bignum.c 50 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345
  1. /*
  2. * Multi-precision integer library
  3. *
  4. * Copyright (C) 2006-2014, Brainspark B.V.
  5. *
  6. * This file is part of PolarSSL (http://www.polarssl.org)
  7. * Lead Maintainer: Paul Bakker <polarssl_maintainer at polarssl.org>
  8. *
  9. * All rights reserved.
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License as published by
  13. * the Free Software Foundation; either version 2 of the License, or
  14. * (at your option) any later version.
  15. *
  16. * This program is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  19. * GNU General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License along
  22. * with this program; if not, write to the Free Software Foundation, Inc.,
  23. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  24. */
  25. /*
  26. * This MPI implementation is based on:
  27. *
  28. * http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf
  29. * http://www.stillhq.com/extracted/gnupg-api/mpi/
  30. * http://math.libtomcrypt.com/files/tommath.pdf
  31. */
  32. #if !defined(POLARSSL_CONFIG_FILE)
  33. #include "polarssl/config.h"
  34. #else
  35. #include POLARSSL_CONFIG_FILE
  36. #endif
  37. #if defined(POLARSSL_BIGNUM_C)
  38. #include "polarssl/bignum.h"
  39. #include "polarssl/bn_mul.h"
  40. #if defined(POLARSSL_PLATFORM_C)
  41. #include "polarssl/platform.h"
  42. #else
  43. #define polarssl_printf printf
  44. #define polarssl_malloc malloc
  45. #define polarssl_free free
  46. #endif
  47. #include <stdlib.h>
  48. /* Implementation that should never be optimized out by the compiler */
  49. static void polarssl_zeroize( void *v, size_t n ) {
  50. volatile unsigned char *p = v; while( n-- ) *p++ = 0;
  51. }
  52. #define ciL (sizeof(t_uint)) /* chars in limb */
  53. #define biL (ciL << 3) /* bits in limb */
  54. #define biH (ciL << 2) /* half limb size */
  55. /*
  56. * Convert between bits/chars and number of limbs
  57. */
  58. #define BITS_TO_LIMBS(i) (((i) + biL - 1) / biL)
  59. #define CHARS_TO_LIMBS(i) (((i) + ciL - 1) / ciL)
  60. /*
  61. * Initialize one MPI
  62. */
  63. void mpi_init( mpi *X )
  64. {
  65. if( X == NULL )
  66. return;
  67. X->s = 1;
  68. X->n = 0;
  69. X->p = NULL;
  70. }
  71. /*
  72. * Unallocate one MPI
  73. */
  74. void mpi_free( mpi *X )
  75. {
  76. if( X == NULL )
  77. return;
  78. if( X->p != NULL )
  79. {
  80. polarssl_zeroize( X->p, X->n * ciL );
  81. polarssl_free( X->p );
  82. }
  83. X->s = 1;
  84. X->n = 0;
  85. X->p = NULL;
  86. }
  87. /*
  88. * Enlarge to the specified number of limbs
  89. */
  90. int mpi_grow( mpi *X, size_t nblimbs )
  91. {
  92. t_uint *p;
  93. if( nblimbs > POLARSSL_MPI_MAX_LIMBS )
  94. return( POLARSSL_ERR_MPI_MALLOC_FAILED );
  95. if( X->n < nblimbs )
  96. {
  97. if( ( p = (t_uint *) polarssl_malloc( nblimbs * ciL ) ) == NULL )
  98. return( POLARSSL_ERR_MPI_MALLOC_FAILED );
  99. memset( p, 0, nblimbs * ciL );
  100. if( X->p != NULL )
  101. {
  102. memcpy( p, X->p, X->n * ciL );
  103. polarssl_zeroize( X->p, X->n * ciL );
  104. polarssl_free( X->p );
  105. }
  106. X->n = nblimbs;
  107. X->p = p;
  108. }
  109. return( 0 );
  110. }
  111. /*
  112. * Resize down as much as possible,
  113. * while keeping at least the specified number of limbs
  114. */
  115. int mpi_shrink( mpi *X, size_t nblimbs )
  116. {
  117. t_uint *p;
  118. size_t i;
  119. /* Actually resize up in this case */
  120. if( X->n <= nblimbs )
  121. return( mpi_grow( X, nblimbs ) );
  122. for( i = X->n - 1; i > 0; i-- )
  123. if( X->p[i] != 0 )
  124. break;
  125. i++;
  126. if( i < nblimbs )
  127. i = nblimbs;
  128. if( ( p = (t_uint *) polarssl_malloc( i * ciL ) ) == NULL )
  129. return( POLARSSL_ERR_MPI_MALLOC_FAILED );
  130. memset( p, 0, i * ciL );
  131. if( X->p != NULL )
  132. {
  133. memcpy( p, X->p, i * ciL );
  134. polarssl_zeroize( X->p, X->n * ciL );
  135. polarssl_free( X->p );
  136. }
  137. X->n = i;
  138. X->p = p;
  139. return( 0 );
  140. }
  141. /*
  142. * Copy the contents of Y into X
  143. */
  144. int mpi_copy( mpi *X, const mpi *Y )
  145. {
  146. int ret;
  147. size_t i;
  148. if( X == Y )
  149. return( 0 );
  150. if( Y->p == NULL )
  151. {
  152. mpi_free( X );
  153. return( 0 );
  154. }
  155. for( i = Y->n - 1; i > 0; i-- )
  156. if( Y->p[i] != 0 )
  157. break;
  158. i++;
  159. X->s = Y->s;
  160. MPI_CHK( mpi_grow( X, i ) );
  161. memset( X->p, 0, X->n * ciL );
  162. memcpy( X->p, Y->p, i * ciL );
  163. cleanup:
  164. return( ret );
  165. }
  166. /*
  167. * Swap the contents of X and Y
  168. */
  169. void mpi_swap( mpi *X, mpi *Y )
  170. {
  171. mpi T;
  172. memcpy( &T, X, sizeof( mpi ) );
  173. memcpy( X, Y, sizeof( mpi ) );
  174. memcpy( Y, &T, sizeof( mpi ) );
  175. }
  176. /*
  177. * Conditionally assign X = Y, without leaking information
  178. * about whether the assignment was made or not.
  179. * (Leaking information about the respective sizes of X and Y is ok however.)
  180. */
  181. int mpi_safe_cond_assign( mpi *X, const mpi *Y, unsigned char assign )
  182. {
  183. int ret = 0;
  184. size_t i;
  185. /* make sure assign is 0 or 1 */
  186. assign = ( assign != 0 );
  187. MPI_CHK( mpi_grow( X, Y->n ) );
  188. X->s = X->s * ( 1 - assign ) + Y->s * assign;
  189. for( i = 0; i < Y->n; i++ )
  190. X->p[i] = X->p[i] * ( 1 - assign ) + Y->p[i] * assign;
  191. for( ; i < X->n; i++ )
  192. X->p[i] *= ( 1 - assign );
  193. cleanup:
  194. return( ret );
  195. }
  196. /*
  197. * Conditionally swap X and Y, without leaking information
  198. * about whether the swap was made or not.
  199. * Here it is not ok to simply swap the pointers, which whould lead to
  200. * different memory access patterns when X and Y are used afterwards.
  201. */
  202. int mpi_safe_cond_swap( mpi *X, mpi *Y, unsigned char swap )
  203. {
  204. int ret, s;
  205. size_t i;
  206. t_uint tmp;
  207. if( X == Y )
  208. return( 0 );
  209. /* make sure swap is 0 or 1 */
  210. swap = ( swap != 0 );
  211. MPI_CHK( mpi_grow( X, Y->n ) );
  212. MPI_CHK( mpi_grow( Y, X->n ) );
  213. s = X->s;
  214. X->s = X->s * ( 1 - swap ) + Y->s * swap;
  215. Y->s = Y->s * ( 1 - swap ) + s * swap;
  216. for( i = 0; i < X->n; i++ )
  217. {
  218. tmp = X->p[i];
  219. X->p[i] = X->p[i] * ( 1 - swap ) + Y->p[i] * swap;
  220. Y->p[i] = Y->p[i] * ( 1 - swap ) + tmp * swap;
  221. }
  222. cleanup:
  223. return( ret );
  224. }
  225. /*
  226. * Set value from integer
  227. */
  228. int mpi_lset( mpi *X, t_sint z )
  229. {
  230. int ret;
  231. MPI_CHK( mpi_grow( X, 1 ) );
  232. memset( X->p, 0, X->n * ciL );
  233. X->p[0] = ( z < 0 ) ? -z : z;
  234. X->s = ( z < 0 ) ? -1 : 1;
  235. cleanup:
  236. return( ret );
  237. }
  238. /*
  239. * Get a specific bit
  240. */
  241. int mpi_get_bit( const mpi *X, size_t pos )
  242. {
  243. if( X->n * biL <= pos )
  244. return( 0 );
  245. return( ( X->p[pos / biL] >> ( pos % biL ) ) & 0x01 );
  246. }
  247. /*
  248. * Set a bit to a specific value of 0 or 1
  249. */
  250. int mpi_set_bit( mpi *X, size_t pos, unsigned char val )
  251. {
  252. int ret = 0;
  253. size_t off = pos / biL;
  254. size_t idx = pos % biL;
  255. if( val != 0 && val != 1 )
  256. return( POLARSSL_ERR_MPI_BAD_INPUT_DATA );
  257. if( X->n * biL <= pos )
  258. {
  259. if( val == 0 )
  260. return( 0 );
  261. MPI_CHK( mpi_grow( X, off + 1 ) );
  262. }
  263. X->p[off] &= ~( (t_uint) 0x01 << idx );
  264. X->p[off] |= (t_uint) val << idx;
  265. cleanup:
  266. return( ret );
  267. }
  268. /*
  269. * Return the number of least significant bits
  270. */
  271. size_t mpi_lsb( const mpi *X )
  272. {
  273. size_t i, j, count = 0;
  274. for( i = 0; i < X->n; i++ )
  275. for( j = 0; j < biL; j++, count++ )
  276. if( ( ( X->p[i] >> j ) & 1 ) != 0 )
  277. return( count );
  278. return( 0 );
  279. }
  280. /*
  281. * Return the number of most significant bits
  282. */
  283. size_t mpi_msb( const mpi *X )
  284. {
  285. size_t i, j;
  286. for( i = X->n - 1; i > 0; i-- )
  287. if( X->p[i] != 0 )
  288. break;
  289. for( j = biL; j > 0; j-- )
  290. if( ( ( X->p[i] >> ( j - 1 ) ) & 1 ) != 0 )
  291. break;
  292. return( ( i * biL ) + j );
  293. }
  294. /*
  295. * Return the total size in bytes
  296. */
  297. size_t mpi_size( const mpi *X )
  298. {
  299. return( ( mpi_msb( X ) + 7 ) >> 3 );
  300. }
  301. /*
  302. * Convert an ASCII character to digit value
  303. */
  304. static int mpi_get_digit( t_uint *d, int radix, char c )
  305. {
  306. *d = 255;
  307. if( c >= 0x30 && c <= 0x39 ) *d = c - 0x30;
  308. if( c >= 0x41 && c <= 0x46 ) *d = c - 0x37;
  309. if( c >= 0x61 && c <= 0x66 ) *d = c - 0x57;
  310. if( *d >= (t_uint) radix )
  311. return( POLARSSL_ERR_MPI_INVALID_CHARACTER );
  312. return( 0 );
  313. }
  314. /*
  315. * Import from an ASCII string
  316. */
  317. int mpi_read_string( mpi *X, int radix, const char *s )
  318. {
  319. int ret;
  320. size_t i, j, slen, n;
  321. t_uint d;
  322. mpi T;
  323. if( radix < 2 || radix > 16 )
  324. return( POLARSSL_ERR_MPI_BAD_INPUT_DATA );
  325. mpi_init( &T );
  326. slen = strlen( s );
  327. if( radix == 16 )
  328. {
  329. n = BITS_TO_LIMBS( slen << 2 );
  330. MPI_CHK( mpi_grow( X, n ) );
  331. MPI_CHK( mpi_lset( X, 0 ) );
  332. for( i = slen, j = 0; i > 0; i--, j++ )
  333. {
  334. if( i == 1 && s[i - 1] == '-' )
  335. {
  336. X->s = -1;
  337. break;
  338. }
  339. MPI_CHK( mpi_get_digit( &d, radix, s[i - 1] ) );
  340. X->p[j / ( 2 * ciL )] |= d << ( ( j % ( 2 * ciL ) ) << 2 );
  341. }
  342. }
  343. else
  344. {
  345. MPI_CHK( mpi_lset( X, 0 ) );
  346. for( i = 0; i < slen; i++ )
  347. {
  348. if( i == 0 && s[i] == '-' )
  349. {
  350. X->s = -1;
  351. continue;
  352. }
  353. MPI_CHK( mpi_get_digit( &d, radix, s[i] ) );
  354. MPI_CHK( mpi_mul_int( &T, X, radix ) );
  355. if( X->s == 1 )
  356. {
  357. MPI_CHK( mpi_add_int( X, &T, d ) );
  358. }
  359. else
  360. {
  361. MPI_CHK( mpi_sub_int( X, &T, d ) );
  362. }
  363. }
  364. }
  365. cleanup:
  366. mpi_free( &T );
  367. return( ret );
  368. }
  369. /*
  370. * Helper to write the digits high-order first
  371. */
  372. static int mpi_write_hlp( mpi *X, int radix, char **p )
  373. {
  374. int ret;
  375. t_uint r;
  376. if( radix < 2 || radix > 16 )
  377. return( POLARSSL_ERR_MPI_BAD_INPUT_DATA );
  378. MPI_CHK( mpi_mod_int( &r, X, radix ) );
  379. MPI_CHK( mpi_div_int( X, NULL, X, radix ) );
  380. if( mpi_cmp_int( X, 0 ) != 0 )
  381. MPI_CHK( mpi_write_hlp( X, radix, p ) );
  382. if( r < 10 )
  383. *(*p)++ = (char)( r + 0x30 );
  384. else
  385. *(*p)++ = (char)( r + 0x37 );
  386. cleanup:
  387. return( ret );
  388. }
  389. /*
  390. * Export into an ASCII string
  391. */
  392. int mpi_write_string( const mpi *X, int radix, char *s, size_t *slen )
  393. {
  394. int ret = 0;
  395. size_t n;
  396. char *p;
  397. mpi T;
  398. if( radix < 2 || radix > 16 )
  399. return( POLARSSL_ERR_MPI_BAD_INPUT_DATA );
  400. n = mpi_msb( X );
  401. if( radix >= 4 ) n >>= 1;
  402. if( radix >= 16 ) n >>= 1;
  403. n += 3;
  404. if( *slen < n )
  405. {
  406. *slen = n;
  407. return( POLARSSL_ERR_MPI_BUFFER_TOO_SMALL );
  408. }
  409. p = s;
  410. mpi_init( &T );
  411. if( X->s == -1 )
  412. *p++ = '-';
  413. if( radix == 16 )
  414. {
  415. int c;
  416. size_t i, j, k;
  417. for( i = X->n, k = 0; i > 0; i-- )
  418. {
  419. for( j = ciL; j > 0; j-- )
  420. {
  421. c = ( X->p[i - 1] >> ( ( j - 1 ) << 3) ) & 0xFF;
  422. if( c == 0 && k == 0 && ( i + j ) != 2 )
  423. continue;
  424. *(p++) = "0123456789ABCDEF" [c / 16];
  425. *(p++) = "0123456789ABCDEF" [c % 16];
  426. k = 1;
  427. }
  428. }
  429. }
  430. else
  431. {
  432. MPI_CHK( mpi_copy( &T, X ) );
  433. if( T.s == -1 )
  434. T.s = 1;
  435. MPI_CHK( mpi_write_hlp( &T, radix, &p ) );
  436. }
  437. *p++ = '\0';
  438. *slen = p - s;
  439. cleanup:
  440. mpi_free( &T );
  441. return( ret );
  442. }
  443. #if defined(POLARSSL_FS_IO)
  444. /*
  445. * Read X from an opened file
  446. */
  447. int mpi_read_file( mpi *X, int radix, FILE *fin )
  448. {
  449. t_uint d;
  450. size_t slen;
  451. char *p;
  452. /*
  453. * Buffer should have space for (short) label and decimal formatted MPI,
  454. * newline characters and '\0'
  455. */
  456. char s[ POLARSSL_MPI_RW_BUFFER_SIZE ];
  457. memset( s, 0, sizeof( s ) );
  458. if( fgets( s, sizeof( s ) - 1, fin ) == NULL )
  459. return( POLARSSL_ERR_MPI_FILE_IO_ERROR );
  460. slen = strlen( s );
  461. if( slen == sizeof( s ) - 2 )
  462. return( POLARSSL_ERR_MPI_BUFFER_TOO_SMALL );
  463. if( s[slen - 1] == '\n' ) { slen--; s[slen] = '\0'; }
  464. if( s[slen - 1] == '\r' ) { slen--; s[slen] = '\0'; }
  465. p = s + slen;
  466. while( --p >= s )
  467. if( mpi_get_digit( &d, radix, *p ) != 0 )
  468. break;
  469. return( mpi_read_string( X, radix, p + 1 ) );
  470. }
  471. /*
  472. * Write X into an opened file (or stdout if fout == NULL)
  473. */
  474. int mpi_write_file( const char *p, const mpi *X, int radix, FILE *fout )
  475. {
  476. int ret;
  477. size_t n, slen, plen;
  478. /*
  479. * Buffer should have space for (short) label and decimal formatted MPI,
  480. * newline characters and '\0'
  481. */
  482. char s[ POLARSSL_MPI_RW_BUFFER_SIZE ];
  483. n = sizeof( s );
  484. memset( s, 0, n );
  485. n -= 2;
  486. MPI_CHK( mpi_write_string( X, radix, s, (size_t *) &n ) );
  487. if( p == NULL ) p = "";
  488. plen = strlen( p );
  489. slen = strlen( s );
  490. s[slen++] = '\r';
  491. s[slen++] = '\n';
  492. if( fout != NULL )
  493. {
  494. if( fwrite( p, 1, plen, fout ) != plen ||
  495. fwrite( s, 1, slen, fout ) != slen )
  496. return( POLARSSL_ERR_MPI_FILE_IO_ERROR );
  497. }
  498. else
  499. polarssl_printf( "%s%s", p, s );
  500. cleanup:
  501. return( ret );
  502. }
  503. #endif /* POLARSSL_FS_IO */
  504. /*
  505. * Import X from unsigned binary data, big endian
  506. */
  507. int mpi_read_binary( mpi *X, const unsigned char *buf, size_t buflen )
  508. {
  509. int ret;
  510. size_t i, j, n;
  511. for( n = 0; n < buflen; n++ )
  512. if( buf[n] != 0 )
  513. break;
  514. MPI_CHK( mpi_grow( X, CHARS_TO_LIMBS( buflen - n ) ) );
  515. MPI_CHK( mpi_lset( X, 0 ) );
  516. for( i = buflen, j = 0; i > n; i--, j++ )
  517. X->p[j / ciL] |= ((t_uint) buf[i - 1]) << ((j % ciL) << 3);
  518. cleanup:
  519. return( ret );
  520. }
  521. /*
  522. * Export X into unsigned binary data, big endian
  523. */
  524. int mpi_write_binary( const mpi *X, unsigned char *buf, size_t buflen )
  525. {
  526. size_t i, j, n;
  527. n = mpi_size( X );
  528. if( buflen < n )
  529. return( POLARSSL_ERR_MPI_BUFFER_TOO_SMALL );
  530. memset( buf, 0, buflen );
  531. for( i = buflen - 1, j = 0; n > 0; i--, j++, n-- )
  532. buf[i] = (unsigned char)( X->p[j / ciL] >> ((j % ciL) << 3) );
  533. return( 0 );
  534. }
  535. /*
  536. * Left-shift: X <<= count
  537. */
  538. int mpi_shift_l( mpi *X, size_t count )
  539. {
  540. int ret;
  541. size_t i, v0, t1;
  542. t_uint r0 = 0, r1;
  543. v0 = count / (biL );
  544. t1 = count & (biL - 1);
  545. i = mpi_msb( X ) + count;
  546. if( X->n * biL < i )
  547. MPI_CHK( mpi_grow( X, BITS_TO_LIMBS( i ) ) );
  548. ret = 0;
  549. /*
  550. * shift by count / limb_size
  551. */
  552. if( v0 > 0 )
  553. {
  554. for( i = X->n; i > v0; i-- )
  555. X->p[i - 1] = X->p[i - v0 - 1];
  556. for( ; i > 0; i-- )
  557. X->p[i - 1] = 0;
  558. }
  559. /*
  560. * shift by count % limb_size
  561. */
  562. if( t1 > 0 )
  563. {
  564. for( i = v0; i < X->n; i++ )
  565. {
  566. r1 = X->p[i] >> (biL - t1);
  567. X->p[i] <<= t1;
  568. X->p[i] |= r0;
  569. r0 = r1;
  570. }
  571. }
  572. cleanup:
  573. return( ret );
  574. }
  575. /*
  576. * Right-shift: X >>= count
  577. */
  578. int mpi_shift_r( mpi *X, size_t count )
  579. {
  580. size_t i, v0, v1;
  581. t_uint r0 = 0, r1;
  582. v0 = count / biL;
  583. v1 = count & (biL - 1);
  584. if( v0 > X->n || ( v0 == X->n && v1 > 0 ) )
  585. return mpi_lset( X, 0 );
  586. /*
  587. * shift by count / limb_size
  588. */
  589. if( v0 > 0 )
  590. {
  591. for( i = 0; i < X->n - v0; i++ )
  592. X->p[i] = X->p[i + v0];
  593. for( ; i < X->n; i++ )
  594. X->p[i] = 0;
  595. }
  596. /*
  597. * shift by count % limb_size
  598. */
  599. if( v1 > 0 )
  600. {
  601. for( i = X->n; i > 0; i-- )
  602. {
  603. r1 = X->p[i - 1] << (biL - v1);
  604. X->p[i - 1] >>= v1;
  605. X->p[i - 1] |= r0;
  606. r0 = r1;
  607. }
  608. }
  609. return( 0 );
  610. }
  611. /*
  612. * Compare unsigned values
  613. */
  614. int mpi_cmp_abs( const mpi *X, const mpi *Y )
  615. {
  616. size_t i, j;
  617. for( i = X->n; i > 0; i-- )
  618. if( X->p[i - 1] != 0 )
  619. break;
  620. for( j = Y->n; j > 0; j-- )
  621. if( Y->p[j - 1] != 0 )
  622. break;
  623. if( i == 0 && j == 0 )
  624. return( 0 );
  625. if( i > j ) return( 1 );
  626. if( j > i ) return( -1 );
  627. for( ; i > 0; i-- )
  628. {
  629. if( X->p[i - 1] > Y->p[i - 1] ) return( 1 );
  630. if( X->p[i - 1] < Y->p[i - 1] ) return( -1 );
  631. }
  632. return( 0 );
  633. }
  634. /*
  635. * Compare signed values
  636. */
  637. int mpi_cmp_mpi( const mpi *X, const mpi *Y )
  638. {
  639. size_t i, j;
  640. for( i = X->n; i > 0; i-- )
  641. if( X->p[i - 1] != 0 )
  642. break;
  643. for( j = Y->n; j > 0; j-- )
  644. if( Y->p[j - 1] != 0 )
  645. break;
  646. if( i == 0 && j == 0 )
  647. return( 0 );
  648. if( i > j ) return( X->s );
  649. if( j > i ) return( -Y->s );
  650. if( X->s > 0 && Y->s < 0 ) return( 1 );
  651. if( Y->s > 0 && X->s < 0 ) return( -1 );
  652. for( ; i > 0; i-- )
  653. {
  654. if( X->p[i - 1] > Y->p[i - 1] ) return( X->s );
  655. if( X->p[i - 1] < Y->p[i - 1] ) return( -X->s );
  656. }
  657. return( 0 );
  658. }
  659. /*
  660. * Compare signed values
  661. */
  662. int mpi_cmp_int( const mpi *X, t_sint z )
  663. {
  664. mpi Y;
  665. t_uint p[1];
  666. *p = ( z < 0 ) ? -z : z;
  667. Y.s = ( z < 0 ) ? -1 : 1;
  668. Y.n = 1;
  669. Y.p = p;
  670. return( mpi_cmp_mpi( X, &Y ) );
  671. }
  672. /*
  673. * Unsigned addition: X = |A| + |B| (HAC 14.7)
  674. */
  675. int mpi_add_abs( mpi *X, const mpi *A, const mpi *B )
  676. {
  677. int ret;
  678. size_t i, j;
  679. t_uint *o, *p, c;
  680. if( X == B )
  681. {
  682. const mpi *T = A; A = X; B = T;
  683. }
  684. if( X != A )
  685. MPI_CHK( mpi_copy( X, A ) );
  686. /*
  687. * X should always be positive as a result of unsigned additions.
  688. */
  689. X->s = 1;
  690. for( j = B->n; j > 0; j-- )
  691. if( B->p[j - 1] != 0 )
  692. break;
  693. MPI_CHK( mpi_grow( X, j ) );
  694. o = B->p; p = X->p; c = 0;
  695. for( i = 0; i < j; i++, o++, p++ )
  696. {
  697. *p += c; c = ( *p < c );
  698. *p += *o; c += ( *p < *o );
  699. }
  700. while( c != 0 )
  701. {
  702. if( i >= X->n )
  703. {
  704. MPI_CHK( mpi_grow( X, i + 1 ) );
  705. p = X->p + i;
  706. }
  707. *p += c; c = ( *p < c ); i++; p++;
  708. }
  709. cleanup:
  710. return( ret );
  711. }
  712. /*
  713. * Helper for mpi subtraction
  714. */
  715. static void mpi_sub_hlp( size_t n, t_uint *s, t_uint *d )
  716. {
  717. size_t i;
  718. t_uint c, z;
  719. for( i = c = 0; i < n; i++, s++, d++ )
  720. {
  721. z = ( *d < c ); *d -= c;
  722. c = ( *d < *s ) + z; *d -= *s;
  723. }
  724. while( c != 0 )
  725. {
  726. z = ( *d < c ); *d -= c;
  727. c = z; i++; d++;
  728. }
  729. }
  730. /*
  731. * Unsigned subtraction: X = |A| - |B| (HAC 14.9)
  732. */
  733. int mpi_sub_abs( mpi *X, const mpi *A, const mpi *B )
  734. {
  735. mpi TB;
  736. int ret;
  737. size_t n;
  738. if( mpi_cmp_abs( A, B ) < 0 )
  739. return( POLARSSL_ERR_MPI_NEGATIVE_VALUE );
  740. mpi_init( &TB );
  741. if( X == B )
  742. {
  743. MPI_CHK( mpi_copy( &TB, B ) );
  744. B = &TB;
  745. }
  746. if( X != A )
  747. MPI_CHK( mpi_copy( X, A ) );
  748. /*
  749. * X should always be positive as a result of unsigned subtractions.
  750. */
  751. X->s = 1;
  752. ret = 0;
  753. for( n = B->n; n > 0; n-- )
  754. if( B->p[n - 1] != 0 )
  755. break;
  756. mpi_sub_hlp( n, B->p, X->p );
  757. cleanup:
  758. mpi_free( &TB );
  759. return( ret );
  760. }
  761. /*
  762. * Signed addition: X = A + B
  763. */
  764. int mpi_add_mpi( mpi *X, const mpi *A, const mpi *B )
  765. {
  766. int ret, s = A->s;
  767. if( A->s * B->s < 0 )
  768. {
  769. if( mpi_cmp_abs( A, B ) >= 0 )
  770. {
  771. MPI_CHK( mpi_sub_abs( X, A, B ) );
  772. X->s = s;
  773. }
  774. else
  775. {
  776. MPI_CHK( mpi_sub_abs( X, B, A ) );
  777. X->s = -s;
  778. }
  779. }
  780. else
  781. {
  782. MPI_CHK( mpi_add_abs( X, A, B ) );
  783. X->s = s;
  784. }
  785. cleanup:
  786. return( ret );
  787. }
  788. /*
  789. * Signed subtraction: X = A - B
  790. */
  791. int mpi_sub_mpi( mpi *X, const mpi *A, const mpi *B )
  792. {
  793. int ret, s = A->s;
  794. if( A->s * B->s > 0 )
  795. {
  796. if( mpi_cmp_abs( A, B ) >= 0 )
  797. {
  798. MPI_CHK( mpi_sub_abs( X, A, B ) );
  799. X->s = s;
  800. }
  801. else
  802. {
  803. MPI_CHK( mpi_sub_abs( X, B, A ) );
  804. X->s = -s;
  805. }
  806. }
  807. else
  808. {
  809. MPI_CHK( mpi_add_abs( X, A, B ) );
  810. X->s = s;
  811. }
  812. cleanup:
  813. return( ret );
  814. }
  815. /*
  816. * Signed addition: X = A + b
  817. */
  818. int mpi_add_int( mpi *X, const mpi *A, t_sint b )
  819. {
  820. mpi _B;
  821. t_uint p[1];
  822. p[0] = ( b < 0 ) ? -b : b;
  823. _B.s = ( b < 0 ) ? -1 : 1;
  824. _B.n = 1;
  825. _B.p = p;
  826. return( mpi_add_mpi( X, A, &_B ) );
  827. }
  828. /*
  829. * Signed subtraction: X = A - b
  830. */
  831. int mpi_sub_int( mpi *X, const mpi *A, t_sint b )
  832. {
  833. mpi _B;
  834. t_uint p[1];
  835. p[0] = ( b < 0 ) ? -b : b;
  836. _B.s = ( b < 0 ) ? -1 : 1;
  837. _B.n = 1;
  838. _B.p = p;
  839. return( mpi_sub_mpi( X, A, &_B ) );
  840. }
  841. /*
  842. * Helper for mpi multiplication
  843. */
  844. static
  845. #if defined(__APPLE__) && defined(__arm__)
  846. /*
  847. * Apple LLVM version 4.2 (clang-425.0.24) (based on LLVM 3.2svn)
  848. * appears to need this to prevent bad ARM code generation at -O3.
  849. */
  850. __attribute__ ((noinline))
  851. #endif
  852. void mpi_mul_hlp( size_t i, t_uint *s, t_uint *d, t_uint b )
  853. {
  854. t_uint c = 0, t = 0;
  855. #if defined(MULADDC_HUIT)
  856. for( ; i >= 8; i -= 8 )
  857. {
  858. MULADDC_INIT
  859. MULADDC_HUIT
  860. MULADDC_STOP
  861. }
  862. for( ; i > 0; i-- )
  863. {
  864. MULADDC_INIT
  865. MULADDC_CORE
  866. MULADDC_STOP
  867. }
  868. #else /* MULADDC_HUIT */
  869. for( ; i >= 16; i -= 16 )
  870. {
  871. MULADDC_INIT
  872. MULADDC_CORE MULADDC_CORE
  873. MULADDC_CORE MULADDC_CORE
  874. MULADDC_CORE MULADDC_CORE
  875. MULADDC_CORE MULADDC_CORE
  876. MULADDC_CORE MULADDC_CORE
  877. MULADDC_CORE MULADDC_CORE
  878. MULADDC_CORE MULADDC_CORE
  879. MULADDC_CORE MULADDC_CORE
  880. MULADDC_STOP
  881. }
  882. for( ; i >= 8; i -= 8 )
  883. {
  884. MULADDC_INIT
  885. MULADDC_CORE MULADDC_CORE
  886. MULADDC_CORE MULADDC_CORE
  887. MULADDC_CORE MULADDC_CORE
  888. MULADDC_CORE MULADDC_CORE
  889. MULADDC_STOP
  890. }
  891. for( ; i > 0; i-- )
  892. {
  893. MULADDC_INIT
  894. MULADDC_CORE
  895. MULADDC_STOP
  896. }
  897. #endif /* MULADDC_HUIT */
  898. t++;
  899. do {
  900. *d += c; c = ( *d < c ); d++;
  901. }
  902. while( c != 0 );
  903. }
  904. /*
  905. * Baseline multiplication: X = A * B (HAC 14.12)
  906. */
  907. int mpi_mul_mpi( mpi *X, const mpi *A, const mpi *B )
  908. {
  909. int ret;
  910. size_t i, j;
  911. mpi TA, TB;
  912. mpi_init( &TA ); mpi_init( &TB );
  913. if( X == A ) { MPI_CHK( mpi_copy( &TA, A ) ); A = &TA; }
  914. if( X == B ) { MPI_CHK( mpi_copy( &TB, B ) ); B = &TB; }
  915. for( i = A->n; i > 0; i-- )
  916. if( A->p[i - 1] != 0 )
  917. break;
  918. for( j = B->n; j > 0; j-- )
  919. if( B->p[j - 1] != 0 )
  920. break;
  921. MPI_CHK( mpi_grow( X, i + j ) );
  922. MPI_CHK( mpi_lset( X, 0 ) );
  923. for( i++; j > 0; j-- )
  924. mpi_mul_hlp( i - 1, A->p, X->p + j - 1, B->p[j - 1] );
  925. X->s = A->s * B->s;
  926. cleanup:
  927. mpi_free( &TB ); mpi_free( &TA );
  928. return( ret );
  929. }
  930. /*
  931. * Baseline multiplication: X = A * b
  932. */
  933. int mpi_mul_int( mpi *X, const mpi *A, t_sint b )
  934. {
  935. mpi _B;
  936. t_uint p[1];
  937. _B.s = 1;
  938. _B.n = 1;
  939. _B.p = p;
  940. p[0] = b;
  941. return( mpi_mul_mpi( X, A, &_B ) );
  942. }
  943. /*
  944. * Division by mpi: A = Q * B + R (HAC 14.20)
  945. */
  946. int mpi_div_mpi( mpi *Q, mpi *R, const mpi *A, const mpi *B )
  947. {
  948. int ret;
  949. size_t i, n, t, k;
  950. mpi X, Y, Z, T1, T2;
  951. if( mpi_cmp_int( B, 0 ) == 0 )
  952. return( POLARSSL_ERR_MPI_DIVISION_BY_ZERO );
  953. mpi_init( &X ); mpi_init( &Y ); mpi_init( &Z );
  954. mpi_init( &T1 ); mpi_init( &T2 );
  955. if( mpi_cmp_abs( A, B ) < 0 )
  956. {
  957. if( Q != NULL ) MPI_CHK( mpi_lset( Q, 0 ) );
  958. if( R != NULL ) MPI_CHK( mpi_copy( R, A ) );
  959. return( 0 );
  960. }
  961. MPI_CHK( mpi_copy( &X, A ) );
  962. MPI_CHK( mpi_copy( &Y, B ) );
  963. X.s = Y.s = 1;
  964. MPI_CHK( mpi_grow( &Z, A->n + 2 ) );
  965. MPI_CHK( mpi_lset( &Z, 0 ) );
  966. MPI_CHK( mpi_grow( &T1, 2 ) );
  967. MPI_CHK( mpi_grow( &T2, 3 ) );
  968. k = mpi_msb( &Y ) % biL;
  969. if( k < biL - 1 )
  970. {
  971. k = biL - 1 - k;
  972. MPI_CHK( mpi_shift_l( &X, k ) );
  973. MPI_CHK( mpi_shift_l( &Y, k ) );
  974. }
  975. else k = 0;
  976. n = X.n - 1;
  977. t = Y.n - 1;
  978. MPI_CHK( mpi_shift_l( &Y, biL * ( n - t ) ) );
  979. while( mpi_cmp_mpi( &X, &Y ) >= 0 )
  980. {
  981. Z.p[n - t]++;
  982. MPI_CHK( mpi_sub_mpi( &X, &X, &Y ) );
  983. }
  984. MPI_CHK( mpi_shift_r( &Y, biL * ( n - t ) ) );
  985. for( i = n; i > t ; i-- )
  986. {
  987. if( X.p[i] >= Y.p[t] )
  988. Z.p[i - t - 1] = ~0;
  989. else
  990. {
  991. /*
  992. * The version of Clang shipped by Apple with Mavericks around
  993. * 2014-03 can't handle 128-bit division properly. Disable
  994. * 128-bits division for this version. Let's be optimistic and
  995. * assume it'll be fixed in the next minor version (next
  996. * patchlevel is probably a bit too optimistic).
  997. */
  998. #if defined(POLARSSL_HAVE_UDBL) && \
  999. ! ( defined(__x86_64__) && defined(__APPLE__) && \
  1000. defined(__clang_major__) && __clang_major__ == 5 && \
  1001. defined(__clang_minor__) && __clang_minor__ == 0 )
  1002. t_udbl r;
  1003. r = (t_udbl) X.p[i] << biL;
  1004. r |= (t_udbl) X.p[i - 1];
  1005. r /= Y.p[t];
  1006. if( r > ( (t_udbl) 1 << biL ) - 1 )
  1007. r = ( (t_udbl) 1 << biL ) - 1;
  1008. Z.p[i - t - 1] = (t_uint) r;
  1009. #else
  1010. /*
  1011. * __udiv_qrnnd_c, from gmp/longlong.h
  1012. */
  1013. t_uint q0, q1, r0, r1;
  1014. t_uint d0, d1, d, m;
  1015. d = Y.p[t];
  1016. d0 = ( d << biH ) >> biH;
  1017. d1 = ( d >> biH );
  1018. q1 = X.p[i] / d1;
  1019. r1 = X.p[i] - d1 * q1;
  1020. r1 <<= biH;
  1021. r1 |= ( X.p[i - 1] >> biH );
  1022. m = q1 * d0;
  1023. if( r1 < m )
  1024. {
  1025. q1--, r1 += d;
  1026. while( r1 >= d && r1 < m )
  1027. q1--, r1 += d;
  1028. }
  1029. r1 -= m;
  1030. q0 = r1 / d1;
  1031. r0 = r1 - d1 * q0;
  1032. r0 <<= biH;
  1033. r0 |= ( X.p[i - 1] << biH ) >> biH;
  1034. m = q0 * d0;
  1035. if( r0 < m )
  1036. {
  1037. q0--, r0 += d;
  1038. while( r0 >= d && r0 < m )
  1039. q0--, r0 += d;
  1040. }
  1041. r0 -= m;
  1042. Z.p[i - t - 1] = ( q1 << biH ) | q0;
  1043. #endif /* POLARSSL_HAVE_UDBL && !64-bit Apple with Clang 5.0 */
  1044. }
  1045. Z.p[i - t - 1]++;
  1046. do
  1047. {
  1048. Z.p[i - t - 1]--;
  1049. MPI_CHK( mpi_lset( &T1, 0 ) );
  1050. T1.p[0] = ( t < 1 ) ? 0 : Y.p[t - 1];
  1051. T1.p[1] = Y.p[t];
  1052. MPI_CHK( mpi_mul_int( &T1, &T1, Z.p[i - t - 1] ) );
  1053. MPI_CHK( mpi_lset( &T2, 0 ) );
  1054. T2.p[0] = ( i < 2 ) ? 0 : X.p[i - 2];
  1055. T2.p[1] = ( i < 1 ) ? 0 : X.p[i - 1];
  1056. T2.p[2] = X.p[i];
  1057. }
  1058. while( mpi_cmp_mpi( &T1, &T2 ) > 0 );
  1059. MPI_CHK( mpi_mul_int( &T1, &Y, Z.p[i - t - 1] ) );
  1060. MPI_CHK( mpi_shift_l( &T1, biL * ( i - t - 1 ) ) );
  1061. MPI_CHK( mpi_sub_mpi( &X, &X, &T1 ) );
  1062. if( mpi_cmp_int( &X, 0 ) < 0 )
  1063. {
  1064. MPI_CHK( mpi_copy( &T1, &Y ) );
  1065. MPI_CHK( mpi_shift_l( &T1, biL * ( i - t - 1 ) ) );
  1066. MPI_CHK( mpi_add_mpi( &X, &X, &T1 ) );
  1067. Z.p[i - t - 1]--;
  1068. }
  1069. }
  1070. if( Q != NULL )
  1071. {
  1072. MPI_CHK( mpi_copy( Q, &Z ) );
  1073. Q->s = A->s * B->s;
  1074. }
  1075. if( R != NULL )
  1076. {
  1077. MPI_CHK( mpi_shift_r( &X, k ) );
  1078. X.s = A->s;
  1079. MPI_CHK( mpi_copy( R, &X ) );
  1080. if( mpi_cmp_int( R, 0 ) == 0 )
  1081. R->s = 1;
  1082. }
  1083. cleanup:
  1084. mpi_free( &X ); mpi_free( &Y ); mpi_free( &Z );
  1085. mpi_free( &T1 ); mpi_free( &T2 );
  1086. return( ret );
  1087. }
  1088. /*
  1089. * Division by int: A = Q * b + R
  1090. */
  1091. int mpi_div_int( mpi *Q, mpi *R, const mpi *A, t_sint b )
  1092. {
  1093. mpi _B;
  1094. t_uint p[1];
  1095. p[0] = ( b < 0 ) ? -b : b;
  1096. _B.s = ( b < 0 ) ? -1 : 1;
  1097. _B.n = 1;
  1098. _B.p = p;
  1099. return( mpi_div_mpi( Q, R, A, &_B ) );
  1100. }
  1101. /*
  1102. * Modulo: R = A mod B
  1103. */
  1104. int mpi_mod_mpi( mpi *R, const mpi *A, const mpi *B )
  1105. {
  1106. int ret;
  1107. if( mpi_cmp_int( B, 0 ) < 0 )
  1108. return( POLARSSL_ERR_MPI_NEGATIVE_VALUE );
  1109. MPI_CHK( mpi_div_mpi( NULL, R, A, B ) );
  1110. while( mpi_cmp_int( R, 0 ) < 0 )
  1111. MPI_CHK( mpi_add_mpi( R, R, B ) );
  1112. while( mpi_cmp_mpi( R, B ) >= 0 )
  1113. MPI_CHK( mpi_sub_mpi( R, R, B ) );
  1114. cleanup:
  1115. return( ret );
  1116. }
  1117. /*
  1118. * Modulo: r = A mod b
  1119. */
  1120. int mpi_mod_int( t_uint *r, const mpi *A, t_sint b )
  1121. {
  1122. size_t i;
  1123. t_uint x, y, z;
  1124. if( b == 0 )
  1125. return( POLARSSL_ERR_MPI_DIVISION_BY_ZERO );
  1126. if( b < 0 )
  1127. return( POLARSSL_ERR_MPI_NEGATIVE_VALUE );
  1128. /*
  1129. * handle trivial cases
  1130. */
  1131. if( b == 1 )
  1132. {
  1133. *r = 0;
  1134. return( 0 );
  1135. }
  1136. if( b == 2 )
  1137. {
  1138. *r = A->p[0] & 1;
  1139. return( 0 );
  1140. }
  1141. /*
  1142. * general case
  1143. */
  1144. for( i = A->n, y = 0; i > 0; i-- )
  1145. {
  1146. x = A->p[i - 1];
  1147. y = ( y << biH ) | ( x >> biH );
  1148. z = y / b;
  1149. y -= z * b;
  1150. x <<= biH;
  1151. y = ( y << biH ) | ( x >> biH );
  1152. z = y / b;
  1153. y -= z * b;
  1154. }
  1155. /*
  1156. * If A is negative, then the current y represents a negative value.
  1157. * Flipping it to the positive side.
  1158. */
  1159. if( A->s < 0 && y != 0 )
  1160. y = b - y;
  1161. *r = y;
  1162. return( 0 );
  1163. }
  1164. /*
  1165. * Fast Montgomery initialization (thanks to Tom St Denis)
  1166. */
  1167. static void mpi_montg_init( t_uint *mm, const mpi *N )
  1168. {
  1169. t_uint x, m0 = N->p[0];
  1170. unsigned int i;
  1171. x = m0;
  1172. x += ( ( m0 + 2 ) & 4 ) << 1;
  1173. for( i = biL; i >= 8; i /= 2 )
  1174. x *= ( 2 - ( m0 * x ) );
  1175. *mm = ~x + 1;
  1176. }
  1177. /*
  1178. * Montgomery multiplication: A = A * B * R^-1 mod N (HAC 14.36)
  1179. */
  1180. static void mpi_montmul( mpi *A, const mpi *B, const mpi *N, t_uint mm,
  1181. const mpi *T )
  1182. {
  1183. size_t i, n, m;
  1184. t_uint u0, u1, *d;
  1185. memset( T->p, 0, T->n * ciL );
  1186. d = T->p;
  1187. n = N->n;
  1188. m = ( B->n < n ) ? B->n : n;
  1189. for( i = 0; i < n; i++ )
  1190. {
  1191. /*
  1192. * T = (T + u0*B + u1*N) / 2^biL
  1193. */
  1194. u0 = A->p[i];
  1195. u1 = ( d[0] + u0 * B->p[0] ) * mm;
  1196. mpi_mul_hlp( m, B->p, d, u0 );
  1197. mpi_mul_hlp( n, N->p, d, u1 );
  1198. *d++ = u0; d[n + 1] = 0;
  1199. }
  1200. memcpy( A->p, d, ( n + 1 ) * ciL );
  1201. if( mpi_cmp_abs( A, N ) >= 0 )
  1202. mpi_sub_hlp( n, N->p, A->p );
  1203. else
  1204. /* prevent timing attacks */
  1205. mpi_sub_hlp( n, A->p, T->p );
  1206. }
  1207. /*
  1208. * Montgomery reduction: A = A * R^-1 mod N
  1209. */
  1210. static void mpi_montred( mpi *A, const mpi *N, t_uint mm, const mpi *T )
  1211. {
  1212. t_uint z = 1;
  1213. mpi U;
  1214. U.n = U.s = (int) z;
  1215. U.p = &z;
  1216. mpi_montmul( A, &U, N, mm, T );
  1217. }
  1218. /*
  1219. * Sliding-window exponentiation: X = A^E mod N (HAC 14.85)
  1220. */
  1221. int mpi_exp_mod( mpi *X, const mpi *A, const mpi *E, const mpi *N, mpi *_RR )
  1222. {
  1223. int ret;
  1224. size_t wbits, wsize, one = 1;
  1225. size_t i, j, nblimbs;
  1226. size_t bufsize, nbits;
  1227. t_uint ei, mm, state;
  1228. mpi RR, T, W[ 2 << POLARSSL_MPI_WINDOW_SIZE ], Apos;
  1229. int neg;
  1230. if( mpi_cmp_int( N, 0 ) < 0 || ( N->p[0] & 1 ) == 0 )
  1231. return( POLARSSL_ERR_MPI_BAD_INPUT_DATA );
  1232. if( mpi_cmp_int( E, 0 ) < 0 )
  1233. return( POLARSSL_ERR_MPI_BAD_INPUT_DATA );
  1234. /*
  1235. * Init temps and window size
  1236. */
  1237. mpi_montg_init( &mm, N );
  1238. mpi_init( &RR ); mpi_init( &T );
  1239. mpi_init( &Apos );
  1240. memset( W, 0, sizeof( W ) );
  1241. i = mpi_msb( E );
  1242. wsize = ( i > 671 ) ? 6 : ( i > 239 ) ? 5 :
  1243. ( i > 79 ) ? 4 : ( i > 23 ) ? 3 : 1;
  1244. if( wsize > POLARSSL_MPI_WINDOW_SIZE )
  1245. wsize = POLARSSL_MPI_WINDOW_SIZE;
  1246. j = N->n + 1;
  1247. MPI_CHK( mpi_grow( X, j ) );
  1248. MPI_CHK( mpi_grow( &W[1], j ) );
  1249. MPI_CHK( mpi_grow( &T, j * 2 ) );
  1250. /*
  1251. * Compensate for negative A (and correct at the end)
  1252. */
  1253. neg = ( A->s == -1 );
  1254. if( neg )
  1255. {
  1256. MPI_CHK( mpi_copy( &Apos, A ) );
  1257. Apos.s = 1;
  1258. A = &Apos;
  1259. }
  1260. /*
  1261. * If 1st call, pre-compute R^2 mod N
  1262. */
  1263. if( _RR == NULL || _RR->p == NULL )
  1264. {
  1265. MPI_CHK( mpi_lset( &RR, 1 ) );
  1266. MPI_CHK( mpi_shift_l( &RR, N->n * 2 * biL ) );
  1267. MPI_CHK( mpi_mod_mpi( &RR, &RR, N ) );
  1268. if( _RR != NULL )
  1269. memcpy( _RR, &RR, sizeof( mpi ) );
  1270. }
  1271. else
  1272. memcpy( &RR, _RR, sizeof( mpi ) );
  1273. /*
  1274. * W[1] = A * R^2 * R^-1 mod N = A * R mod N
  1275. */
  1276. if( mpi_cmp_mpi( A, N ) >= 0 )
  1277. MPI_CHK( mpi_mod_mpi( &W[1], A, N ) );
  1278. else
  1279. MPI_CHK( mpi_copy( &W[1], A ) );
  1280. mpi_montmul( &W[1], &RR, N, mm, &T );
  1281. /*
  1282. * X = R^2 * R^-1 mod N = R mod N
  1283. */
  1284. MPI_CHK( mpi_copy( X, &RR ) );
  1285. mpi_montred( X, N, mm, &T );
  1286. if( wsize > 1 )
  1287. {
  1288. /*
  1289. * W[1 << (wsize - 1)] = W[1] ^ (wsize - 1)
  1290. */
  1291. j = one << ( wsize - 1 );
  1292. MPI_CHK( mpi_grow( &W[j], N->n + 1 ) );
  1293. MPI_CHK( mpi_copy( &W[j], &W[1] ) );
  1294. for( i = 0; i < wsize - 1; i++ )
  1295. mpi_montmul( &W[j], &W[j], N, mm, &T );
  1296. /*
  1297. * W[i] = W[i - 1] * W[1]
  1298. */
  1299. for( i = j + 1; i < ( one << wsize ); i++ )
  1300. {
  1301. MPI_CHK( mpi_grow( &W[i], N->n + 1 ) );
  1302. MPI_CHK( mpi_copy( &W[i], &W[i - 1] ) );
  1303. mpi_montmul( &W[i], &W[1], N, mm, &T );
  1304. }
  1305. }
  1306. nblimbs = E->n;
  1307. bufsize = 0;
  1308. nbits = 0;
  1309. wbits = 0;
  1310. state = 0;
  1311. while( 1 )
  1312. {
  1313. if( bufsize == 0 )
  1314. {
  1315. if( nblimbs == 0 )
  1316. break;
  1317. nblimbs--;
  1318. bufsize = sizeof( t_uint ) << 3;
  1319. }
  1320. bufsize--;
  1321. ei = (E->p[nblimbs] >> bufsize) & 1;
  1322. /*
  1323. * skip leading 0s
  1324. */
  1325. if( ei == 0 && state == 0 )
  1326. continue;
  1327. if( ei == 0 && state == 1 )
  1328. {
  1329. /*
  1330. * out of window, square X
  1331. */
  1332. mpi_montmul( X, X, N, mm, &T );
  1333. continue;
  1334. }
  1335. /*
  1336. * add ei to current window
  1337. */
  1338. state = 2;
  1339. nbits++;
  1340. wbits |= ( ei << ( wsize - nbits ) );
  1341. if( nbits == wsize )
  1342. {
  1343. /*
  1344. * X = X^wsize R^-1 mod N
  1345. */
  1346. for( i = 0; i < wsize; i++ )
  1347. mpi_montmul( X, X, N, mm, &T );
  1348. /*
  1349. * X = X * W[wbits] R^-1 mod N
  1350. */
  1351. mpi_montmul( X, &W[wbits], N, mm, &T );
  1352. state--;
  1353. nbits = 0;
  1354. wbits = 0;
  1355. }
  1356. }
  1357. /*
  1358. * process the remaining bits
  1359. */
  1360. for( i = 0; i < nbits; i++ )
  1361. {
  1362. mpi_montmul( X, X, N, mm, &T );
  1363. wbits <<= 1;
  1364. if( ( wbits & ( one << wsize ) ) != 0 )
  1365. mpi_montmul( X, &W[1], N, mm, &T );
  1366. }
  1367. /*
  1368. * X = A^E * R * R^-1 mod N = A^E mod N
  1369. */
  1370. mpi_montred( X, N, mm, &T );
  1371. if( neg )
  1372. {
  1373. X->s = -1;
  1374. MPI_CHK( mpi_add_mpi( X, N, X ) );
  1375. }
  1376. cleanup:
  1377. for( i = ( one << ( wsize - 1 ) ); i < ( one << wsize ); i++ )
  1378. mpi_free( &W[i] );
  1379. mpi_free( &W[1] ); mpi_free( &T ); mpi_free( &Apos );
  1380. if( _RR == NULL || _RR->p == NULL )
  1381. mpi_free( &RR );
  1382. return( ret );
  1383. }
  1384. /*
  1385. * Greatest common divisor: G = gcd(A, B) (HAC 14.54)
  1386. */
  1387. int mpi_gcd( mpi *G, const mpi *A, const mpi *B )
  1388. {
  1389. int ret;
  1390. size_t lz, lzt;
  1391. mpi TG, TA, TB;
  1392. mpi_init( &TG ); mpi_init( &TA ); mpi_init( &TB );
  1393. MPI_CHK( mpi_copy( &TA, A ) );
  1394. MPI_CHK( mpi_copy( &TB, B ) );
  1395. lz = mpi_lsb( &TA );
  1396. lzt = mpi_lsb( &TB );
  1397. if( lzt < lz )
  1398. lz = lzt;
  1399. MPI_CHK( mpi_shift_r( &TA, lz ) );
  1400. MPI_CHK( mpi_shift_r( &TB, lz ) );
  1401. TA.s = TB.s = 1;
  1402. while( mpi_cmp_int( &TA, 0 ) != 0 )
  1403. {
  1404. MPI_CHK( mpi_shift_r( &TA, mpi_lsb( &TA ) ) );
  1405. MPI_CHK( mpi_shift_r( &TB, mpi_lsb( &TB ) ) );
  1406. if( mpi_cmp_mpi( &TA, &TB ) >= 0 )
  1407. {
  1408. MPI_CHK( mpi_sub_abs( &TA, &TA, &TB ) );
  1409. MPI_CHK( mpi_shift_r( &TA, 1 ) );
  1410. }
  1411. else
  1412. {
  1413. MPI_CHK( mpi_sub_abs( &TB, &TB, &TA ) );
  1414. MPI_CHK( mpi_shift_r( &TB, 1 ) );
  1415. }
  1416. }
  1417. MPI_CHK( mpi_shift_l( &TB, lz ) );
  1418. MPI_CHK( mpi_copy( G, &TB ) );
  1419. cleanup:
  1420. mpi_free( &TG ); mpi_free( &TA ); mpi_free( &TB );
  1421. return( ret );
  1422. }
  1423. /*
  1424. * Fill X with size bytes of random.
  1425. *
  1426. * Use a temporary bytes representation to make sure the result is the same
  1427. * regardless of the platform endianness (useful when f_rng is actually
  1428. * deterministic, eg for tests).
  1429. */
  1430. int mpi_fill_random( mpi *X, size_t size,
  1431. int (*f_rng)(void *, unsigned char *, size_t),
  1432. void *p_rng )
  1433. {
  1434. int ret;
  1435. unsigned char buf[POLARSSL_MPI_MAX_SIZE];
  1436. if( size > POLARSSL_MPI_MAX_SIZE )
  1437. return( POLARSSL_ERR_MPI_BAD_INPUT_DATA );
  1438. MPI_CHK( f_rng( p_rng, buf, size ) );
  1439. MPI_CHK( mpi_read_binary( X, buf, size ) );
  1440. cleanup:
  1441. return( ret );
  1442. }
  1443. /*
  1444. * Modular inverse: X = A^-1 mod N (HAC 14.61 / 14.64)
  1445. */
  1446. int mpi_inv_mod( mpi *X, const mpi *A, const mpi *N )
  1447. {
  1448. int ret;
  1449. mpi G, TA, TU, U1, U2, TB, TV, V1, V2;
  1450. if( mpi_cmp_int( N, 0 ) <= 0 )
  1451. return( POLARSSL_ERR_MPI_BAD_INPUT_DATA );
  1452. mpi_init( &TA ); mpi_init( &TU ); mpi_init( &U1 ); mpi_init( &U2 );
  1453. mpi_init( &G ); mpi_init( &TB ); mpi_init( &TV );
  1454. mpi_init( &V1 ); mpi_init( &V2 );
  1455. MPI_CHK( mpi_gcd( &G, A, N ) );
  1456. if( mpi_cmp_int( &G, 1 ) != 0 )
  1457. {
  1458. ret = POLARSSL_ERR_MPI_NOT_ACCEPTABLE;
  1459. goto cleanup;
  1460. }
  1461. MPI_CHK( mpi_mod_mpi( &TA, A, N ) );
  1462. MPI_CHK( mpi_copy( &TU, &TA ) );
  1463. MPI_CHK( mpi_copy( &TB, N ) );
  1464. MPI_CHK( mpi_copy( &TV, N ) );
  1465. MPI_CHK( mpi_lset( &U1, 1 ) );
  1466. MPI_CHK( mpi_lset( &U2, 0 ) );
  1467. MPI_CHK( mpi_lset( &V1, 0 ) );
  1468. MPI_CHK( mpi_lset( &V2, 1 ) );
  1469. do
  1470. {
  1471. while( ( TU.p[0] & 1 ) == 0 )
  1472. {
  1473. MPI_CHK( mpi_shift_r( &TU, 1 ) );
  1474. if( ( U1.p[0] & 1 ) != 0 || ( U2.p[0] & 1 ) != 0 )
  1475. {
  1476. MPI_CHK( mpi_add_mpi( &U1, &U1, &TB ) );
  1477. MPI_CHK( mpi_sub_mpi( &U2, &U2, &TA ) );
  1478. }
  1479. MPI_CHK( mpi_shift_r( &U1, 1 ) );
  1480. MPI_CHK( mpi_shift_r( &U2, 1 ) );
  1481. }
  1482. while( ( TV.p[0] & 1 ) == 0 )
  1483. {
  1484. MPI_CHK( mpi_shift_r( &TV, 1 ) );
  1485. if( ( V1.p[0] & 1 ) != 0 || ( V2.p[0] & 1 ) != 0 )
  1486. {
  1487. MPI_CHK( mpi_add_mpi( &V1, &V1, &TB ) );
  1488. MPI_CHK( mpi_sub_mpi( &V2, &V2, &TA ) );
  1489. }
  1490. MPI_CHK( mpi_shift_r( &V1, 1 ) );
  1491. MPI_CHK( mpi_shift_r( &V2, 1 ) );
  1492. }
  1493. if( mpi_cmp_mpi( &TU, &TV ) >= 0 )
  1494. {
  1495. MPI_CHK( mpi_sub_mpi( &TU, &TU, &TV ) );
  1496. MPI_CHK( mpi_sub_mpi( &U1, &U1, &V1 ) );
  1497. MPI_CHK( mpi_sub_mpi( &U2, &U2, &V2 ) );
  1498. }
  1499. else
  1500. {
  1501. MPI_CHK( mpi_sub_mpi( &TV, &TV, &TU ) );
  1502. MPI_CHK( mpi_sub_mpi( &V1, &V1, &U1 ) );
  1503. MPI_CHK( mpi_sub_mpi( &V2, &V2, &U2 ) );
  1504. }
  1505. }
  1506. while( mpi_cmp_int( &TU, 0 ) != 0 );
  1507. while( mpi_cmp_int( &V1, 0 ) < 0 )
  1508. MPI_CHK( mpi_add_mpi( &V1, &V1, N ) );
  1509. while( mpi_cmp_mpi( &V1, N ) >= 0 )
  1510. MPI_CHK( mpi_sub_mpi( &V1, &V1, N ) );
  1511. MPI_CHK( mpi_copy( X, &V1 ) );
  1512. cleanup:
  1513. mpi_free( &TA ); mpi_free( &TU ); mpi_free( &U1 ); mpi_free( &U2 );
  1514. mpi_free( &G ); mpi_free( &TB ); mpi_free( &TV );
  1515. mpi_free( &V1 ); mpi_free( &V2 );
  1516. return( ret );
  1517. }
  1518. #if defined(POLARSSL_GENPRIME)
  1519. static const int small_prime[] =
  1520. {
  1521. 3, 5, 7, 11, 13, 17, 19, 23,
  1522. 29, 31, 37, 41, 43, 47, 53, 59,
  1523. 61, 67, 71, 73, 79, 83, 89, 97,
  1524. 101, 103, 107, 109, 113, 127, 131, 137,
  1525. 139, 149, 151, 157, 163, 167, 173, 179,
  1526. 181, 191, 193, 197, 199, 211, 223, 227,
  1527. 229, 233, 239, 241, 251, 257, 263, 269,
  1528. 271, 277, 281, 283, 293, 307, 311, 313,
  1529. 317, 331, 337, 347, 349, 353, 359, 367,
  1530. 373, 379, 383, 389, 397, 401, 409, 419,
  1531. 421, 431, 433, 439, 443, 449, 457, 461,
  1532. 463, 467, 479, 487, 491, 499, 503, 509,
  1533. 521, 523, 541, 547, 557, 563, 569, 571,
  1534. 577, 587, 593, 599, 601, 607, 613, 617,
  1535. 619, 631, 641, 643, 647, 653, 659, 661,
  1536. 673, 677, 683, 691, 701, 709, 719, 727,
  1537. 733, 739, 743, 751, 757, 761, 769, 773,
  1538. 787, 797, 809, 811, 821, 823, 827, 829,
  1539. 839, 853, 857, 859, 863, 877, 881, 883,
  1540. 887, 907, 911, 919, 929, 937, 941, 947,
  1541. 953, 967, 971, 977, 983, 991, 997, -103
  1542. };
  1543. /*
  1544. * Small divisors test (X must be positive)
  1545. *
  1546. * Return values:
  1547. * 0: no small factor (possible prime, more tests needed)
  1548. * 1: certain prime
  1549. * POLARSSL_ERR_MPI_NOT_ACCEPTABLE: certain non-prime
  1550. * other negative: error
  1551. */
  1552. static int mpi_check_small_factors( const mpi *X )
  1553. {
  1554. int ret = 0;
  1555. size_t i;
  1556. t_uint r;
  1557. if( ( X->p[0] & 1 ) == 0 )
  1558. return( POLARSSL_ERR_MPI_NOT_ACCEPTABLE );
  1559. for( i = 0; small_prime[i] > 0; i++ )
  1560. {
  1561. if( mpi_cmp_int( X, small_prime[i] ) <= 0 )
  1562. return( 1 );
  1563. MPI_CHK( mpi_mod_int( &r, X, small_prime[i] ) );
  1564. if( r == 0 )
  1565. return( POLARSSL_ERR_MPI_NOT_ACCEPTABLE );
  1566. }
  1567. cleanup:
  1568. return( ret );
  1569. }
  1570. /*
  1571. * Miller-Rabin pseudo-primality test (HAC 4.24)
  1572. */
  1573. static int mpi_miller_rabin( const mpi *X,
  1574. int (*f_rng)(void *, unsigned char *, size_t),
  1575. void *p_rng )
  1576. {
  1577. int ret;
  1578. size_t i, j, n, s;
  1579. mpi W, R, T, A, RR;
  1580. mpi_init( &W ); mpi_init( &R ); mpi_init( &T ); mpi_init( &A );
  1581. mpi_init( &RR );
  1582. /*
  1583. * W = |X| - 1
  1584. * R = W >> lsb( W )
  1585. */
  1586. MPI_CHK( mpi_sub_int( &W, X, 1 ) );
  1587. s = mpi_lsb( &W );
  1588. MPI_CHK( mpi_copy( &R, &W ) );
  1589. MPI_CHK( mpi_shift_r( &R, s ) );
  1590. i = mpi_msb( X );
  1591. /*
  1592. * HAC, table 4.4
  1593. */
  1594. n = ( ( i >= 1300 ) ? 2 : ( i >= 850 ) ? 3 :
  1595. ( i >= 650 ) ? 4 : ( i >= 350 ) ? 8 :
  1596. ( i >= 250 ) ? 12 : ( i >= 150 ) ? 18 : 27 );
  1597. for( i = 0; i < n; i++ )
  1598. {
  1599. /*
  1600. * pick a random A, 1 < A < |X| - 1
  1601. */
  1602. MPI_CHK( mpi_fill_random( &A, X->n * ciL, f_rng, p_rng ) );
  1603. if( mpi_cmp_mpi( &A, &W ) >= 0 )
  1604. {
  1605. j = mpi_msb( &A ) - mpi_msb( &W );
  1606. MPI_CHK( mpi_shift_r( &A, j + 1 ) );
  1607. }
  1608. A.p[0] |= 3;
  1609. /*
  1610. * A = A^R mod |X|
  1611. */
  1612. MPI_CHK( mpi_exp_mod( &A, &A, &R, X, &RR ) );
  1613. if( mpi_cmp_mpi( &A, &W ) == 0 ||
  1614. mpi_cmp_int( &A, 1 ) == 0 )
  1615. continue;
  1616. j = 1;
  1617. while( j < s && mpi_cmp_mpi( &A, &W ) != 0 )
  1618. {
  1619. /*
  1620. * A = A * A mod |X|
  1621. */
  1622. MPI_CHK( mpi_mul_mpi( &T, &A, &A ) );
  1623. MPI_CHK( mpi_mod_mpi( &A, &T, X ) );
  1624. if( mpi_cmp_int( &A, 1 ) == 0 )
  1625. break;
  1626. j++;
  1627. }
  1628. /*
  1629. * not prime if A != |X| - 1 or A == 1
  1630. */
  1631. if( mpi_cmp_mpi( &A, &W ) != 0 ||
  1632. mpi_cmp_int( &A, 1 ) == 0 )
  1633. {
  1634. ret = POLARSSL_ERR_MPI_NOT_ACCEPTABLE;
  1635. break;
  1636. }
  1637. }
  1638. cleanup:
  1639. mpi_free( &W ); mpi_free( &R ); mpi_free( &T ); mpi_free( &A );
  1640. mpi_free( &RR );
  1641. return( ret );
  1642. }
  1643. /*
  1644. * Pseudo-primality test: small factors, then Miller-Rabin
  1645. */
  1646. int mpi_is_prime( mpi *X,
  1647. int (*f_rng)(void *, unsigned char *, size_t),
  1648. void *p_rng )
  1649. {
  1650. int ret;
  1651. const mpi XX = { 1, X->n, X->p }; /* Abs(X) */
  1652. if( mpi_cmp_int( &XX, 0 ) == 0 ||
  1653. mpi_cmp_int( &XX, 1 ) == 0 )
  1654. return( POLARSSL_ERR_MPI_NOT_ACCEPTABLE );
  1655. if( mpi_cmp_int( &XX, 2 ) == 0 )
  1656. return( 0 );
  1657. if( ( ret = mpi_check_small_factors( &XX ) ) != 0 )
  1658. {
  1659. if( ret == 1 )
  1660. return( 0 );
  1661. return( ret );
  1662. }
  1663. return( mpi_miller_rabin( &XX, f_rng, p_rng ) );
  1664. }
  1665. /*
  1666. * Prime number generation
  1667. */
  1668. int mpi_gen_prime( mpi *X, size_t nbits, int dh_flag,
  1669. int (*f_rng)(void *, unsigned char *, size_t),
  1670. void *p_rng )
  1671. {
  1672. int ret;
  1673. size_t k, n;
  1674. t_uint r;
  1675. mpi Y;
  1676. if( nbits < 3 || nbits > POLARSSL_MPI_MAX_BITS )
  1677. return( POLARSSL_ERR_MPI_BAD_INPUT_DATA );
  1678. mpi_init( &Y );
  1679. n = BITS_TO_LIMBS( nbits );
  1680. MPI_CHK( mpi_fill_random( X, n * ciL, f_rng, p_rng ) );
  1681. k = mpi_msb( X );
  1682. if( k < nbits ) MPI_CHK( mpi_shift_l( X, nbits - k ) );
  1683. if( k > nbits ) MPI_CHK( mpi_shift_r( X, k - nbits ) );
  1684. X->p[0] |= 3;
  1685. if( dh_flag == 0 )
  1686. {
  1687. while( ( ret = mpi_is_prime( X, f_rng, p_rng ) ) != 0 )
  1688. {
  1689. if( ret != POLARSSL_ERR_MPI_NOT_ACCEPTABLE )
  1690. goto cleanup;
  1691. MPI_CHK( mpi_add_int( X, X, 2 ) );
  1692. }
  1693. }
  1694. else
  1695. {
  1696. /*
  1697. * An necessary condition for Y and X = 2Y + 1 to be prime
  1698. * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3).
  1699. * Make sure it is satisfied, while keeping X = 3 mod 4
  1700. */
  1701. MPI_CHK( mpi_mod_int( &r, X, 3 ) );
  1702. if( r == 0 )
  1703. MPI_CHK( mpi_add_int( X, X, 8 ) );
  1704. else if( r == 1 )
  1705. MPI_CHK( mpi_add_int( X, X, 4 ) );
  1706. /* Set Y = (X-1) / 2, which is X / 2 because X is odd */
  1707. MPI_CHK( mpi_copy( &Y, X ) );
  1708. MPI_CHK( mpi_shift_r( &Y, 1 ) );
  1709. while( 1 )
  1710. {
  1711. /*
  1712. * First, check small factors for X and Y
  1713. * before doing Miller-Rabin on any of them
  1714. */
  1715. if( ( ret = mpi_check_small_factors( X ) ) == 0 &&
  1716. ( ret = mpi_check_small_factors( &Y ) ) == 0 &&
  1717. ( ret = mpi_miller_rabin( X, f_rng, p_rng ) ) == 0 &&
  1718. ( ret = mpi_miller_rabin( &Y, f_rng, p_rng ) ) == 0 )
  1719. {
  1720. break;
  1721. }
  1722. if( ret != POLARSSL_ERR_MPI_NOT_ACCEPTABLE )
  1723. goto cleanup;
  1724. /*
  1725. * Next candidates. We want to preserve Y = (X-1) / 2 and
  1726. * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3)
  1727. * so up Y by 6 and X by 12.
  1728. */
  1729. MPI_CHK( mpi_add_int( X, X, 12 ) );
  1730. MPI_CHK( mpi_add_int( &Y, &Y, 6 ) );
  1731. }
  1732. }
  1733. cleanup:
  1734. mpi_free( &Y );
  1735. return( ret );
  1736. }
  1737. #endif /* POLARSSL_GENPRIME */
  1738. #if defined(POLARSSL_SELF_TEST)
  1739. #define GCD_PAIR_COUNT 3
  1740. static const int gcd_pairs[GCD_PAIR_COUNT][3] =
  1741. {
  1742. { 693, 609, 21 },
  1743. { 1764, 868, 28 },
  1744. { 768454923, 542167814, 1 }
  1745. };
  1746. /*
  1747. * Checkup routine
  1748. */
  1749. int mpi_self_test( int verbose )
  1750. {
  1751. int ret, i;
  1752. mpi A, E, N, X, Y, U, V;
  1753. mpi_init( &A ); mpi_init( &E ); mpi_init( &N ); mpi_init( &X );
  1754. mpi_init( &Y ); mpi_init( &U ); mpi_init( &V );
  1755. MPI_CHK( mpi_read_string( &A, 16,
  1756. "EFE021C2645FD1DC586E69184AF4A31E" \
  1757. "D5F53E93B5F123FA41680867BA110131" \
  1758. "944FE7952E2517337780CB0DB80E61AA" \
  1759. "E7C8DDC6C5C6AADEB34EB38A2F40D5E6" ) );
  1760. MPI_CHK( mpi_read_string( &E, 16,
  1761. "B2E7EFD37075B9F03FF989C7C5051C20" \
  1762. "34D2A323810251127E7BF8625A4F49A5" \
  1763. "F3E27F4DA8BD59C47D6DAABA4C8127BD" \
  1764. "5B5C25763222FEFCCFC38B832366C29E" ) );
  1765. MPI_CHK( mpi_read_string( &N, 16,
  1766. "0066A198186C18C10B2F5ED9B522752A" \
  1767. "9830B69916E535C8F047518A889A43A5" \
  1768. "94B6BED27A168D31D4A52F88925AA8F5" ) );
  1769. MPI_CHK( mpi_mul_mpi( &X, &A, &N ) );
  1770. MPI_CHK( mpi_read_string( &U, 16,
  1771. "602AB7ECA597A3D6B56FF9829A5E8B85" \
  1772. "9E857EA95A03512E2BAE7391688D264A" \
  1773. "A5663B0341DB9CCFD2C4C5F421FEC814" \
  1774. "8001B72E848A38CAE1C65F78E56ABDEF" \
  1775. "E12D3C039B8A02D6BE593F0BBBDA56F1" \
  1776. "ECF677152EF804370C1A305CAF3B5BF1" \
  1777. "30879B56C61DE584A0F53A2447A51E" ) );
  1778. if( verbose != 0 )
  1779. polarssl_printf( " MPI test #1 (mul_mpi): " );
  1780. if( mpi_cmp_mpi( &X, &U ) != 0 )
  1781. {
  1782. if( verbose != 0 )
  1783. polarssl_printf( "failed\n" );
  1784. ret = 1;
  1785. goto cleanup;
  1786. }
  1787. if( verbose != 0 )
  1788. polarssl_printf( "passed\n" );
  1789. MPI_CHK( mpi_div_mpi( &X, &Y, &A, &N ) );
  1790. MPI_CHK( mpi_read_string( &U, 16,
  1791. "256567336059E52CAE22925474705F39A94" ) );
  1792. MPI_CHK( mpi_read_string( &V, 16,
  1793. "6613F26162223DF488E9CD48CC132C7A" \
  1794. "0AC93C701B001B092E4E5B9F73BCD27B" \
  1795. "9EE50D0657C77F374E903CDFA4C642" ) );
  1796. if( verbose != 0 )
  1797. polarssl_printf( " MPI test #2 (div_mpi): " );
  1798. if( mpi_cmp_mpi( &X, &U ) != 0 ||
  1799. mpi_cmp_mpi( &Y, &V ) != 0 )
  1800. {
  1801. if( verbose != 0 )
  1802. polarssl_printf( "failed\n" );
  1803. ret = 1;
  1804. goto cleanup;
  1805. }
  1806. if( verbose != 0 )
  1807. polarssl_printf( "passed\n" );
  1808. MPI_CHK( mpi_exp_mod( &X, &A, &E, &N, NULL ) );
  1809. MPI_CHK( mpi_read_string( &U, 16,
  1810. "36E139AEA55215609D2816998ED020BB" \
  1811. "BD96C37890F65171D948E9BC7CBAA4D9" \
  1812. "325D24D6A3C12710F10A09FA08AB87" ) );
  1813. if( verbose != 0 )
  1814. polarssl_printf( " MPI test #3 (exp_mod): " );
  1815. if( mpi_cmp_mpi( &X, &U ) != 0 )
  1816. {
  1817. if( verbose != 0 )
  1818. polarssl_printf( "failed\n" );
  1819. ret = 1;
  1820. goto cleanup;
  1821. }
  1822. if( verbose != 0 )
  1823. polarssl_printf( "passed\n" );
  1824. MPI_CHK( mpi_inv_mod( &X, &A, &N ) );
  1825. MPI_CHK( mpi_read_string( &U, 16,
  1826. "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \
  1827. "C3DBA76456363A10869622EAC2DD84EC" \
  1828. "C5B8A74DAC4D09E03B5E0BE779F2DF61" ) );
  1829. if( verbose != 0 )
  1830. polarssl_printf( " MPI test #4 (inv_mod): " );
  1831. if( mpi_cmp_mpi( &X, &U ) != 0 )
  1832. {
  1833. if( verbose != 0 )
  1834. polarssl_printf( "failed\n" );
  1835. ret = 1;
  1836. goto cleanup;
  1837. }
  1838. if( verbose != 0 )
  1839. polarssl_printf( "passed\n" );
  1840. if( verbose != 0 )
  1841. polarssl_printf( " MPI test #5 (simple gcd): " );
  1842. for( i = 0; i < GCD_PAIR_COUNT; i++ )
  1843. {
  1844. MPI_CHK( mpi_lset( &X, gcd_pairs[i][0] ) );
  1845. MPI_CHK( mpi_lset( &Y, gcd_pairs[i][1] ) );
  1846. MPI_CHK( mpi_gcd( &A, &X, &Y ) );
  1847. if( mpi_cmp_int( &A, gcd_pairs[i][2] ) != 0 )
  1848. {
  1849. if( verbose != 0 )
  1850. polarssl_printf( "failed at %d\n", i );
  1851. ret = 1;
  1852. goto cleanup;
  1853. }
  1854. }
  1855. if( verbose != 0 )
  1856. polarssl_printf( "passed\n" );
  1857. cleanup:
  1858. if( ret != 0 && verbose != 0 )
  1859. polarssl_printf( "Unexpected error, return code = %08X\n", ret );
  1860. mpi_free( &A ); mpi_free( &E ); mpi_free( &N ); mpi_free( &X );
  1861. mpi_free( &Y ); mpi_free( &U ); mpi_free( &V );
  1862. if( verbose != 0 )
  1863. polarssl_printf( "\n" );
  1864. return( ret );
  1865. }
  1866. #endif /* POLARSSL_SELF_TEST */
  1867. #endif /* POLARSSL_BIGNUM_C */