12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775 |
- /* Convert string representing a number to float value, using given locale.
- Copyright (C) 1997-2012 Free Software Foundation, Inc.
- This file is part of the GNU C Library.
- Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
- The GNU C Library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public
- License as published by the Free Software Foundation; either
- version 2.1 of the License, or (at your option) any later version.
- The GNU C Library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Lesser General Public License for more details.
- You should have received a copy of the GNU Lesser General Public
- License along with the GNU C Library; if not, see
- <http://www.gnu.org/licenses/>. */
- #include <config.h>
- #include <stdarg.h>
- #include <string.h>
- #include <stdint.h>
- #include <stdbool.h>
- #include <float.h>
- #include <math.h>
- #define NDEBUG 1
- #include <assert.h>
- #ifdef HAVE_ERRNO_H
- #include <errno.h>
- #endif
- #ifdef HAVE_FENV_H
- #include <fenv.h>
- #endif
- #ifdef HAVE_FENV_H
- #include "quadmath-rounding-mode.h"
- #endif
- #include "../printf/quadmath-printf.h"
- #include "../printf/fpioconst.h"
- #undef L_
- #ifdef USE_WIDE_CHAR
- # define STRING_TYPE wchar_t
- # define CHAR_TYPE wint_t
- # define L_(Ch) L##Ch
- # define ISSPACE(Ch) __iswspace_l ((Ch), loc)
- # define ISDIGIT(Ch) __iswdigit_l ((Ch), loc)
- # define ISXDIGIT(Ch) __iswxdigit_l ((Ch), loc)
- # define TOLOWER(Ch) __towlower_l ((Ch), loc)
- # define TOLOWER_C(Ch) __towlower_l ((Ch), _nl_C_locobj_ptr)
- # define STRNCASECMP(S1, S2, N) \
- __wcsncasecmp_l ((S1), (S2), (N), _nl_C_locobj_ptr)
- # define STRTOULL(S, E, B) ____wcstoull_l_internal ((S), (E), (B), 0, loc)
- #else
- # define STRING_TYPE char
- # define CHAR_TYPE char
- # define L_(Ch) Ch
- # define ISSPACE(Ch) isspace (Ch)
- # define ISDIGIT(Ch) isdigit (Ch)
- # define ISXDIGIT(Ch) isxdigit (Ch)
- # define TOLOWER(Ch) tolower (Ch)
- # define TOLOWER_C(Ch) \
- ({__typeof(Ch) __tlc = (Ch); \
- (__tlc >= 'A' && __tlc <= 'Z') ? __tlc - 'A' + 'a' : __tlc; })
- # define STRNCASECMP(S1, S2, N) \
- __quadmath_strncasecmp_c (S1, S2, N)
- # ifdef HAVE_STRTOULL
- # define STRTOULL(S, E, B) strtoull (S, E, B)
- # else
- # define STRTOULL(S, E, B) strtoul (S, E, B)
- # endif
- static inline int
- __quadmath_strncasecmp_c (const char *s1, const char *s2, size_t n)
- {
- const unsigned char *p1 = (const unsigned char *) s1;
- const unsigned char *p2 = (const unsigned char *) s2;
- int result;
- if (p1 == p2 || n == 0)
- return 0;
- while ((result = TOLOWER_C (*p1) - TOLOWER_C (*p2++)) == 0)
- if (*p1++ == '\0' || --n == 0)
- break;
- return result;
- }
- #endif
- /* Constants we need from float.h; select the set for the FLOAT precision. */
- #define MANT_DIG PASTE(FLT,_MANT_DIG)
- #define DIG PASTE(FLT,_DIG)
- #define MAX_EXP PASTE(FLT,_MAX_EXP)
- #define MIN_EXP PASTE(FLT,_MIN_EXP)
- #define MAX_10_EXP PASTE(FLT,_MAX_10_EXP)
- #define MIN_10_EXP PASTE(FLT,_MIN_10_EXP)
- #define MAX_VALUE PASTE(FLT,_MAX)
- #define MIN_VALUE PASTE(FLT,_MIN)
- /* Extra macros required to get FLT expanded before the pasting. */
- #define PASTE(a,b) PASTE1(a,b)
- #define PASTE1(a,b) a##b
- /* Function to construct a floating point number from an MP integer
- containing the fraction bits, a base 2 exponent, and a sign flag. */
- extern FLOAT MPN2FLOAT (mp_srcptr mpn, int exponent, int negative);
- /* Definitions according to limb size used. */
- #if BITS_PER_MP_LIMB == 32
- # define MAX_DIG_PER_LIMB 9
- # define MAX_FAC_PER_LIMB 1000000000UL
- #elif BITS_PER_MP_LIMB == 64
- # define MAX_DIG_PER_LIMB 19
- # define MAX_FAC_PER_LIMB 10000000000000000000ULL
- #else
- # error "mp_limb_t size " BITS_PER_MP_LIMB "not accounted for"
- #endif
- #define _tens_in_limb __quadmath_tens_in_limb
- extern const mp_limb_t _tens_in_limb[MAX_DIG_PER_LIMB + 1] attribute_hidden;
- #ifndef howmany
- #define howmany(x,y) (((x)+((y)-1))/(y))
- #endif
- #define SWAP(x, y) ({ typeof(x) _tmp = x; x = y; y = _tmp; })
- #define NDIG (MAX_10_EXP - MIN_10_EXP + 2 * MANT_DIG)
- #define HEXNDIG ((MAX_EXP - MIN_EXP + 7) / 8 + 2 * MANT_DIG)
- #define RETURN_LIMB_SIZE howmany (MANT_DIG, BITS_PER_MP_LIMB)
- #define RETURN(val,end) \
- do { if (endptr != NULL) *endptr = (STRING_TYPE *) (end); \
- return val; } while (0)
- /* Maximum size necessary for mpn integers to hold floating point
- numbers. The largest number we need to hold is 10^n where 2^-n is
- 1/4 ulp of the smallest representable value (that is, n = MANT_DIG
- - MIN_EXP + 2). Approximate using 10^3 < 2^10. */
- #define MPNSIZE (howmany (1 + ((MANT_DIG - MIN_EXP + 2) * 10) / 3, \
- BITS_PER_MP_LIMB) + 2)
- /* Declare an mpn integer variable that big. */
- #define MPN_VAR(name) mp_limb_t name[MPNSIZE]; mp_size_t name##size
- /* Copy an mpn integer value. */
- #define MPN_ASSIGN(dst, src) \
- memcpy (dst, src, (dst##size = src##size) * sizeof (mp_limb_t))
- /* Set errno and return an overflowing value with sign specified by
- NEGATIVE. */
- static FLOAT
- overflow_value (int negative)
- {
- #if defined HAVE_ERRNO_H && defined ERANGE
- errno = ERANGE;
- #endif
- FLOAT result = (negative ? -MAX_VALUE : MAX_VALUE) * MAX_VALUE;
- return result;
- }
- /* Set errno and return an underflowing value with sign specified by
- NEGATIVE. */
- static FLOAT
- underflow_value (int negative)
- {
- #if defined HAVE_ERRNO_H && defined ERANGE
- errno = ERANGE;
- #endif
- FLOAT result = (negative ? -MIN_VALUE : MIN_VALUE) * MIN_VALUE;
- return result;
- }
- /* Return a floating point number of the needed type according to the given
- multi-precision number after possible rounding. */
- static FLOAT
- round_and_return (mp_limb_t *retval, intmax_t exponent, int negative,
- mp_limb_t round_limb, mp_size_t round_bit, int more_bits)
- {
- #ifdef HAVE_FENV_H
- int mode = get_rounding_mode ();
- #endif
- if (exponent < MIN_EXP - 1)
- {
- mp_size_t shift;
- bool is_tiny;
- if (exponent < MIN_EXP - 1 - MANT_DIG)
- return underflow_value (negative);
- shift = MIN_EXP - 1 - exponent;
- is_tiny = true;
- more_bits |= (round_limb & ((((mp_limb_t) 1) << round_bit) - 1)) != 0;
- if (shift == MANT_DIG)
- /* This is a special case to handle the very seldom case where
- the mantissa will be empty after the shift. */
- {
- int i;
- round_limb = retval[RETURN_LIMB_SIZE - 1];
- round_bit = (MANT_DIG - 1) % BITS_PER_MP_LIMB;
- for (i = 0; i < RETURN_LIMB_SIZE; ++i)
- more_bits |= retval[i] != 0;
- MPN_ZERO (retval, RETURN_LIMB_SIZE);
- }
- else if (shift >= BITS_PER_MP_LIMB)
- {
- int i;
- round_limb = retval[(shift - 1) / BITS_PER_MP_LIMB];
- round_bit = (shift - 1) % BITS_PER_MP_LIMB;
- for (i = 0; i < (shift - 1) / BITS_PER_MP_LIMB; ++i)
- more_bits |= retval[i] != 0;
- more_bits |= ((round_limb & ((((mp_limb_t) 1) << round_bit) - 1))
- != 0);
- (void) mpn_rshift (retval, &retval[shift / BITS_PER_MP_LIMB],
- RETURN_LIMB_SIZE - (shift / BITS_PER_MP_LIMB),
- shift % BITS_PER_MP_LIMB);
- MPN_ZERO (&retval[RETURN_LIMB_SIZE - (shift / BITS_PER_MP_LIMB)],
- shift / BITS_PER_MP_LIMB);
- }
- else if (shift > 0)
- {
- #ifdef HAVE_FENV_H
- if (TININESS_AFTER_ROUNDING && shift == 1)
- {
- /* Whether the result counts as tiny depends on whether,
- after rounding to the normal precision, it still has
- a subnormal exponent. */
- mp_limb_t retval_normal[RETURN_LIMB_SIZE];
- if (round_away (negative,
- (retval[0] & 1) != 0,
- (round_limb
- & (((mp_limb_t) 1) << round_bit)) != 0,
- (more_bits
- || ((round_limb
- & ((((mp_limb_t) 1) << round_bit) - 1))
- != 0)),
- mode))
- {
- mp_limb_t cy = mpn_add_1 (retval_normal, retval,
- RETURN_LIMB_SIZE, 1);
- if (((MANT_DIG % BITS_PER_MP_LIMB) == 0 && cy) ||
- ((MANT_DIG % BITS_PER_MP_LIMB) != 0 &&
- ((retval_normal[RETURN_LIMB_SIZE - 1]
- & (((mp_limb_t) 1) << (MANT_DIG % BITS_PER_MP_LIMB)))
- != 0)))
- is_tiny = false;
- }
- }
- #endif
- round_limb = retval[0];
- round_bit = shift - 1;
- (void) mpn_rshift (retval, retval, RETURN_LIMB_SIZE, shift);
- }
- /* This is a hook for the m68k long double format, where the
- exponent bias is the same for normalized and denormalized
- numbers. */
- #ifndef DENORM_EXP
- # define DENORM_EXP (MIN_EXP - 2)
- #endif
- exponent = DENORM_EXP;
- if (is_tiny
- && ((round_limb & (((mp_limb_t) 1) << round_bit)) != 0
- || more_bits
- || (round_limb & ((((mp_limb_t) 1) << round_bit) - 1)) != 0))
- {
- #if defined HAVE_ERRNO_H && defined ERANGE
- errno = ERANGE;
- #endif
- volatile FLOAT force_underflow_exception = MIN_VALUE * MIN_VALUE;
- (void) force_underflow_exception;
- }
- }
- if (exponent > MAX_EXP)
- goto overflow;
- #ifdef HAVE_FENV_H
- if (round_away (negative,
- (retval[0] & 1) != 0,
- (round_limb & (((mp_limb_t) 1) << round_bit)) != 0,
- (more_bits
- || (round_limb & ((((mp_limb_t) 1) << round_bit) - 1)) != 0),
- mode))
- {
- mp_limb_t cy = mpn_add_1 (retval, retval, RETURN_LIMB_SIZE, 1);
- if (((MANT_DIG % BITS_PER_MP_LIMB) == 0 && cy) ||
- ((MANT_DIG % BITS_PER_MP_LIMB) != 0 &&
- (retval[RETURN_LIMB_SIZE - 1]
- & (((mp_limb_t) 1) << (MANT_DIG % BITS_PER_MP_LIMB))) != 0))
- {
- ++exponent;
- (void) mpn_rshift (retval, retval, RETURN_LIMB_SIZE, 1);
- retval[RETURN_LIMB_SIZE - 1]
- |= ((mp_limb_t) 1) << ((MANT_DIG - 1) % BITS_PER_MP_LIMB);
- }
- else if (exponent == DENORM_EXP
- && (retval[RETURN_LIMB_SIZE - 1]
- & (((mp_limb_t) 1) << ((MANT_DIG - 1) % BITS_PER_MP_LIMB)))
- != 0)
- /* The number was denormalized but now normalized. */
- exponent = MIN_EXP - 1;
- }
- #endif
- if (exponent > MAX_EXP)
- overflow:
- return overflow_value (negative);
- return MPN2FLOAT (retval, exponent, negative);
- }
- /* Read a multi-precision integer starting at STR with exactly DIGCNT digits
- into N. Return the size of the number limbs in NSIZE at the first
- character od the string that is not part of the integer as the function
- value. If the EXPONENT is small enough to be taken as an additional
- factor for the resulting number (see code) multiply by it. */
- static const STRING_TYPE *
- str_to_mpn (const STRING_TYPE *str, int digcnt, mp_limb_t *n, mp_size_t *nsize,
- intmax_t *exponent
- #ifndef USE_WIDE_CHAR
- , const char *decimal, size_t decimal_len, const char *thousands
- #endif
- )
- {
- /* Number of digits for actual limb. */
- int cnt = 0;
- mp_limb_t low = 0;
- mp_limb_t start;
- *nsize = 0;
- assert (digcnt > 0);
- do
- {
- if (cnt == MAX_DIG_PER_LIMB)
- {
- if (*nsize == 0)
- {
- n[0] = low;
- *nsize = 1;
- }
- else
- {
- mp_limb_t cy;
- cy = mpn_mul_1 (n, n, *nsize, MAX_FAC_PER_LIMB);
- cy += mpn_add_1 (n, n, *nsize, low);
- if (cy != 0)
- {
- assert (*nsize < MPNSIZE);
- n[*nsize] = cy;
- ++(*nsize);
- }
- }
- cnt = 0;
- low = 0;
- }
- /* There might be thousands separators or radix characters in
- the string. But these all can be ignored because we know the
- format of the number is correct and we have an exact number
- of characters to read. */
- #ifdef USE_WIDE_CHAR
- if (*str < L'0' || *str > L'9')
- ++str;
- #else
- if (*str < '0' || *str > '9')
- {
- int inner = 0;
- if (thousands != NULL && *str == *thousands
- && ({ for (inner = 1; thousands[inner] != '\0'; ++inner)
- if (thousands[inner] != str[inner])
- break;
- thousands[inner] == '\0'; }))
- str += inner;
- else
- str += decimal_len;
- }
- #endif
- low = low * 10 + *str++ - L_('0');
- ++cnt;
- }
- while (--digcnt > 0);
- if (*exponent > 0 && *exponent <= MAX_DIG_PER_LIMB - cnt)
- {
- low *= _tens_in_limb[*exponent];
- start = _tens_in_limb[cnt + *exponent];
- *exponent = 0;
- }
- else
- start = _tens_in_limb[cnt];
- if (*nsize == 0)
- {
- n[0] = low;
- *nsize = 1;
- }
- else
- {
- mp_limb_t cy;
- cy = mpn_mul_1 (n, n, *nsize, start);
- cy += mpn_add_1 (n, n, *nsize, low);
- if (cy != 0)
- {
- assert (*nsize < MPNSIZE);
- n[(*nsize)++] = cy;
- }
- }
- return str;
- }
- /* Shift {PTR, SIZE} COUNT bits to the left, and fill the vacated bits
- with the COUNT most significant bits of LIMB.
- Implemented as a macro, so that __builtin_constant_p works even at -O0.
- Tege doesn't like this macro so I have to write it here myself. :)
- --drepper */
- #define mpn_lshift_1(ptr, size, count, limb) \
- do \
- { \
- mp_limb_t *__ptr = (ptr); \
- if (__builtin_constant_p (count) && count == BITS_PER_MP_LIMB) \
- { \
- mp_size_t i; \
- for (i = (size) - 1; i > 0; --i) \
- __ptr[i] = __ptr[i - 1]; \
- __ptr[0] = (limb); \
- } \
- else \
- { \
- /* We assume count > 0 && count < BITS_PER_MP_LIMB here. */ \
- unsigned int __count = (count); \
- (void) mpn_lshift (__ptr, __ptr, size, __count); \
- __ptr[0] |= (limb) >> (BITS_PER_MP_LIMB - __count); \
- } \
- } \
- while (0)
- #define INTERNAL(x) INTERNAL1(x)
- #define INTERNAL1(x) __##x##_internal
- #ifndef ____STRTOF_INTERNAL
- # define ____STRTOF_INTERNAL INTERNAL (__STRTOF)
- #endif
- /* This file defines a function to check for correct grouping. */
- #include "grouping.h"
- /* Return a floating point number with the value of the given string NPTR.
- Set *ENDPTR to the character after the last used one. If the number is
- smaller than the smallest representable number, set `errno' to ERANGE and
- return 0.0. If the number is too big to be represented, set `errno' to
- ERANGE and return HUGE_VAL with the appropriate sign. */
- FLOAT
- ____STRTOF_INTERNAL (nptr, endptr, group)
- const STRING_TYPE *nptr;
- STRING_TYPE **endptr;
- int group;
- {
- int negative; /* The sign of the number. */
- MPN_VAR (num); /* MP representation of the number. */
- intmax_t exponent; /* Exponent of the number. */
- /* Numbers starting `0X' or `0x' have to be processed with base 16. */
- int base = 10;
- /* When we have to compute fractional digits we form a fraction with a
- second multi-precision number (and we sometimes need a second for
- temporary results). */
- MPN_VAR (den);
- /* Representation for the return value. */
- mp_limb_t retval[RETURN_LIMB_SIZE];
- /* Number of bits currently in result value. */
- int bits;
- /* Running pointer after the last character processed in the string. */
- const STRING_TYPE *cp, *tp;
- /* Start of significant part of the number. */
- const STRING_TYPE *startp, *start_of_digits;
- /* Points at the character following the integer and fractional digits. */
- const STRING_TYPE *expp;
- /* Total number of digit and number of digits in integer part. */
- size_t dig_no, int_no, lead_zero;
- /* Contains the last character read. */
- CHAR_TYPE c;
- /* We should get wint_t from <stddef.h>, but not all GCC versions define it
- there. So define it ourselves if it remains undefined. */
- #ifndef _WINT_T
- typedef unsigned int wint_t;
- #endif
- /* The radix character of the current locale. */
- #ifdef USE_WIDE_CHAR
- wchar_t decimal;
- #else
- const char *decimal;
- size_t decimal_len;
- #endif
- /* The thousands character of the current locale. */
- #ifdef USE_WIDE_CHAR
- wchar_t thousands = L'\0';
- #else
- const char *thousands = NULL;
- #endif
- /* The numeric grouping specification of the current locale,
- in the format described in <locale.h>. */
- const char *grouping;
- /* Used in several places. */
- int cnt;
- #if defined USE_LOCALECONV && !defined USE_NL_LANGINFO
- const struct lconv *lc = localeconv ();
- #endif
- if (__builtin_expect (group, 0))
- {
- #ifdef USE_NL_LANGINFO
- grouping = nl_langinfo (GROUPING);
- if (*grouping <= 0 || *grouping == CHAR_MAX)
- grouping = NULL;
- else
- {
- /* Figure out the thousands separator character. */
- #ifdef USE_WIDE_CHAR
- thousands = nl_langinfo_wc (_NL_NUMERIC_THOUSANDS_SEP_WC);
- if (thousands == L'\0')
- grouping = NULL;
- #else
- thousands = nl_langinfo (THOUSANDS_SEP);
- if (*thousands == '\0')
- {
- thousands = NULL;
- grouping = NULL;
- }
- #endif
- }
- #elif defined USE_LOCALECONV
- grouping = lc->grouping;
- if (grouping == NULL || *grouping <= 0 || *grouping == CHAR_MAX)
- grouping = NULL;
- else
- {
- /* Figure out the thousands separator character. */
- thousands = lc->thousands_sep;
- if (thousands == NULL || *thousands == '\0')
- {
- thousands = NULL;
- grouping = NULL;
- }
- }
- #else
- grouping = NULL;
- #endif
- }
- else
- grouping = NULL;
- /* Find the locale's decimal point character. */
- #ifdef USE_WIDE_CHAR
- decimal = nl_langinfo_wc (_NL_NUMERIC_DECIMAL_POINT_WC);
- assert (decimal != L'\0');
- # define decimal_len 1
- #else
- #ifdef USE_NL_LANGINFO
- decimal = nl_langinfo (DECIMAL_POINT);
- decimal_len = strlen (decimal);
- assert (decimal_len > 0);
- #elif defined USE_LOCALECONV
- decimal = lc->decimal_point;
- if (decimal == NULL || *decimal == '\0')
- decimal = ".";
- decimal_len = strlen (decimal);
- #else
- decimal = ".";
- decimal_len = 1;
- #endif
- #endif
- /* Prepare number representation. */
- exponent = 0;
- negative = 0;
- bits = 0;
- /* Parse string to get maximal legal prefix. We need the number of
- characters of the integer part, the fractional part and the exponent. */
- cp = nptr - 1;
- /* Ignore leading white space. */
- do
- c = *++cp;
- while (ISSPACE (c));
- /* Get sign of the result. */
- if (c == L_('-'))
- {
- negative = 1;
- c = *++cp;
- }
- else if (c == L_('+'))
- c = *++cp;
- /* Return 0.0 if no legal string is found.
- No character is used even if a sign was found. */
- #ifdef USE_WIDE_CHAR
- if (c == (wint_t) decimal
- && (wint_t) cp[1] >= L'0' && (wint_t) cp[1] <= L'9')
- {
- /* We accept it. This funny construct is here only to indent
- the code correctly. */
- }
- #else
- for (cnt = 0; decimal[cnt] != '\0'; ++cnt)
- if (cp[cnt] != decimal[cnt])
- break;
- if (decimal[cnt] == '\0' && cp[cnt] >= '0' && cp[cnt] <= '9')
- {
- /* We accept it. This funny construct is here only to indent
- the code correctly. */
- }
- #endif
- else if (c < L_('0') || c > L_('9'))
- {
- /* Check for `INF' or `INFINITY'. */
- CHAR_TYPE lowc = TOLOWER_C (c);
- if (lowc == L_('i') && STRNCASECMP (cp, L_("inf"), 3) == 0)
- {
- /* Return +/- infinity. */
- if (endptr != NULL)
- *endptr = (STRING_TYPE *)
- (cp + (STRNCASECMP (cp + 3, L_("inity"), 5) == 0
- ? 8 : 3));
- return negative ? -FLOAT_HUGE_VAL : FLOAT_HUGE_VAL;
- }
- if (lowc == L_('n') && STRNCASECMP (cp, L_("nan"), 3) == 0)
- {
- /* Return NaN. */
- FLOAT retval = NAN;
- cp += 3;
- /* Match `(n-char-sequence-digit)'. */
- if (*cp == L_('('))
- {
- const STRING_TYPE *startp = cp;
- do
- ++cp;
- while ((*cp >= L_('0') && *cp <= L_('9'))
- || ({ CHAR_TYPE lo = TOLOWER (*cp);
- lo >= L_('a') && lo <= L_('z'); })
- || *cp == L_('_'));
- if (*cp != L_(')'))
- /* The closing brace is missing. Only match the NAN
- part. */
- cp = startp;
- else
- {
- /* This is a system-dependent way to specify the
- bitmask used for the NaN. We expect it to be
- a number which is put in the mantissa of the
- number. */
- STRING_TYPE *endp;
- unsigned long long int mant;
- mant = STRTOULL (startp + 1, &endp, 0);
- if (endp == cp)
- SET_MANTISSA (retval, mant);
- /* Consume the closing brace. */
- ++cp;
- }
- }
- if (endptr != NULL)
- *endptr = (STRING_TYPE *) cp;
- return retval;
- }
- /* It is really a text we do not recognize. */
- RETURN (0.0, nptr);
- }
- /* First look whether we are faced with a hexadecimal number. */
- if (c == L_('0') && TOLOWER (cp[1]) == L_('x'))
- {
- /* Okay, it is a hexa-decimal number. Remember this and skip
- the characters. BTW: hexadecimal numbers must not be
- grouped. */
- base = 16;
- cp += 2;
- c = *cp;
- grouping = NULL;
- }
- /* Record the start of the digits, in case we will check their grouping. */
- start_of_digits = startp = cp;
- /* Ignore leading zeroes. This helps us to avoid useless computations. */
- #ifdef USE_WIDE_CHAR
- while (c == L'0' || ((wint_t) thousands != L'\0' && c == (wint_t) thousands))
- c = *++cp;
- #else
- if (__builtin_expect (thousands == NULL, 1))
- while (c == '0')
- c = *++cp;
- else
- {
- /* We also have the multibyte thousands string. */
- while (1)
- {
- if (c != '0')
- {
- for (cnt = 0; thousands[cnt] != '\0'; ++cnt)
- if (thousands[cnt] != cp[cnt])
- break;
- if (thousands[cnt] != '\0')
- break;
- cp += cnt - 1;
- }
- c = *++cp;
- }
- }
- #endif
- /* If no other digit but a '0' is found the result is 0.0.
- Return current read pointer. */
- CHAR_TYPE lowc = TOLOWER (c);
- if (!((c >= L_('0') && c <= L_('9'))
- || (base == 16 && lowc >= L_('a') && lowc <= L_('f'))
- || (
- #ifdef USE_WIDE_CHAR
- c == (wint_t) decimal
- #else
- ({ for (cnt = 0; decimal[cnt] != '\0'; ++cnt)
- if (decimal[cnt] != cp[cnt])
- break;
- decimal[cnt] == '\0'; })
- #endif
- /* '0x.' alone is not a valid hexadecimal number.
- '.' alone is not valid either, but that has been checked
- already earlier. */
- && (base != 16
- || cp != start_of_digits
- || (cp[decimal_len] >= L_('0') && cp[decimal_len] <= L_('9'))
- || ({ CHAR_TYPE lo = TOLOWER (cp[decimal_len]);
- lo >= L_('a') && lo <= L_('f'); })))
- || (base == 16 && (cp != start_of_digits
- && lowc == L_('p')))
- || (base != 16 && lowc == L_('e'))))
- {
- #ifdef USE_WIDE_CHAR
- tp = __correctly_grouped_prefixwc (start_of_digits, cp, thousands,
- grouping);
- #else
- tp = __correctly_grouped_prefixmb (start_of_digits, cp, thousands,
- grouping);
- #endif
- /* If TP is at the start of the digits, there was no correctly
- grouped prefix of the string; so no number found. */
- RETURN (negative ? -0.0 : 0.0,
- tp == start_of_digits ? (base == 16 ? cp - 1 : nptr) : tp);
- }
- /* Remember first significant digit and read following characters until the
- decimal point, exponent character or any non-FP number character. */
- startp = cp;
- dig_no = 0;
- while (1)
- {
- if ((c >= L_('0') && c <= L_('9'))
- || (base == 16
- && ({ CHAR_TYPE lo = TOLOWER (c);
- lo >= L_('a') && lo <= L_('f'); })))
- ++dig_no;
- else
- {
- #ifdef USE_WIDE_CHAR
- if (__builtin_expect ((wint_t) thousands == L'\0', 1)
- || c != (wint_t) thousands)
- /* Not a digit or separator: end of the integer part. */
- break;
- #else
- if (__builtin_expect (thousands == NULL, 1))
- break;
- else
- {
- for (cnt = 0; thousands[cnt] != '\0'; ++cnt)
- if (thousands[cnt] != cp[cnt])
- break;
- if (thousands[cnt] != '\0')
- break;
- cp += cnt - 1;
- }
- #endif
- }
- c = *++cp;
- }
- if (__builtin_expect (grouping != NULL, 0) && cp > start_of_digits)
- {
- /* Check the grouping of the digits. */
- #ifdef USE_WIDE_CHAR
- tp = __correctly_grouped_prefixwc (start_of_digits, cp, thousands,
- grouping);
- #else
- tp = __correctly_grouped_prefixmb (start_of_digits, cp, thousands,
- grouping);
- #endif
- if (cp != tp)
- {
- /* Less than the entire string was correctly grouped. */
- if (tp == start_of_digits)
- /* No valid group of numbers at all: no valid number. */
- RETURN (0.0, nptr);
- if (tp < startp)
- /* The number is validly grouped, but consists
- only of zeroes. The whole value is zero. */
- RETURN (negative ? -0.0 : 0.0, tp);
- /* Recompute DIG_NO so we won't read more digits than
- are properly grouped. */
- cp = tp;
- dig_no = 0;
- for (tp = startp; tp < cp; ++tp)
- if (*tp >= L_('0') && *tp <= L_('9'))
- ++dig_no;
- int_no = dig_no;
- lead_zero = 0;
- goto number_parsed;
- }
- }
- /* We have the number of digits in the integer part. Whether these
- are all or any is really a fractional digit will be decided
- later. */
- int_no = dig_no;
- lead_zero = int_no == 0 ? (size_t) -1 : 0;
- /* Read the fractional digits. A special case are the 'american
- style' numbers like `16.' i.e. with decimal point but without
- trailing digits. */
- if (
- #ifdef USE_WIDE_CHAR
- c == (wint_t) decimal
- #else
- ({ for (cnt = 0; decimal[cnt] != '\0'; ++cnt)
- if (decimal[cnt] != cp[cnt])
- break;
- decimal[cnt] == '\0'; })
- #endif
- )
- {
- cp += decimal_len;
- c = *cp;
- while ((c >= L_('0') && c <= L_('9')) ||
- (base == 16 && ({ CHAR_TYPE lo = TOLOWER (c);
- lo >= L_('a') && lo <= L_('f'); })))
- {
- if (c != L_('0') && lead_zero == (size_t) -1)
- lead_zero = dig_no - int_no;
- ++dig_no;
- c = *++cp;
- }
- }
- assert (dig_no <= (uintmax_t) INTMAX_MAX);
- /* Remember start of exponent (if any). */
- expp = cp;
- /* Read exponent. */
- lowc = TOLOWER (c);
- if ((base == 16 && lowc == L_('p'))
- || (base != 16 && lowc == L_('e')))
- {
- int exp_negative = 0;
- c = *++cp;
- if (c == L_('-'))
- {
- exp_negative = 1;
- c = *++cp;
- }
- else if (c == L_('+'))
- c = *++cp;
- if (c >= L_('0') && c <= L_('9'))
- {
- intmax_t exp_limit;
- /* Get the exponent limit. */
- if (base == 16)
- {
- if (exp_negative)
- {
- assert (int_no <= (uintmax_t) (INTMAX_MAX
- + MIN_EXP - MANT_DIG) / 4);
- exp_limit = -MIN_EXP + MANT_DIG + 4 * (intmax_t) int_no;
- }
- else
- {
- if (int_no)
- {
- assert (lead_zero == 0
- && int_no <= (uintmax_t) INTMAX_MAX / 4);
- exp_limit = MAX_EXP - 4 * (intmax_t) int_no + 3;
- }
- else if (lead_zero == (size_t) -1)
- {
- /* The number is zero and this limit is
- arbitrary. */
- exp_limit = MAX_EXP + 3;
- }
- else
- {
- assert (lead_zero
- <= (uintmax_t) (INTMAX_MAX - MAX_EXP - 3) / 4);
- exp_limit = (MAX_EXP
- + 4 * (intmax_t) lead_zero
- + 3);
- }
- }
- }
- else
- {
- if (exp_negative)
- {
- assert (int_no
- <= (uintmax_t) (INTMAX_MAX + MIN_10_EXP - MANT_DIG));
- exp_limit = -MIN_10_EXP + MANT_DIG + (intmax_t) int_no;
- }
- else
- {
- if (int_no)
- {
- assert (lead_zero == 0
- && int_no <= (uintmax_t) INTMAX_MAX);
- exp_limit = MAX_10_EXP - (intmax_t) int_no + 1;
- }
- else if (lead_zero == (size_t) -1)
- {
- /* The number is zero and this limit is
- arbitrary. */
- exp_limit = MAX_10_EXP + 1;
- }
- else
- {
- assert (lead_zero
- <= (uintmax_t) (INTMAX_MAX - MAX_10_EXP - 1));
- exp_limit = MAX_10_EXP + (intmax_t) lead_zero + 1;
- }
- }
- }
- if (exp_limit < 0)
- exp_limit = 0;
- do
- {
- if (__builtin_expect ((exponent > exp_limit / 10
- || (exponent == exp_limit / 10
- && c - L_('0') > exp_limit % 10)), 0))
- /* The exponent is too large/small to represent a valid
- number. */
- {
- FLOAT result;
- /* We have to take care for special situation: a joker
- might have written "0.0e100000" which is in fact
- zero. */
- if (lead_zero == (size_t) -1)
- result = negative ? -0.0 : 0.0;
- else
- {
- /* Overflow or underflow. */
- #if defined HAVE_ERRNO_H && defined ERANGE
- errno = ERANGE;
- #endif
- result = (exp_negative ? (negative ? -0.0 : 0.0) :
- negative ? -FLOAT_HUGE_VAL : FLOAT_HUGE_VAL);
- }
- /* Accept all following digits as part of the exponent. */
- do
- ++cp;
- while (*cp >= L_('0') && *cp <= L_('9'));
- RETURN (result, cp);
- /* NOTREACHED */
- }
- exponent *= 10;
- exponent += c - L_('0');
- c = *++cp;
- }
- while (c >= L_('0') && c <= L_('9'));
- if (exp_negative)
- exponent = -exponent;
- }
- else
- cp = expp;
- }
- /* We don't want to have to work with trailing zeroes after the radix. */
- if (dig_no > int_no)
- {
- while (expp[-1] == L_('0'))
- {
- --expp;
- --dig_no;
- }
- assert (dig_no >= int_no);
- }
- if (dig_no == int_no && dig_no > 0 && exponent < 0)
- do
- {
- while (! (base == 16 ? ISXDIGIT (expp[-1]) : ISDIGIT (expp[-1])))
- --expp;
- if (expp[-1] != L_('0'))
- break;
- --expp;
- --dig_no;
- --int_no;
- exponent += base == 16 ? 4 : 1;
- }
- while (dig_no > 0 && exponent < 0);
- number_parsed:
- /* The whole string is parsed. Store the address of the next character. */
- if (endptr)
- *endptr = (STRING_TYPE *) cp;
- if (dig_no == 0)
- return negative ? -0.0 : 0.0;
- if (lead_zero)
- {
- /* Find the decimal point */
- #ifdef USE_WIDE_CHAR
- while (*startp != decimal)
- ++startp;
- #else
- while (1)
- {
- if (*startp == decimal[0])
- {
- for (cnt = 1; decimal[cnt] != '\0'; ++cnt)
- if (decimal[cnt] != startp[cnt])
- break;
- if (decimal[cnt] == '\0')
- break;
- }
- ++startp;
- }
- #endif
- startp += lead_zero + decimal_len;
- assert (lead_zero <= (base == 16
- ? (uintmax_t) INTMAX_MAX / 4
- : (uintmax_t) INTMAX_MAX));
- assert (lead_zero <= (base == 16
- ? ((uintmax_t) exponent
- - (uintmax_t) INTMAX_MIN) / 4
- : ((uintmax_t) exponent - (uintmax_t) INTMAX_MIN)));
- exponent -= base == 16 ? 4 * (intmax_t) lead_zero : (intmax_t) lead_zero;
- dig_no -= lead_zero;
- }
- /* If the BASE is 16 we can use a simpler algorithm. */
- if (base == 16)
- {
- static const int nbits[16] = { 0, 1, 2, 2, 3, 3, 3, 3,
- 4, 4, 4, 4, 4, 4, 4, 4 };
- int idx = (MANT_DIG - 1) / BITS_PER_MP_LIMB;
- int pos = (MANT_DIG - 1) % BITS_PER_MP_LIMB;
- mp_limb_t val;
- while (!ISXDIGIT (*startp))
- ++startp;
- while (*startp == L_('0'))
- ++startp;
- if (ISDIGIT (*startp))
- val = *startp++ - L_('0');
- else
- val = 10 + TOLOWER (*startp++) - L_('a');
- bits = nbits[val];
- /* We cannot have a leading zero. */
- assert (bits != 0);
- if (pos + 1 >= 4 || pos + 1 >= bits)
- {
- /* We don't have to care for wrapping. This is the normal
- case so we add the first clause in the `if' expression as
- an optimization. It is a compile-time constant and so does
- not cost anything. */
- retval[idx] = val << (pos - bits + 1);
- pos -= bits;
- }
- else
- {
- retval[idx--] = val >> (bits - pos - 1);
- retval[idx] = val << (BITS_PER_MP_LIMB - (bits - pos - 1));
- pos = BITS_PER_MP_LIMB - 1 - (bits - pos - 1);
- }
- /* Adjust the exponent for the bits we are shifting in. */
- assert (int_no <= (uintmax_t) (exponent < 0
- ? (INTMAX_MAX - bits + 1) / 4
- : (INTMAX_MAX - exponent - bits + 1) / 4));
- exponent += bits - 1 + ((intmax_t) int_no - 1) * 4;
- while (--dig_no > 0 && idx >= 0)
- {
- if (!ISXDIGIT (*startp))
- startp += decimal_len;
- if (ISDIGIT (*startp))
- val = *startp++ - L_('0');
- else
- val = 10 + TOLOWER (*startp++) - L_('a');
- if (pos + 1 >= 4)
- {
- retval[idx] |= val << (pos - 4 + 1);
- pos -= 4;
- }
- else
- {
- retval[idx--] |= val >> (4 - pos - 1);
- val <<= BITS_PER_MP_LIMB - (4 - pos - 1);
- if (idx < 0)
- {
- int rest_nonzero = 0;
- while (--dig_no > 0)
- {
- if (*startp != L_('0'))
- {
- rest_nonzero = 1;
- break;
- }
- startp++;
- }
- return round_and_return (retval, exponent, negative, val,
- BITS_PER_MP_LIMB - 1, rest_nonzero);
- }
- retval[idx] = val;
- pos = BITS_PER_MP_LIMB - 1 - (4 - pos - 1);
- }
- }
- /* We ran out of digits. */
- MPN_ZERO (retval, idx);
- return round_and_return (retval, exponent, negative, 0, 0, 0);
- }
- /* Now we have the number of digits in total and the integer digits as well
- as the exponent and its sign. We can decide whether the read digits are
- really integer digits or belong to the fractional part; i.e. we normalize
- 123e-2 to 1.23. */
- {
- register intmax_t incr = (exponent < 0
- ? MAX (-(intmax_t) int_no, exponent)
- : MIN ((intmax_t) dig_no - (intmax_t) int_no,
- exponent));
- int_no += incr;
- exponent -= incr;
- }
- if (__builtin_expect (exponent > MAX_10_EXP + 1 - (intmax_t) int_no, 0))
- return overflow_value (negative);
- if (__builtin_expect (exponent < MIN_10_EXP - (DIG + 1), 0))
- return underflow_value (negative);
- if (int_no > 0)
- {
- /* Read the integer part as a multi-precision number to NUM. */
- startp = str_to_mpn (startp, int_no, num, &numsize, &exponent
- #ifndef USE_WIDE_CHAR
- , decimal, decimal_len, thousands
- #endif
- );
- if (exponent > 0)
- {
- /* We now multiply the gained number by the given power of ten. */
- mp_limb_t *psrc = num;
- mp_limb_t *pdest = den;
- int expbit = 1;
- const struct mp_power *ttab = &_fpioconst_pow10[0];
- do
- {
- if ((exponent & expbit) != 0)
- {
- size_t size = ttab->arraysize - _FPIO_CONST_OFFSET;
- mp_limb_t cy;
- exponent ^= expbit;
- /* FIXME: not the whole multiplication has to be
- done. If we have the needed number of bits we
- only need the information whether more non-zero
- bits follow. */
- if (numsize >= ttab->arraysize - _FPIO_CONST_OFFSET)
- cy = mpn_mul (pdest, psrc, numsize,
- &__tens[ttab->arrayoff
- + _FPIO_CONST_OFFSET],
- size);
- else
- cy = mpn_mul (pdest, &__tens[ttab->arrayoff
- + _FPIO_CONST_OFFSET],
- size, psrc, numsize);
- numsize += size;
- if (cy == 0)
- --numsize;
- (void) SWAP (psrc, pdest);
- }
- expbit <<= 1;
- ++ttab;
- }
- while (exponent != 0);
- if (psrc == den)
- memcpy (num, den, numsize * sizeof (mp_limb_t));
- }
- /* Determine how many bits of the result we already have. */
- count_leading_zeros (bits, num[numsize - 1]);
- bits = numsize * BITS_PER_MP_LIMB - bits;
- /* Now we know the exponent of the number in base two.
- Check it against the maximum possible exponent. */
- if (__builtin_expect (bits > MAX_EXP, 0))
- return overflow_value (negative);
- /* We have already the first BITS bits of the result. Together with
- the information whether more non-zero bits follow this is enough
- to determine the result. */
- if (bits > MANT_DIG)
- {
- int i;
- const mp_size_t least_idx = (bits - MANT_DIG) / BITS_PER_MP_LIMB;
- const mp_size_t least_bit = (bits - MANT_DIG) % BITS_PER_MP_LIMB;
- const mp_size_t round_idx = least_bit == 0 ? least_idx - 1
- : least_idx;
- const mp_size_t round_bit = least_bit == 0 ? BITS_PER_MP_LIMB - 1
- : least_bit - 1;
- if (least_bit == 0)
- memcpy (retval, &num[least_idx],
- RETURN_LIMB_SIZE * sizeof (mp_limb_t));
- else
- {
- for (i = least_idx; i < numsize - 1; ++i)
- retval[i - least_idx] = (num[i] >> least_bit)
- | (num[i + 1]
- << (BITS_PER_MP_LIMB - least_bit));
- if (i - least_idx < RETURN_LIMB_SIZE)
- retval[RETURN_LIMB_SIZE - 1] = num[i] >> least_bit;
- }
- /* Check whether any limb beside the ones in RETVAL are non-zero. */
- for (i = 0; num[i] == 0; ++i)
- ;
- return round_and_return (retval, bits - 1, negative,
- num[round_idx], round_bit,
- int_no < dig_no || i < round_idx);
- /* NOTREACHED */
- }
- else if (dig_no == int_no)
- {
- const mp_size_t target_bit = (MANT_DIG - 1) % BITS_PER_MP_LIMB;
- const mp_size_t is_bit = (bits - 1) % BITS_PER_MP_LIMB;
- if (target_bit == is_bit)
- {
- memcpy (&retval[RETURN_LIMB_SIZE - numsize], num,
- numsize * sizeof (mp_limb_t));
- /* FIXME: the following loop can be avoided if we assume a
- maximal MANT_DIG value. */
- MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize);
- }
- else if (target_bit > is_bit)
- {
- (void) mpn_lshift (&retval[RETURN_LIMB_SIZE - numsize],
- num, numsize, target_bit - is_bit);
- /* FIXME: the following loop can be avoided if we assume a
- maximal MANT_DIG value. */
- MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize);
- }
- else
- {
- mp_limb_t cy;
- assert (numsize < RETURN_LIMB_SIZE);
- cy = mpn_rshift (&retval[RETURN_LIMB_SIZE - numsize],
- num, numsize, is_bit - target_bit);
- retval[RETURN_LIMB_SIZE - numsize - 1] = cy;
- /* FIXME: the following loop can be avoided if we assume a
- maximal MANT_DIG value. */
- MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize - 1);
- }
- return round_and_return (retval, bits - 1, negative, 0, 0, 0);
- /* NOTREACHED */
- }
- /* Store the bits we already have. */
- memcpy (retval, num, numsize * sizeof (mp_limb_t));
- #if RETURN_LIMB_SIZE > 1
- if (numsize < RETURN_LIMB_SIZE)
- # if RETURN_LIMB_SIZE == 2
- retval[numsize] = 0;
- # else
- MPN_ZERO (retval + numsize, RETURN_LIMB_SIZE - numsize);
- # endif
- #endif
- }
- /* We have to compute at least some of the fractional digits. */
- {
- /* We construct a fraction and the result of the division gives us
- the needed digits. The denominator is 1.0 multiplied by the
- exponent of the lowest digit; i.e. 0.123 gives 123 / 1000 and
- 123e-6 gives 123 / 1000000. */
- int expbit;
- int neg_exp;
- int more_bits;
- int need_frac_digits;
- mp_limb_t cy;
- mp_limb_t *psrc = den;
- mp_limb_t *pdest = num;
- const struct mp_power *ttab = &_fpioconst_pow10[0];
- assert (dig_no > int_no
- && exponent <= 0
- && exponent >= MIN_10_EXP - (DIG + 1));
- /* We need to compute MANT_DIG - BITS fractional bits that lie
- within the mantissa of the result, the following bit for
- rounding, and to know whether any subsequent bit is 0.
- Computing a bit with value 2^-n means looking at n digits after
- the decimal point. */
- if (bits > 0)
- {
- /* The bits required are those immediately after the point. */
- assert (int_no > 0 && exponent == 0);
- need_frac_digits = 1 + MANT_DIG - bits;
- }
- else
- {
- /* The number is in the form .123eEXPONENT. */
- assert (int_no == 0 && *startp != L_('0'));
- /* The number is at least 10^(EXPONENT-1), and 10^3 <
- 2^10. */
- int neg_exp_2 = ((1 - exponent) * 10) / 3 + 1;
- /* The number is at least 2^-NEG_EXP_2. We need up to
- MANT_DIG bits following that bit. */
- need_frac_digits = neg_exp_2 + MANT_DIG;
- /* However, we never need bits beyond 1/4 ulp of the smallest
- representable value. (That 1/4 ulp bit is only needed to
- determine tinyness on machines where tinyness is determined
- after rounding.) */
- if (need_frac_digits > MANT_DIG - MIN_EXP + 2)
- need_frac_digits = MANT_DIG - MIN_EXP + 2;
- /* At this point, NEED_FRAC_DIGITS is the total number of
- digits needed after the point, but some of those may be
- leading 0s. */
- need_frac_digits += exponent;
- /* Any cases underflowing enough that none of the fractional
- digits are needed should have been caught earlier (such
- cases are on the order of 10^-n or smaller where 2^-n is
- the least subnormal). */
- assert (need_frac_digits > 0);
- }
- if (need_frac_digits > (intmax_t) dig_no - (intmax_t) int_no)
- need_frac_digits = (intmax_t) dig_no - (intmax_t) int_no;
- if ((intmax_t) dig_no > (intmax_t) int_no + need_frac_digits)
- {
- dig_no = int_no + need_frac_digits;
- more_bits = 1;
- }
- else
- more_bits = 0;
- neg_exp = (intmax_t) dig_no - (intmax_t) int_no - exponent;
- /* Construct the denominator. */
- densize = 0;
- expbit = 1;
- do
- {
- if ((neg_exp & expbit) != 0)
- {
- mp_limb_t cy;
- neg_exp ^= expbit;
- if (densize == 0)
- {
- densize = ttab->arraysize - _FPIO_CONST_OFFSET;
- memcpy (psrc, &__tens[ttab->arrayoff + _FPIO_CONST_OFFSET],
- densize * sizeof (mp_limb_t));
- }
- else
- {
- cy = mpn_mul (pdest, &__tens[ttab->arrayoff
- + _FPIO_CONST_OFFSET],
- ttab->arraysize - _FPIO_CONST_OFFSET,
- psrc, densize);
- densize += ttab->arraysize - _FPIO_CONST_OFFSET;
- if (cy == 0)
- --densize;
- (void) SWAP (psrc, pdest);
- }
- }
- expbit <<= 1;
- ++ttab;
- }
- while (neg_exp != 0);
- if (psrc == num)
- memcpy (den, num, densize * sizeof (mp_limb_t));
- /* Read the fractional digits from the string. */
- (void) str_to_mpn (startp, dig_no - int_no, num, &numsize, &exponent
- #ifndef USE_WIDE_CHAR
- , decimal, decimal_len, thousands
- #endif
- );
- /* We now have to shift both numbers so that the highest bit in the
- denominator is set. In the same process we copy the numerator to
- a high place in the array so that the division constructs the wanted
- digits. This is done by a "quasi fix point" number representation.
- num: ddddddddddd . 0000000000000000000000
- |--- m ---|
- den: ddddddddddd n >= m
- |--- n ---|
- */
- count_leading_zeros (cnt, den[densize - 1]);
- if (cnt > 0)
- {
- /* Don't call `mpn_shift' with a count of zero since the specification
- does not allow this. */
- (void) mpn_lshift (den, den, densize, cnt);
- cy = mpn_lshift (num, num, numsize, cnt);
- if (cy != 0)
- num[numsize++] = cy;
- }
- /* Now we are ready for the division. But it is not necessary to
- do a full multi-precision division because we only need a small
- number of bits for the result. So we do not use mpn_divmod
- here but instead do the division here by hand and stop whenever
- the needed number of bits is reached. The code itself comes
- from the GNU MP Library by Torbj\"orn Granlund. */
- exponent = bits;
- switch (densize)
- {
- case 1:
- {
- mp_limb_t d, n, quot;
- int used = 0;
- n = num[0];
- d = den[0];
- assert (numsize == 1 && n < d);
- do
- {
- udiv_qrnnd (quot, n, n, 0, d);
- #define got_limb \
- if (bits == 0) \
- { \
- register int cnt; \
- if (quot == 0) \
- cnt = BITS_PER_MP_LIMB; \
- else \
- count_leading_zeros (cnt, quot); \
- exponent -= cnt; \
- if (BITS_PER_MP_LIMB - cnt > MANT_DIG) \
- { \
- used = MANT_DIG + cnt; \
- retval[0] = quot >> (BITS_PER_MP_LIMB - used); \
- bits = MANT_DIG + 1; \
- } \
- else \
- { \
- /* Note that we only clear the second element. */ \
- /* The conditional is determined at compile time. */ \
- if (RETURN_LIMB_SIZE > 1) \
- retval[1] = 0; \
- retval[0] = quot; \
- bits = -cnt; \
- } \
- } \
- else if (bits + BITS_PER_MP_LIMB <= MANT_DIG) \
- mpn_lshift_1 (retval, RETURN_LIMB_SIZE, BITS_PER_MP_LIMB, \
- quot); \
- else \
- { \
- used = MANT_DIG - bits; \
- if (used > 0) \
- mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, quot); \
- } \
- bits += BITS_PER_MP_LIMB
- got_limb;
- }
- while (bits <= MANT_DIG);
- return round_and_return (retval, exponent - 1, negative,
- quot, BITS_PER_MP_LIMB - 1 - used,
- more_bits || n != 0);
- }
- case 2:
- {
- mp_limb_t d0, d1, n0, n1;
- mp_limb_t quot = 0;
- int used = 0;
- d0 = den[0];
- d1 = den[1];
- if (numsize < densize)
- {
- if (num[0] >= d1)
- {
- /* The numerator of the number occupies fewer bits than
- the denominator but the one limb is bigger than the
- high limb of the numerator. */
- n1 = 0;
- n0 = num[0];
- }
- else
- {
- if (bits <= 0)
- exponent -= BITS_PER_MP_LIMB;
- else
- {
- if (bits + BITS_PER_MP_LIMB <= MANT_DIG)
- mpn_lshift_1 (retval, RETURN_LIMB_SIZE,
- BITS_PER_MP_LIMB, 0);
- else
- {
- used = MANT_DIG - bits;
- if (used > 0)
- mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, 0);
- }
- bits += BITS_PER_MP_LIMB;
- }
- n1 = num[0];
- n0 = 0;
- }
- }
- else
- {
- n1 = num[1];
- n0 = num[0];
- }
- while (bits <= MANT_DIG)
- {
- mp_limb_t r;
- if (n1 == d1)
- {
- /* QUOT should be either 111..111 or 111..110. We need
- special treatment of this rare case as normal division
- would give overflow. */
- quot = ~(mp_limb_t) 0;
- r = n0 + d1;
- if (r < d1) /* Carry in the addition? */
- {
- add_ssaaaa (n1, n0, r - d0, 0, 0, d0);
- goto have_quot;
- }
- n1 = d0 - (d0 != 0);
- n0 = -d0;
- }
- else
- {
- udiv_qrnnd (quot, r, n1, n0, d1);
- umul_ppmm (n1, n0, d0, quot);
- }
- q_test:
- if (n1 > r || (n1 == r && n0 > 0))
- {
- /* The estimated QUOT was too large. */
- --quot;
- sub_ddmmss (n1, n0, n1, n0, 0, d0);
- r += d1;
- if (r >= d1) /* If not carry, test QUOT again. */
- goto q_test;
- }
- sub_ddmmss (n1, n0, r, 0, n1, n0);
- have_quot:
- got_limb;
- }
- return round_and_return (retval, exponent - 1, negative,
- quot, BITS_PER_MP_LIMB - 1 - used,
- more_bits || n1 != 0 || n0 != 0);
- }
- default:
- {
- int i;
- mp_limb_t cy, dX, d1, n0, n1;
- mp_limb_t quot = 0;
- int used = 0;
- dX = den[densize - 1];
- d1 = den[densize - 2];
- /* The division does not work if the upper limb of the two-limb
- numerator is greater than the denominator. */
- if (mpn_cmp (num, &den[densize - numsize], numsize) > 0)
- num[numsize++] = 0;
- if (numsize < densize)
- {
- mp_size_t empty = densize - numsize;
- register int i;
- if (bits <= 0)
- exponent -= empty * BITS_PER_MP_LIMB;
- else
- {
- if (bits + empty * BITS_PER_MP_LIMB <= MANT_DIG)
- {
- /* We make a difference here because the compiler
- cannot optimize the `else' case that good and
- this reflects all currently used FLOAT types
- and GMP implementations. */
- #if RETURN_LIMB_SIZE <= 2
- assert (empty == 1);
- mpn_lshift_1 (retval, RETURN_LIMB_SIZE,
- BITS_PER_MP_LIMB, 0);
- #else
- for (i = RETURN_LIMB_SIZE - 1; i >= empty; --i)
- retval[i] = retval[i - empty];
- while (i >= 0)
- retval[i--] = 0;
- #endif
- }
- else
- {
- used = MANT_DIG - bits;
- if (used >= BITS_PER_MP_LIMB)
- {
- register int i;
- (void) mpn_lshift (&retval[used
- / BITS_PER_MP_LIMB],
- retval,
- (RETURN_LIMB_SIZE
- - used / BITS_PER_MP_LIMB),
- used % BITS_PER_MP_LIMB);
- for (i = used / BITS_PER_MP_LIMB - 1; i >= 0; --i)
- retval[i] = 0;
- }
- else if (used > 0)
- mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, 0);
- }
- bits += empty * BITS_PER_MP_LIMB;
- }
- for (i = numsize; i > 0; --i)
- num[i + empty] = num[i - 1];
- MPN_ZERO (num, empty + 1);
- }
- else
- {
- int i;
- assert (numsize == densize);
- for (i = numsize; i > 0; --i)
- num[i] = num[i - 1];
- num[0] = 0;
- }
- den[densize] = 0;
- n0 = num[densize];
- while (bits <= MANT_DIG)
- {
- if (n0 == dX)
- /* This might over-estimate QUOT, but it's probably not
- worth the extra code here to find out. */
- quot = ~(mp_limb_t) 0;
- else
- {
- mp_limb_t r;
- udiv_qrnnd (quot, r, n0, num[densize - 1], dX);
- umul_ppmm (n1, n0, d1, quot);
- while (n1 > r || (n1 == r && n0 > num[densize - 2]))
- {
- --quot;
- r += dX;
- if (r < dX) /* I.e. "carry in previous addition?" */
- break;
- n1 -= n0 < d1;
- n0 -= d1;
- }
- }
- /* Possible optimization: We already have (q * n0) and (1 * n1)
- after the calculation of QUOT. Taking advantage of this, we
- could make this loop make two iterations less. */
- cy = mpn_submul_1 (num, den, densize + 1, quot);
- if (num[densize] != cy)
- {
- cy = mpn_add_n (num, num, den, densize);
- assert (cy != 0);
- --quot;
- }
- n0 = num[densize] = num[densize - 1];
- for (i = densize - 1; i > 0; --i)
- num[i] = num[i - 1];
- num[0] = 0;
- got_limb;
- }
- for (i = densize; num[i] == 0 && i >= 0; --i)
- ;
- return round_and_return (retval, exponent - 1, negative,
- quot, BITS_PER_MP_LIMB - 1 - used,
- more_bits || i >= 0);
- }
- }
- }
- /* NOTREACHED */
- }
|