BYTES_TO_T_UINT_8( 0xAE, 0x63, 0x27, 0x8A, 0xD8, 0x4B, 0xCA, 0x5B ),
  531. BYTES_TO_T_UINT_8( 0x5E, 0x48, 0x5F, 0x4A, 0x49, 0xDE, 0xDC, 0xB2 ),
  532. BYTES_TO_T_UINT_8( 0x11, 0x81, 0x1F, 0x88, 0x5B, 0xC5, 0x00, 0xA0 ),
  533. BYTES_TO_T_UINT_8( 0x1A, 0x7B, 0xA5, 0x24, 0x00, 0xF7, 0x09, 0xF2 ),
  534. BYTES_TO_T_UINT_8( 0xFD, 0x22, 0x78, 0xCF, 0xA9, 0xBF, 0xEA, 0xC0 ),
  535. BYTES_TO_T_UINT_8( 0xEC, 0x32, 0x63, 0x56, 0x5D, 0x38, 0xDE, 0x7D ),
  536. };
  537. static const t_uint brainpoolP512r1_n[] = {
  538. BYTES_TO_T_UINT_8( 0x69, 0x00, 0xA9, 0x9C, 0x82, 0x96, 0x87, 0xB5 ),
  539. BYTES_TO_T_UINT_8( 0xDD, 0xDA, 0x5D, 0x08, 0x81, 0xD3, 0xB1, 0x1D ),
  540. BYTES_TO_T_UINT_8( 0x47, 0x10, 0xAC, 0x7F, 0x19, 0x61, 0x86, 0x41 ),
  541. BYTES_TO_T_UINT_8( 0x19, 0x26, 0xA9, 0x4C, 0x41, 0x5C, 0x3E, 0x55 ),
  542. BYTES_TO_T_UINT_8( 0x70, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6 ),
  543. BYTES_TO_T_UINT_8( 0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB ),
  544. BYTES_TO_T_UINT_8( 0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F ),
  545. BYTES_TO_T_UINT_8( 0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA ),
  546. };
  547. #endif /* POLARSSL_ECP_DP_BP512R1_ENABLED */
  548. /*
  549. * Create an MPI from embedded constants
  550. * (assumes len is an exact multiple of sizeof t_uint)
  551. */
  552. static inline void ecp_mpi_load( mpi *X, const t_uint *p, size_t len )
  553. {
  554. X->s = 1;
  555. X->n = len / sizeof( t_uint );
  556. X->p = (t_uint *) p;
  557. }
  558. /*
  559. * Set an MPI to static value 1
  560. */
  561. static inline void ecp_mpi_set1( mpi *X )
  562. {
  563. static t_uint one[] = { 1 };
  564. X->s = 1;
  565. X->n = 1;
  566. X->p = one;
  567. }
  568. /*
  569. * Make group available from embedded constants
  570. */
  571. static int ecp_group_load( ecp_group *grp,
  572. const t_uint *p, size_t plen,
  573. const t_uint *a, size_t alen,
  574. const t_uint *b, size_t blen,
  575. const t_uint *gx, size_t gxlen,
  576. const t_uint *gy, size_t gylen,
  577. const t_uint *n, size_t nlen)
  578. {
  579. ecp_mpi_load( &grp->P, p, plen );
  580. if( a != NULL )
  581. ecp_mpi_load( &grp->A, a, alen );
  582. ecp_mpi_load( &grp->B, b, blen );
  583. ecp_mpi_load( &grp->N, n, nlen );
  584. ecp_mpi_load( &grp->G.X, gx, gxlen );
  585. ecp_mpi_load( &grp->G.Y, gy, gylen );
  586. ecp_mpi_set1( &grp->G.Z );
  587. grp->pbits = mpi_msb( &grp->P );
  588. grp->nbits = mpi_msb( &grp->N );
  589. grp->h = 1;
  590. return( 0 );
  591. }
  592. #if defined(POLARSSL_ECP_NIST_OPTIM)
  593. /* Forward declarations */
  594. #if defined(POLARSSL_ECP_DP_SECP192R1_ENABLED)
  595. static int ecp_mod_p192( mpi * );
  596. #endif
  597. #if defined(POLARSSL_ECP_DP_SECP224R1_ENABLED)
  598. static int ecp_mod_p224( mpi * );
  599. #endif
  600. #if defined(POLARSSL_ECP_DP_SECP256R1_ENABLED)
  601. static int ecp_mod_p256( mpi * );
  602. #endif
  603. #if defined(POLARSSL_ECP_DP_SECP384R1_ENABLED)
  604. static int ecp_mod_p384( mpi * );
  605. #endif
  606. #if defined(POLARSSL_ECP_DP_SECP521R1_ENABLED)
  607. static int ecp_mod_p521( mpi * );
  608. #endif
  609. #define NIST_MODP( P ) grp->modp = ecp_mod_ ## P;
  610. #else
  611. #define NIST_MODP( P )
  612. #endif /* POLARSSL_ECP_NIST_OPTIM */
  613. /* Additional forward declarations */
  614. #if defined(POLARSSL_ECP_DP_M255_ENABLED)
  615. static int ecp_mod_p255( mpi * );
  616. #endif
  617. #if defined(POLARSSL_ECP_DP_SECP192K1_ENABLED)
  618. static int ecp_mod_p192k1( mpi * );
  619. #endif
  620. #if defined(POLARSSL_ECP_DP_SECP224K1_ENABLED)
  621. static int ecp_mod_p224k1( mpi * );
  622. #endif
  623. #if defined(POLARSSL_ECP_DP_SECP256K1_ENABLED)
  624. static int ecp_mod_p256k1( mpi * );
  625. #endif
  626. #define LOAD_GROUP_A( G ) ecp_group_load( grp, \
  627. G ## _p, sizeof( G ## _p ), \
  628. G ## _a, sizeof( G ## _a ), \
  629. G ## _b, sizeof( G ## _b ), \
  630. G ## _gx, sizeof( G ## _gx ), \
  631. G ## _gy, sizeof( G ## _gy ), \
  632. G ## _n, sizeof( G ## _n ) )
  633. #define LOAD_GROUP( G ) ecp_group_load( grp, \
  634. G ## _p, sizeof( G ## _p ), \
  635. NULL, 0, \
  636. G ## _b, sizeof( G ## _b ), \
  637. G ## _gx, sizeof( G ## _gx ), \
  638. G ## _gy, sizeof( G ## _gy ), \
  639. G ## _n, sizeof( G ## _n ) )
  640. #if defined(POLARSSL_ECP_DP_M255_ENABLED)
  641. /*
  642. * Specialized function for creating the Curve25519 group
  643. */
  644. static int ecp_use_curve25519( ecp_group *grp )
  645. {
  646. int ret;
  647. /* Actually ( A + 2 ) / 4 */
  648. MPI_CHK( mpi_read_string( &grp->A, 16, "01DB42" ) );
  649. /* P = 2^255 - 19 */
  650. MPI_CHK( mpi_lset( &grp->P, 1 ) );
  651. MPI_CHK( mpi_shift_l( &grp->P, 255 ) );
  652. MPI_CHK( mpi_sub_int( &grp->P, &grp->P, 19 ) );
  653. grp->pbits = mpi_msb( &grp->P );
  654. /* Y intentionaly not set, since we use x/z coordinates.
  655. * This is used as a marker to identify Montgomery curves! */
  656. MPI_CHK( mpi_lset( &grp->G.X, 9 ) );
  657. MPI_CHK( mpi_lset( &grp->G.Z, 1 ) );
  658. mpi_free( &grp->G.Y );
  659. /* Actually, the required msb for private keys */
  660. grp->nbits = 254;
  661. cleanup:
  662. if( ret != 0 )
  663. ecp_group_free( grp );
  664. return( ret );
  665. }
  666. #endif /* POLARSSL_ECP_DP_M255_ENABLED */
  667. /*
  668. * Set a group using well-known domain parameters
  669. */
  670. int ecp_use_known_dp( ecp_group *grp, ecp_group_id id )
  671. {
  672. ecp_group_free( grp );
  673. grp->id = id;
  674. switch( id )
  675. {
  676. #if defined(POLARSSL_ECP_DP_SECP192R1_ENABLED)
  677. case POLARSSL_ECP_DP_SECP192R1:
  678. NIST_MODP( p192 );
  679. return( LOAD_GROUP( secp192r1 ) );
  680. #endif /* POLARSSL_ECP_DP_SECP192R1_ENABLED */
  681. #if defined(POLARSSL_ECP_DP_SECP224R1_ENABLED)
  682. case POLARSSL_ECP_DP_SECP224R1:
  683. NIST_MODP( p224 );
  684. return( LOAD_GROUP( secp224r1 ) );
  685. #endif /* POLARSSL_ECP_DP_SECP224R1_ENABLED */
  686. #if defined(POLARSSL_ECP_DP_SECP256R1_ENABLED)
  687. case POLARSSL_ECP_DP_SECP256R1:
  688. NIST_MODP( p256 );
  689. return( LOAD_GROUP( secp256r1 ) );
  690. #endif /* POLARSSL_ECP_DP_SECP256R1_ENABLED */
  691. #if defined(POLARSSL_ECP_DP_SECP384R1_ENABLED)
  692. case POLARSSL_ECP_DP_SECP384R1:
  693. NIST_MODP( p384 );
  694. return( LOAD_GROUP( secp384r1 ) );
  695. #endif /* POLARSSL_ECP_DP_SECP384R1_ENABLED */
  696. #if defined(POLARSSL_ECP_DP_SECP521R1_ENABLED)
  697. case POLARSSL_ECP_DP_SECP521R1:
  698. NIST_MODP( p521 );
  699. return( LOAD_GROUP( secp521r1 ) );
  700. #endif /* POLARSSL_ECP_DP_SECP521R1_ENABLED */
  701. #if defined(POLARSSL_ECP_DP_SECP192K1_ENABLED)
  702. case POLARSSL_ECP_DP_SECP192K1:
  703. grp->modp = ecp_mod_p192k1;
  704. return( LOAD_GROUP_A( secp192k1 ) );
  705. #endif /* POLARSSL_ECP_DP_SECP192K1_ENABLED */
  706. #if defined(POLARSSL_ECP_DP_SECP224K1_ENABLED)
  707. case POLARSSL_ECP_DP_SECP224K1:
  708. grp->modp = ecp_mod_p224k1;
  709. return( LOAD_GROUP_A( secp224k1 ) );
  710. #endif /* POLARSSL_ECP_DP_SECP224K1_ENABLED */
  711. #if defined(POLARSSL_ECP_DP_SECP256K1_ENABLED)
  712. case POLARSSL_ECP_DP_SECP256K1:
  713. grp->modp = ecp_mod_p256k1;
  714. return( LOAD_GROUP_A( secp256k1 ) );
  715. #endif /* POLARSSL_ECP_DP_SECP256K1_ENABLED */
  716. #if defined(POLARSSL_ECP_DP_BP256R1_ENABLED)
  717. case POLARSSL_ECP_DP_BP256R1:
  718. return( LOAD_GROUP_A( brainpoolP256r1 ) );
  719. #endif /* POLARSSL_ECP_DP_BP256R1_ENABLED */
  720. #if defined(POLARSSL_ECP_DP_BP384R1_ENABLED)
  721. case POLARSSL_ECP_DP_BP384R1:
  722. return( LOAD_GROUP_A( brainpoolP384r1 ) );
  723. #endif /* POLARSSL_ECP_DP_BP384R1_ENABLED */
  724. #if defined(POLARSSL_ECP_DP_BP512R1_ENABLED)
  725. case POLARSSL_ECP_DP_BP512R1:
  726. return( LOAD_GROUP_A( brainpoolP512r1 ) );
  727. #endif /* POLARSSL_ECP_DP_BP512R1_ENABLED */
  728. #if defined(POLARSSL_ECP_DP_M255_ENABLED)
  729. case POLARSSL_ECP_DP_M255:
  730. grp->modp = ecp_mod_p255;
  731. return( ecp_use_curve25519( grp ) );
  732. #endif /* POLARSSL_ECP_DP_M255_ENABLED */
  733. default:
  734. ecp_group_free( grp );
  735. return( POLARSSL_ERR_ECP_FEATURE_UNAVAILABLE );
  736. }
  737. }
  738. #if defined(POLARSSL_ECP_NIST_OPTIM)
  739. /*
  740. * Fast reduction modulo the primes used by the NIST curves.
  741. *
  742. * These functions are critical for speed, but not needed for correct
  743. * operations. So, we make the choice to heavily rely on the internals of our
  744. * bignum library, which creates a tight coupling between these functions and
  745. * our MPI implementation. However, the coupling between the ECP module and
  746. * MPI remains loose, since these functions can be deactivated at will.
  747. */
  748. #if defined(POLARSSL_ECP_DP_SECP192R1_ENABLED)
  749. /*
  750. * Compared to the way things are presented in FIPS 186-3 D.2,
  751. * we proceed in columns, from right (least significant chunk) to left,
  752. * adding chunks to N in place, and keeping a carry for the next chunk.
  753. * This avoids moving things around in memory, and uselessly adding zeros,
  754. * compared to the more straightforward, line-oriented approach.
  755. *
  756. * For this prime we need to handle data in chunks of 64 bits.
  757. * Since this is always a multiple of our basic t_uint, we can
  758. * use a t_uint * to designate such a chunk, and small loops to handle it.
  759. */
  760. /* Add 64-bit chunks (dst += src) and update carry */
  761. static inline void add64( t_uint *dst, t_uint *src, t_uint *carry )
  762. {
  763. unsigned char i;
  764. t_uint c = 0;
  765. for( i = 0; i < 8 / sizeof( t_uint ); i++, dst++, src++ )
  766. {
  767. *dst += c; c = ( *dst < c );
  768. *dst += *src; c += ( *dst < *src );
  769. }
  770. *carry += c;
  771. }
  772. /* Add carry to a 64-bit chunk and update carry */
  773. static inline void carry64( t_uint *dst, t_uint *carry )
  774. {
  775. unsigned char i;
  776. for( i = 0; i < 8 / sizeof( t_uint ); i++, dst++ )
  777. {
  778. *dst += *carry;
  779. *carry = ( *dst < *carry );
  780. }
  781. }
  782. #define WIDTH 8 / sizeof( t_uint )
  783. #define A( i ) N->p + i * WIDTH
  784. #define ADD( i ) add64( p, A( i ), &c )
  785. #define NEXT p += WIDTH; carry64( p, &c )
  786. #define LAST p += WIDTH; *p = c; while( ++p < end ) *p = 0
  787. /*
  788. * Fast quasi-reduction modulo p192 (FIPS 186-3 D.2.1)
  789. */
  790. static int ecp_mod_p192( mpi *N )
  791. {
  792. int ret;
  793. t_uint c = 0;
  794. t_uint *p, *end;
  795. /* Make sure we have enough blocks so that A(5) is legal */
  796. MPI_CHK( mpi_grow( N, 6 * WIDTH ) );
  797. p = N->p;
  798. end = p + N->n;
  799. ADD( 3 ); ADD( 5 ); NEXT; // A0 += A3 + A5
  800. ADD( 3 ); ADD( 4 ); ADD( 5 ); NEXT; // A1 += A3 + A4 + A5
  801. ADD( 4 ); ADD( 5 ); LAST; // A2 += A4 + A5
  802. cleanup:
  803. return( ret );
  804. }
  805. #undef WIDTH
  806. #undef A
  807. #undef ADD
  808. #undef NEXT
  809. #undef LAST
  810. #endif /* POLARSSL_ECP_DP_SECP192R1_ENABLED */
  811. #if defined(POLARSSL_ECP_DP_SECP224R1_ENABLED) || \
  812. defined(POLARSSL_ECP_DP_SECP256R1_ENABLED) || \
  813. defined(POLARSSL_ECP_DP_SECP384R1_ENABLED)
  814. /*
  815. * The reader is advised to first understand ecp_mod_p192() since the same
  816. * general structure is used here, but with additional complications:
  817. * (1) chunks of 32 bits, and (2) subtractions.
  818. */
  819. /*
  820. * For these primes, we need to handle data in chunks of 32 bits.
  821. * This makes it more complicated if we use 64 bits limbs in MPI,
  822. * which prevents us from using a uniform access method as for p192.
  823. *
  824. * So, we define a mini abstraction layer to access 32 bit chunks,
  825. * load them in 'cur' for work, and store them back from 'cur' when done.
  826. *
  827. * While at it, also define the size of N in terms of 32-bit chunks.
  828. */
  829. #define LOAD32 cur = A( i );
  830. #if defined(POLARSSL_HAVE_INT8) /* 8 bit */
  831. #define MAX32 N->n / 4
  832. #define A( j ) (uint32_t)( N->p[4*j+0] ) | \
  833. ( N->p[4*j+1] << 8 ) | \
  834. ( N->p[4*j+2] << 16 ) | \
  835. ( N->p[4*j+3] << 24 )
  836. #define STORE32 N->p[4*i+0] = (t_uint)( cur ); \
  837. N->p[4*i+1] = (t_uint)( cur >> 8 ); \
  838. N->p[4*i+2] = (t_uint)( cur >> 16 ); \
  839. N->p[4*i+3] = (t_uint)( cur >> 24 );
  840. #elif defined(POLARSSL_HAVE_INT16) /* 16 bit */
  841. #define MAX32 N->n / 2
  842. #define A( j ) (uint32_t)( N->p[2*j] ) | ( N->p[2*j+1] << 16 )
  843. #define STORE32 N->p[2*i+0] = (t_uint)( cur ); \
  844. N->p[2*i+1] = (t_uint)( cur >> 16 );
  845. #elif defined(POLARSSL_HAVE_INT32) /* 32 bit */
  846. #define MAX32 N->n
  847. #define A( j ) N->p[j]
  848. #define STORE32 N->p[i] = cur;
  849. #else /* 64-bit */
  850. #define MAX32 N->n * 2
  851. #define A( j ) j % 2 ? (uint32_t)( N->p[j/2] >> 32 ) : (uint32_t)( N->p[j/2] )
  852. #define STORE32 \
  853. if( i % 2 ) { \
  854. N->p[i/2] &= 0x00000000FFFFFFFF; \
  855. N->p[i/2] |= ((t_uint) cur) << 32; \
  856. } else { \
  857. N->p[i/2] &= 0xFFFFFFFF00000000; \
  858. N->p[i/2] |= (t_uint) cur; \
  859. }
  860. #endif /* sizeof( t_uint ) */
  861. /*
  862. * Helpers for addition and subtraction of chunks, with signed carry.
  863. */
  864. static inline void add32( uint32_t *dst, uint32_t src, signed char *carry )
  865. {
  866. *dst += src;
  867. *carry += ( *dst < src );
  868. }
  869. static inline void sub32( uint32_t *dst, uint32_t src, signed char *carry )
  870. {
  871. *carry -= ( *dst < src );
  872. *dst -= src;
  873. }
  874. #define ADD( j ) add32( &cur, A( j ), &c );
  875. #define SUB( j ) sub32( &cur, A( j ), &c );
  876. /*
  877. * Helpers for the main 'loop'
  878. * (see fix_negative for the motivation of C)
  879. */
  880. #define INIT( b ) \
  881. int ret; \
  882. signed char c = 0, cc; \
  883. uint32_t cur; \
  884. size_t i = 0, bits = b; \
  885. mpi C; \
  886. t_uint Cp[ b / 8 / sizeof( t_uint) + 1 ]; \
  887. \
  888. C.s = 1; \
  889. C.n = b / 8 / sizeof( t_uint) + 1; \
  890. C.p = Cp; \
  891. memset( Cp, 0, C.n * sizeof( t_uint ) ); \
  892. \
  893. MPI_CHK( mpi_grow( N, b * 2 / 8 / sizeof( t_uint ) ) ); \
  894. LOAD32;
  895. #define NEXT \
  896. STORE32; i++; LOAD32; \
  897. cc = c; c = 0; \
  898. if( cc < 0 ) \
  899. sub32( &cur, -cc, &c ); \
  900. else \
  901. add32( &cur, cc, &c ); \
  902. #define LAST \
  903. STORE32; i++; \
  904. cur = c > 0 ? c : 0; STORE32; \
  905. cur = 0; while( ++i < MAX32 ) { STORE32; } \
  906. if( c < 0 ) fix_negative( N, c, &C, bits );
  907. /*
  908. * If the result is negative, we get it in the form
  909. * c * 2^(bits + 32) + N, with c negative and N positive shorter than 'bits'
  910. */
  911. static inline int fix_negative( mpi *N, signed char c, mpi *C, size_t bits )
  912. {
  913. int ret;
  914. /* C = - c * 2^(bits + 32) */
  915. #if !defined(POLARSSL_HAVE_INT64)
  916. ((void) bits);
  917. #else
  918. if( bits == 224 )
  919. C->p[ C->n - 1 ] = ((t_uint) -c) << 32;
  920. else
  921. #endif
  922. C->p[ C->n - 1 ] = (t_uint) -c;
  923. /* N = - ( C - N ) */
  924. MPI_CHK( mpi_sub_abs( N, C, N ) );
  925. N->s = -1;
  926. cleanup:
  927. return( ret );
  928. }
  929. #if defined(POLARSSL_ECP_DP_SECP224R1_ENABLED)
  930. /*
  931. * Fast quasi-reduction modulo p224 (FIPS 186-3 D.2.2)
  932. */
  933. static int ecp_mod_p224( mpi *N )
  934. {
  935. INIT( 224 );
  936. SUB( 7 ); SUB( 11 ); NEXT; // A0 += -A7 - A11
  937. SUB( 8 ); SUB( 12 ); NEXT; // A1 += -A8 - A12
  938. SUB( 9 ); SUB( 13 ); NEXT; // A2 += -A9 - A13
  939. SUB( 10 ); ADD( 7 ); ADD( 11 ); NEXT; // A3 += -A10 + A7 + A11
  940. SUB( 11 ); ADD( 8 ); ADD( 12 ); NEXT; // A4 += -A11 + A8 + A12
  941. SUB( 12 ); ADD( 9 ); ADD( 13 ); NEXT; // A5 += -A12 + A9 + A13
  942. SUB( 13 ); ADD( 10 ); LAST; // A6 += -A13 + A10
  943. cleanup:
  944. return( ret );
  945. }
  946. #endif /* POLARSSL_ECP_DP_SECP224R1_ENABLED */
  947. #if defined(POLARSSL_ECP_DP_SECP256R1_ENABLED)
  948. /*
  949. * Fast quasi-reduction modulo p256 (FIPS 186-3 D.2.3)
  950. */
  951. static int ecp_mod_p256( mpi *N )
  952. {
  953. INIT( 256 );
  954. ADD( 8 ); ADD( 9 );
  955. SUB( 11 ); SUB( 12 ); SUB( 13 ); SUB( 14 ); NEXT; // A0
  956. ADD( 9 ); ADD( 10 );
  957. SUB( 12 ); SUB( 13 ); SUB( 14 ); SUB( 15 ); NEXT; // A1
  958. ADD( 10 ); ADD( 11 );
  959. SUB( 13 ); SUB( 14 ); SUB( 15 ); NEXT; // A2
  960. ADD( 11 ); ADD( 11 ); ADD( 12 ); ADD( 12 ); ADD( 13 );
  961. SUB( 15 ); SUB( 8 ); SUB( 9 ); NEXT; // A3
  962. ADD( 12 ); ADD( 12 ); ADD( 13 ); ADD( 13 ); ADD( 14 );
  963. SUB( 9 ); SUB( 10 ); NEXT; // A4
  964. ADD( 13 ); ADD( 13 ); ADD( 14 ); ADD( 14 ); ADD( 15 );
  965. SUB( 10 ); SUB( 11 ); NEXT; // A5
  966. ADD( 14 ); ADD( 14 ); ADD( 15 ); ADD( 15 ); ADD( 14 ); ADD( 13 );
  967. SUB( 8 ); SUB( 9 ); NEXT; // A6
  968. ADD( 15 ); ADD( 15 ); ADD( 15 ); ADD( 8 );
  969. SUB( 10 ); SUB( 11 ); SUB( 12 ); SUB( 13 ); LAST; // A7
  970. cleanup:
  971. return( ret );
  972. }
  973. #endif /* POLARSSL_ECP_DP_SECP256R1_ENABLED */
  974. #if defined(POLARSSL_ECP_DP_SECP384R1_ENABLED)
  975. /*
  976. * Fast quasi-reduction modulo p384 (FIPS 186-3 D.2.4)
  977. */
  978. static int ecp_mod_p384( mpi *N )
  979. {
  980. INIT( 384 );
  981. ADD( 12 ); ADD( 21 ); ADD( 20 );
  982. SUB( 23 ); NEXT; // A0
  983. ADD( 13 ); ADD( 22 ); ADD( 23 );
  984. SUB( 12 ); SUB( 20 ); NEXT; // A2
  985. ADD( 14 ); ADD( 23 );
  986. SUB( 13 ); SUB( 21 ); NEXT; // A2
  987. ADD( 15 ); ADD( 12 ); ADD( 20 ); ADD( 21 );
  988. SUB( 14 ); SUB( 22 ); SUB( 23 ); NEXT; // A3
  989. ADD( 21 ); ADD( 21 ); ADD( 16 ); ADD( 13 ); ADD( 12 ); ADD( 20 ); ADD( 22 );
  990. SUB( 15 ); SUB( 23 ); SUB( 23 ); NEXT; // A4
  991. ADD( 22 ); ADD( 22 ); ADD( 17 ); ADD( 14 ); ADD( 13 ); ADD( 21 ); ADD( 23 );
  992. SUB( 16 ); NEXT; // A5
  993. ADD( 23 ); ADD( 23 ); ADD( 18 ); ADD( 15 ); ADD( 14 ); ADD( 22 );
  994. SUB( 17 ); NEXT; // A6
  995. ADD( 19 ); ADD( 16 ); ADD( 15 ); ADD( 23 );
  996. SUB( 18 ); NEXT; // A7
  997. ADD( 20 ); ADD( 17 ); ADD( 16 );
  998. SUB( 19 ); NEXT; // A8
  999. ADD( 21 ); ADD( 18 ); ADD( 17 );
  1000. SUB( 20 ); NEXT; // A9
  1001. ADD( 22 ); ADD( 19 ); ADD( 18 );
  1002. SUB( 21 ); NEXT; // A10
  1003. ADD( 23 ); ADD( 20 ); ADD( 19 );
  1004. SUB( 22 ); LAST; // A11
  1005. cleanup:
  1006. return( ret );
  1007. }
  1008. #endif /* POLARSSL_ECP_DP_SECP384R1_ENABLED */
  1009. #undef A
  1010. #undef LOAD32
  1011. #undef STORE32
  1012. #undef MAX32
  1013. #undef INIT
  1014. #undef NEXT
  1015. #undef LAST
  1016. #endif /* POLARSSL_ECP_DP_SECP224R1_ENABLED ||
  1017. POLARSSL_ECP_DP_SECP256R1_ENABLED ||
  1018. POLARSSL_ECP_DP_SECP384R1_ENABLED */
  1019. #if defined(POLARSSL_ECP_DP_SECP521R1_ENABLED)
  1020. /*
  1021. * Here we have an actual Mersenne prime, so things are more straightforward.
  1022. * However, chunks are aligned on a 'weird' boundary (521 bits).
  1023. */
  1024. /* Size of p521 in terms of t_uint */
  1025. #define P521_WIDTH ( 521 / 8 / sizeof( t_uint ) + 1 )
  1026. /* Bits to keep in the most significant t_uint */
  1027. #if defined(POLARSSL_HAVE_INT8)
  1028. #define P521_MASK 0x01
  1029. #else
  1030. #define P521_MASK 0x01FF
  1031. #endif
  1032. /*
  1033. * Fast quasi-reduction modulo p521 (FIPS 186-3 D.2.5)
  1034. * Write N as A1 + 2^521 A0, return A0 + A1
  1035. */
  1036. static int ecp_mod_p521( mpi *N )
  1037. {
  1038. int ret;
  1039. size_t i;
  1040. mpi M;
  1041. t_uint Mp[P521_WIDTH + 1];
  1042. /* Worst case for the size of M is when t_uint is 16 bits:
  1043. * we need to hold bits 513 to 1056, which is 34 limbs, that is
  1044. * P521_WIDTH + 1. Otherwise P521_WIDTH is enough. */
  1045. if( N->n < P521_WIDTH )
  1046. return( 0 );
  1047. /* M = A1 */
  1048. M.s = 1;
  1049. M.n = N->n - ( P521_WIDTH - 1 );
  1050. if( M.n > P521_WIDTH + 1 )
  1051. M.n = P521_WIDTH + 1;
  1052. M.p = Mp;
  1053. memcpy( Mp, N->p + P521_WIDTH - 1, M.n * sizeof( t_uint ) );
  1054. MPI_CHK( mpi_shift_r( &M, 521 % ( 8 * sizeof( t_uint ) ) ) );
  1055. /* N = A0 */
  1056. N->p[P521_WIDTH - 1] &= P521_MASK;
  1057. for( i = P521_WIDTH; i < N->n; i++ )
  1058. N->p[i] = 0;
  1059. /* N = A0 + A1 */
  1060. MPI_CHK( mpi_add_abs( N, N, &M ) );
  1061. cleanup:
  1062. return( ret );
  1063. }
  1064. #undef P521_WIDTH
  1065. #undef P521_MASK
  1066. #endif /* POLARSSL_ECP_DP_SECP521R1_ENABLED */
  1067. #endif /* POLARSSL_ECP_NIST_OPTIM */
  1068. #if defined(POLARSSL_ECP_DP_M255_ENABLED)
  1069. /* Size of p255 in terms of t_uint */
  1070. #define P255_WIDTH ( 255 / 8 / sizeof( t_uint ) + 1 )
  1071. /*
  1072. * Fast quasi-reduction modulo p255 = 2^255 - 19
  1073. * Write N as A0 + 2^255 A1, return A0 + 19 * A1
  1074. */
  1075. static int ecp_mod_p255( mpi *N )
  1076. {
  1077. int ret;
  1078. size_t i;
  1079. mpi M;
  1080. t_uint Mp[P255_WIDTH + 2];
  1081. if( N->n < P255_WIDTH )
  1082. return( 0 );
  1083. /* M = A1 */
  1084. M.s = 1;
  1085. M.n = N->n - ( P255_WIDTH - 1 );
  1086. if( M.n > P255_WIDTH + 1 )
  1087. M.n = P255_WIDTH + 1;
  1088. M.p = Mp;
  1089. memset( Mp, 0, sizeof Mp );
  1090. memcpy( Mp, N->p + P255_WIDTH - 1, M.n * sizeof( t_uint ) );
  1091. MPI_CHK( mpi_shift_r( &M, 255 % ( 8 * sizeof( t_uint ) ) ) );
  1092. M.n++; /* Make room for multiplication by 19 */
  1093. /* N = A0 */
  1094. MPI_CHK( mpi_set_bit( N, 255, 0 ) );
  1095. for( i = P255_WIDTH; i < N->n; i++ )
  1096. N->p[i] = 0;
  1097. /* N = A0 + 19 * A1 */
  1098. MPI_CHK( mpi_mul_int( &M, &M, 19 ) );
  1099. MPI_CHK( mpi_add_abs( N, N, &M ) );
  1100. cleanup:
  1101. return( ret );
  1102. }
  1103. #endif /* POLARSSL_ECP_DP_M255_ENABLED */
  1104. #if defined(POLARSSL_ECP_DP_SECP192K1_ENABLED) || \
  1105. defined(POLARSSL_ECP_DP_SECP224K1_ENABLED) || \
  1106. defined(POLARSSL_ECP_DP_SECP256K1_ENABLED)
  1107. /*
  1108. * Fast quasi-reduction modulo P = 2^s - R,
  1109. * with R about 33 bits, used by the Koblitz curves.
  1110. *
  1111. * Write N as A0 + 2^224 A1, return A0 + R * A1.
  1112. * Actually do two passes, since R is big.
  1113. */
  1114. #define P_KOBLITZ_MAX ( 256 / 8 / sizeof( t_uint ) ) // Max limbs in P
  1115. #define P_KOBLITZ_R ( 8 / sizeof( t_uint ) ) // Limbs in R
  1116. static inline int ecp_mod_koblitz( mpi *N, t_uint *Rp, size_t p_limbs,
  1117. size_t adjust, size_t shift, t_uint mask )
  1118. {
  1119. int ret;
  1120. size_t i;
  1121. mpi M, R;
  1122. t_uint Mp[P_KOBLITZ_MAX + P_KOBLITZ_R];
  1123. if( N->n < p_limbs )
  1124. return( 0 );
  1125. /* Init R */
  1126. R.s = 1;
  1127. R.p = Rp;
  1128. R.n = P_KOBLITZ_R;
  1129. /* Common setup for M */
  1130. M.s = 1;
  1131. M.p = Mp;
  1132. /* M = A1 */
  1133. M.n = N->n - ( p_limbs - adjust );
  1134. if( M.n > p_limbs + adjust )
  1135. M.n = p_limbs + adjust;
  1136. memset( Mp, 0, sizeof Mp );
  1137. memcpy( Mp, N->p + p_limbs - adjust, M.n * sizeof( t_uint ) );
  1138. if( shift != 0 )
  1139. MPI_CHK( mpi_shift_r( &M, shift ) );
  1140. M.n += R.n - adjust; /* Make room for multiplication by R */
  1141. /* N = A0 */
  1142. if( mask != 0 )
  1143. N->p[p_limbs - 1] &= mask;
  1144. for( i = p_limbs; i < N->n; i++ )
  1145. N->p[i] = 0;
  1146. /* N = A0 + R * A1 */
  1147. MPI_CHK( mpi_mul_mpi( &M, &M, &R ) );
  1148. MPI_CHK( mpi_add_abs( N, N, &M ) );
  1149. /* Second pass */
  1150. /* M = A1 */
  1151. M.n = N->n - ( p_limbs - adjust );
  1152. if( M.n > p_limbs + adjust )
  1153. M.n = p_limbs + adjust;
  1154. memset( Mp, 0, sizeof Mp );
  1155. memcpy( Mp, N->p + p_limbs - adjust, M.n * sizeof( t_uint ) );
  1156. if( shift != 0 )
  1157. MPI_CHK( mpi_shift_r( &M, shift ) );
  1158. M.n += R.n - adjust; /* Make room for multiplication by R */
  1159. /* N = A0 */
  1160. if( mask != 0 )
  1161. N->p[p_limbs - 1] &= mask;
  1162. for( i = p_limbs; i < N->n; i++ )
  1163. N->p[i] = 0;
  1164. /* N = A0 + R * A1 */
  1165. MPI_CHK( mpi_mul_mpi( &M, &M, &R ) );
  1166. MPI_CHK( mpi_add_abs( N, N, &M ) );
  1167. cleanup:
  1168. return( ret );
  1169. }
  1170. #endif /* POLARSSL_ECP_DP_SECP192K1_ENABLED) ||
  1171. POLARSSL_ECP_DP_SECP224K1_ENABLED) ||
  1172. POLARSSL_ECP_DP_SECP256K1_ENABLED) */
  1173. #if defined(POLARSSL_ECP_DP_SECP192K1_ENABLED)
  1174. /*
  1175. * Fast quasi-reduction modulo p192k1 = 2^192 - R,
  1176. * with R = 2^32 + 2^12 + 2^8 + 2^7 + 2^6 + 2^3 + 1 = 0x0100001119
  1177. */
  1178. static int ecp_mod_p192k1( mpi *N )
  1179. {
  1180. static t_uint Rp[] = {
  1181. BYTES_TO_T_UINT_8( 0xC9, 0x11, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) };
  1182. return( ecp_mod_koblitz( N, Rp, 192 / 8 / sizeof( t_uint ), 0, 0, 0 ) );
  1183. }
  1184. #endif /* POLARSSL_ECP_DP_SECP192K1_ENABLED */
  1185. #if defined(POLARSSL_ECP_DP_SECP224K1_ENABLED)
  1186. /*
  1187. * Fast quasi-reduction modulo p224k1 = 2^224 - R,
  1188. * with R = 2^32 + 2^12 + 2^11 + 2^9 + 2^7 + 2^4 + 2 + 1 = 0x0100001A93
  1189. */
  1190. static int ecp_mod_p224k1( mpi *N )
  1191. {
  1192. static t_uint Rp[] = {
  1193. BYTES_TO_T_UINT_8( 0x93, 0x1A, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) };
  1194. #if defined(POLARSSL_HAVE_INT64)
  1195. return( ecp_mod_koblitz( N, Rp, 4, 1, 32, 0xFFFFFFFF ) );
  1196. #else
  1197. return( ecp_mod_koblitz( N, Rp, 224 / 8 / sizeof( t_uint ), 0, 0, 0 ) );
  1198. #endif
  1199. }
  1200. #endif /* POLARSSL_ECP_DP_SECP224K1_ENABLED */
  1201. #if defined(POLARSSL_ECP_DP_SECP256K1_ENABLED)
  1202. /*
  1203. * Fast quasi-reduction modulo p256k1 = 2^256 - R,
  1204. * with R = 2^32 + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 1 = 0x01000003D1
  1205. */
  1206. static int ecp_mod_p256k1( mpi *N )
  1207. {
  1208. static t_uint Rp[] = {
  1209. BYTES_TO_T_UINT_8( 0xD1, 0x03, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) };
  1210. return( ecp_mod_koblitz( N, Rp, 256 / 8 / sizeof( t_uint ), 0, 0, 0 ) );
  1211. }
  1212. #endif /* POLARSSL_ECP_DP_SECP256K1_ENABLED */
  1213. #endif /* POLARSSL_ECP_C */