123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720 |
- /*
- FUNCTION
- <<strtod>>, <<strtodf>>---string to double or float
- INDEX
- strtod
- INDEX
- _strtod_r
- INDEX
- strtodf
- ANSI_SYNOPSIS
- #include <stdlib.h>
- double strtod(const char *<[str]>, char **<[tail]>);
- float strtodf(const char *<[str]>, char **<[tail]>);
- double _strtod_r(void *<[reent]>,
- const char *<[str]>, char **<[tail]>);
- TRAD_SYNOPSIS
- #include <stdlib.h>
- double strtod(<[str]>,<[tail]>)
- char *<[str]>;
- char **<[tail]>;
- float strtodf(<[str]>,<[tail]>)
- char *<[str]>;
- char **<[tail]>;
- double _strtod_r(<[reent]>,<[str]>,<[tail]>)
- char *<[reent]>;
- char *<[str]>;
- char **<[tail]>;
- DESCRIPTION
- The function <<strtod>> parses the character string <[str]>,
- producing a substring which can be converted to a double
- value. The substring converted is the longest initial
- subsequence of <[str]>, beginning with the first
- non-whitespace character, that has the format:
- .[+|-]<[digits]>[.][<[digits]>][(e|E)[+|-]<[digits]>]
- The substring contains no characters if <[str]> is empty, consists
- entirely of whitespace, or if the first non-whitespace
- character is something other than <<+>>, <<->>, <<.>>, or a
- digit. If the substring is empty, no conversion is done, and
- the value of <[str]> is stored in <<*<[tail]>>>. Otherwise,
- the substring is converted, and a pointer to the final string
- (which will contain at least the terminating null character of
- <[str]>) is stored in <<*<[tail]>>>. If you want no
- assignment to <<*<[tail]>>>, pass a null pointer as <[tail]>.
- <<strtodf>> is identical to <<strtod>> except for its return type.
- This implementation returns the nearest machine number to the
- input decimal string. Ties are broken by using the IEEE
- round-even rule.
- The alternate function <<_strtod_r>> is a reentrant version.
- The extra argument <[reent]> is a pointer to a reentrancy structure.
- RETURNS
- <<strtod>> returns the converted substring value, if any. If
- no conversion could be performed, 0 is returned. If the
- correct value is out of the range of representable values,
- plus or minus <<HUGE_VAL>> is returned, and <<ERANGE>> is
- stored in errno. If the correct value would cause underflow, 0
- is returned and <<ERANGE>> is stored in errno.
- Supporting OS subroutines required: <<close>>, <<fstat>>, <<isatty>>,
- <<lseek>>, <<read>>, <<sbrk>>, <<write>>.
- */
- /****************************************************************
- *
- * The author of this software is David M. Gay.
- *
- * Copyright (c) 1991 by AT&T.
- *
- * Permission to use, copy, modify, and distribute this software for any
- * purpose without fee is hereby granted, provided that this entire notice
- * is included in all copies of any software which is or includes a copy
- * or modification of this software and in all copies of the supporting
- * documentation for such software.
- *
- * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
- * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR AT&T MAKES ANY
- * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
- * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
- *
- ***************************************************************/
- /* Please send bug reports to
- David M. Gay
- AT&T Bell Laboratories, Room 2C-463
- 600 Mountain Avenue
- Murray Hill, NJ 07974-2070
- U.S.A.
- dmg@research.att.com or research!dmg
- */
- #include <string.h>
- #include <float.h>
- #include <errno.h>
- #include "mprec.h"
- double
- _DEFUN (_strtod_r, (ptr, s00, se),
- struct _Jv_reent *ptr _AND
- _CONST char *s00 _AND
- char **se)
- {
- int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign, e1, esign, i, j,
- k, nd, nd0, nf, nz, nz0, sign;
- int digits = 0; /* Number of digits found in fraction part. */
- long e;
- _CONST char *s, *s0, *s1;
- double aadj, aadj1, adj;
- long L;
- unsigned long y, z;
- union double_union rv, rv0;
- _Jv_Bigint *bb = NULL, *bb1, *bd = NULL, *bd0, *bs = NULL, *delta = NULL;
- sign = nz0 = nz = 0;
- rv.d = 0.;
- for (s = s00;; s++)
- switch (*s)
- {
- case '-':
- sign = 1;
- /* no break */
- case '+':
- if (*++s)
- goto break2;
- /* no break */
- case 0:
- s = s00;
- goto ret;
- case '\t':
- case '\n':
- case '\v':
- case '\f':
- case '\r':
- case ' ':
- continue;
- default:
- goto break2;
- }
- break2:
- if (*s == '0')
- {
- digits++;
- nz0 = 1;
- while (*++s == '0')
- digits++;
- if (!*s)
- goto ret;
- }
- s0 = s;
- y = z = 0;
- for (nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
- {
- digits++;
- if (nd < 9)
- y = 10 * y + c - '0';
- else if (nd < 16)
- z = 10 * z + c - '0';
- }
- nd0 = nd;
- if (c == '.')
- {
- c = *++s;
- if (!nd)
- {
- for (; c == '0'; c = *++s)
- {
- digits++;
- nz++;
- }
- if (c > '0' && c <= '9')
- {
- digits++;
- s0 = s;
- nf += nz;
- nz = 0;
- goto have_dig;
- }
- goto dig_done;
- }
- for (; c >= '0' && c <= '9'; c = *++s)
- {
- digits++;
- have_dig:
- nz++;
- if (c -= '0')
- {
- nf += nz;
- for (i = 1; i < nz; i++)
- if (nd++ < 9)
- y *= 10;
- else if (nd <= DBL_DIG + 1)
- z *= 10;
- if (nd++ < 9)
- y = 10 * y + c;
- else if (nd <= DBL_DIG + 1)
- z = 10 * z + c;
- nz = 0;
- }
- }
- }
- dig_done:
- e = 0;
- if (c == 'e' || c == 'E')
- {
- if (!nd && !nz && !nz0)
- {
- s = s00;
- goto ret;
- }
- s00 = s;
- esign = 0;
- switch (c = *++s)
- {
- case '-':
- esign = 1;
- case '+':
- c = *++s;
- }
- if (c >= '0' && c <= '9')
- {
- while (c == '0')
- c = *++s;
- if (c > '0' && c <= '9')
- {
- e = c - '0';
- s1 = s;
- while ((c = *++s) >= '0' && c <= '9')
- e = 10 * e + c - '0';
- if (s - s1 > 8)
- /* Avoid confusion from exponents
- * so large that e might overflow.
- */
- e = 9999999L;
- if (esign)
- e = -e;
- }
- }
- else
- {
- /* No exponent after an 'E' : that's an error. */
- ptr->_errno = EINVAL;
- e = 0;
- s = s00;
- goto ret;
- }
- }
- if (!nd)
- {
- if (!nz && !nz0)
- s = s00;
- goto ret;
- }
- e1 = e -= nf;
- /* Now we have nd0 digits, starting at s0, followed by a
- * decimal point, followed by nd-nd0 digits. The number we're
- * after is the integer represented by those digits times
- * 10**e */
- if (!nd0)
- nd0 = nd;
- k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
- rv.d = y;
- if (k > 9)
- rv.d = tens[k - 9] * rv.d + z;
- bd0 = 0;
- if (nd <= DBL_DIG
- #ifndef RND_PRODQUOT
- && FLT_ROUNDS == 1
- #endif
- )
- {
- if (!e)
- goto ret;
- if (e > 0)
- {
- if (e <= Ten_pmax)
- {
- #ifdef VAX
- goto vax_ovfl_check;
- #else
- /* rv.d = */ rounded_product (rv.d, tens[e]);
- goto ret;
- #endif
- }
- i = DBL_DIG - nd;
- if (e <= Ten_pmax + i)
- {
- /* A fancier test would sometimes let us do
- * this for larger i values.
- */
- e -= i;
- rv.d *= tens[i];
- #ifdef VAX
- /* VAX exponent range is so narrow we must
- * worry about overflow here...
- */
- vax_ovfl_check:
- word0 (rv) -= P * Exp_msk1;
- /* rv.d = */ rounded_product (rv.d, tens[e]);
- if ((word0 (rv) & Exp_mask)
- > Exp_msk1 * (DBL_MAX_EXP + Bias - 1 - P))
- goto ovfl;
- word0 (rv) += P * Exp_msk1;
- #else
- /* rv.d = */ rounded_product (rv.d, tens[e]);
- #endif
- goto ret;
- }
- }
- #ifndef Inaccurate_Divide
- else if (e >= -Ten_pmax)
- {
- /* rv.d = */ rounded_quotient (rv.d, tens[-e]);
- goto ret;
- }
- #endif
- }
- e1 += nd - k;
- /* Get starting approximation = rv.d * 10**e1 */
- if (e1 > 0)
- {
- if ((i = e1 & 15))
- rv.d *= tens[i];
- if (e1 &= ~15)
- {
- if (e1 > DBL_MAX_10_EXP)
- {
- ovfl:
- ptr->_errno = ERANGE;
- /* Force result to IEEE infinity. */
- word0 (rv) = Exp_mask;
- word1 (rv) = 0;
- if (bd0)
- goto retfree;
- goto ret;
- }
- if (e1 >>= 4)
- {
- for (j = 0; e1 > 1; j++, e1 >>= 1)
- if (e1 & 1)
- rv.d *= bigtens[j];
- /* The last multiplication could overflow. */
- word0 (rv) -= P * Exp_msk1;
- rv.d *= bigtens[j];
- if ((z = word0 (rv) & Exp_mask)
- > Exp_msk1 * (DBL_MAX_EXP + Bias - P))
- goto ovfl;
- if (z > Exp_msk1 * (DBL_MAX_EXP + Bias - 1 - P))
- {
- /* set to largest number */
- /* (Can't trust DBL_MAX) */
- word0 (rv) = Big0;
- #ifndef _DOUBLE_IS_32BITS
- word1 (rv) = Big1;
- #endif
- }
- else
- word0 (rv) += P * Exp_msk1;
- }
- }
- }
- else if (e1 < 0)
- {
- e1 = -e1;
- if ((i = e1 & 15))
- rv.d /= tens[i];
- if (e1 &= ~15)
- {
- e1 >>= 4;
- if (e1 >= 1 << n_bigtens)
- goto undfl;
- for (j = 0; e1 > 1; j++, e1 >>= 1)
- if (e1 & 1)
- rv.d *= tinytens[j];
- /* The last multiplication could underflow. */
- rv0.d = rv.d;
- rv.d *= tinytens[j];
- if (!rv.d)
- {
- rv.d = 2. * rv0.d;
- rv.d *= tinytens[j];
- if (!rv.d)
- {
- undfl:
- rv.d = 0.;
- ptr->_errno = ERANGE;
- if (bd0)
- goto retfree;
- goto ret;
- }
- #ifndef _DOUBLE_IS_32BITS
- word0 (rv) = Tiny0;
- word1 (rv) = Tiny1;
- #else
- word0 (rv) = Tiny1;
- #endif
- /* The refinement below will clean
- * this approximation up.
- */
- }
- }
- }
- /* Now the hard part -- adjusting rv to the correct value.*/
- /* Put digits into bd: true value = bd * 10^e */
- bd0 = s2b (ptr, s0, nd0, nd, y);
- for (;;)
- {
- bd = Balloc (ptr, bd0->_k);
- Bcopy (bd, bd0);
- bb = d2b (ptr, rv.d, &bbe, &bbbits); /* rv.d = bb * 2^bbe */
- bs = i2b (ptr, 1);
- if (e >= 0)
- {
- bb2 = bb5 = 0;
- bd2 = bd5 = e;
- }
- else
- {
- bb2 = bb5 = -e;
- bd2 = bd5 = 0;
- }
- if (bbe >= 0)
- bb2 += bbe;
- else
- bd2 -= bbe;
- bs2 = bb2;
- #ifdef Sudden_Underflow
- #ifdef IBM
- j = 1 + 4 * P - 3 - bbbits + ((bbe + bbbits - 1) & 3);
- #else
- j = P + 1 - bbbits;
- #endif
- #else
- i = bbe + bbbits - 1; /* logb(rv.d) */
- if (i < Emin) /* denormal */
- j = bbe + (P - Emin);
- else
- j = P + 1 - bbbits;
- #endif
- bb2 += j;
- bd2 += j;
- i = bb2 < bd2 ? bb2 : bd2;
- if (i > bs2)
- i = bs2;
- if (i > 0)
- {
- bb2 -= i;
- bd2 -= i;
- bs2 -= i;
- }
- if (bb5 > 0)
- {
- bs = pow5mult (ptr, bs, bb5);
- bb1 = mult (ptr, bs, bb);
- Bfree (ptr, bb);
- bb = bb1;
- }
- if (bb2 > 0)
- bb = lshift (ptr, bb, bb2);
- if (bd5 > 0)
- bd = pow5mult (ptr, bd, bd5);
- if (bd2 > 0)
- bd = lshift (ptr, bd, bd2);
- if (bs2 > 0)
- bs = lshift (ptr, bs, bs2);
- delta = diff (ptr, bb, bd);
- dsign = delta->_sign;
- delta->_sign = 0;
- i = cmp (delta, bs);
- if (i < 0)
- {
- /* Error is less than half an ulp -- check for
- * special case of mantissa a power of two.
- */
- if (dsign || word1 (rv) || word0 (rv) & Bndry_mask)
- break;
- delta = lshift (ptr, delta, Log2P);
- if (cmp (delta, bs) > 0)
- goto drop_down;
- break;
- }
- if (i == 0)
- {
- /* exactly half-way between */
- if (dsign)
- {
- if ((word0 (rv) & Bndry_mask1) == Bndry_mask1
- && word1 (rv) == 0xffffffff)
- {
- /*boundary case -- increment exponent*/
- word0 (rv) = (word0 (rv) & Exp_mask)
- + Exp_msk1
- #ifdef IBM
- | Exp_msk1 >> 4
- #endif
- ;
- #ifndef _DOUBLE_IS_32BITS
- word1 (rv) = 0;
- #endif
- break;
- }
- }
- else if (!(word0 (rv) & Bndry_mask) && !word1 (rv))
- {
- drop_down:
- /* boundary case -- decrement exponent */
- #ifdef Sudden_Underflow
- L = word0 (rv) & Exp_mask;
- #ifdef IBM
- if (L < Exp_msk1)
- #else
- if (L <= Exp_msk1)
- #endif
- goto undfl;
- L -= Exp_msk1;
- #else
- L = (word0 (rv) & Exp_mask) - Exp_msk1;
- #endif
- word0 (rv) = L | Bndry_mask1;
- #ifndef _DOUBLE_IS_32BITS
- word1 (rv) = 0xffffffff;
- #endif
- #ifdef IBM
- goto cont;
- #else
- break;
- #endif
- }
- #ifndef ROUND_BIASED
- if (!(word1 (rv) & LSB))
- break;
- #endif
- if (dsign)
- rv.d += ulp (rv.d);
- #ifndef ROUND_BIASED
- else
- {
- rv.d -= ulp (rv.d);
- #ifndef Sudden_Underflow
- if (!rv.d)
- goto undfl;
- #endif
- }
- #endif
- break;
- }
- if ((aadj = ratio (delta, bs)) <= 2.)
- {
- if (dsign)
- aadj = aadj1 = 1.;
- else if (word1 (rv) || word0 (rv) & Bndry_mask)
- {
- #ifndef Sudden_Underflow
- if (word1 (rv) == Tiny1 && !word0 (rv))
- goto undfl;
- #endif
- aadj = 1.;
- aadj1 = -1.;
- }
- else
- {
- /* special case -- power of FLT_RADIX to be */
- /* rounded down... */
- if (aadj < 2. / FLT_RADIX)
- aadj = 1. / FLT_RADIX;
- else
- aadj *= 0.5;
- aadj1 = -aadj;
- }
- }
- else
- {
- aadj *= 0.5;
- aadj1 = dsign ? aadj : -aadj;
- #ifdef Check_FLT_ROUNDS
- switch (FLT_ROUNDS)
- {
- case 2: /* towards +infinity */
- aadj1 -= 0.5;
- break;
- case 0: /* towards 0 */
- case 3: /* towards -infinity */
- aadj1 += 0.5;
- }
- #else
- if (FLT_ROUNDS == 0)
- aadj1 += 0.5;
- #endif
- }
- y = word0 (rv) & Exp_mask;
- /* Check for overflow */
- if (y == Exp_msk1 * (DBL_MAX_EXP + Bias - 1))
- {
- rv0.d = rv.d;
- word0 (rv) -= P * Exp_msk1;
- adj = aadj1 * ulp (rv.d);
- rv.d += adj;
- if ((word0 (rv) & Exp_mask) >=
- Exp_msk1 * (DBL_MAX_EXP + Bias - P))
- {
- if (word0 (rv0) == Big0 && word1 (rv0) == Big1)
- goto ovfl;
- #ifdef _DOUBLE_IS_32BITS
- word0 (rv) = Big1;
- #else
- word0 (rv) = Big0;
- word1 (rv) = Big1;
- #endif
- goto cont;
- }
- else
- word0 (rv) += P * Exp_msk1;
- }
- else
- {
- #ifdef Sudden_Underflow
- if ((word0 (rv) & Exp_mask) <= P * Exp_msk1)
- {
- rv0.d = rv.d;
- word0 (rv) += P * Exp_msk1;
- adj = aadj1 * ulp (rv.d);
- rv.d += adj;
- #ifdef IBM
- if ((word0 (rv) & Exp_mask) < P * Exp_msk1)
- #else
- if ((word0 (rv) & Exp_mask) <= P * Exp_msk1)
- #endif
- {
- if (word0 (rv0) == Tiny0
- && word1 (rv0) == Tiny1)
- goto undfl;
- word0 (rv) = Tiny0;
- word1 (rv) = Tiny1;
- goto cont;
- }
- else
- word0 (rv) -= P * Exp_msk1;
- }
- else
- {
- adj = aadj1 * ulp (rv.d);
- rv.d += adj;
- }
- #else
- /* Compute adj so that the IEEE rounding rules will
- * correctly round rv.d + adj in some half-way cases.
- * If rv.d * ulp(rv.d) is denormalized (i.e.,
- * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
- * trouble from bits lost to denormalization;
- * example: 1.2e-307 .
- */
- if (y <= (P - 1) * Exp_msk1 && aadj >= 1.)
- {
- aadj1 = (double) (int) (aadj + 0.5);
- if (!dsign)
- aadj1 = -aadj1;
- }
- adj = aadj1 * ulp (rv.d);
- rv.d += adj;
- #endif
- }
- z = word0 (rv) & Exp_mask;
- if (y == z)
- {
- /* Can we stop now? */
- L = aadj;
- aadj -= L;
- /* The tolerances below are conservative. */
- if (dsign || word1 (rv) || word0 (rv) & Bndry_mask)
- {
- if (aadj < .4999999 || aadj > .5000001)
- break;
- }
- else if (aadj < .4999999 / FLT_RADIX)
- break;
- }
- cont:
- Bfree (ptr, bb);
- Bfree (ptr, bd);
- Bfree (ptr, bs);
- Bfree (ptr, delta);
- }
- retfree:
- Bfree (ptr, bb);
- Bfree (ptr, bd);
- Bfree (ptr, bs);
- Bfree (ptr, bd0);
- Bfree (ptr, delta);
- ret:
- if (se)
- *se = (char *) s;
- if (digits == 0)
- ptr->_errno = EINVAL;
- return sign ? -rv.d : rv.d;
- }
|