s_tan.c 1.8 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576
  1. /* @(#)s_tan.c 1.3 95/01/18 */
  2. /*
  3. * ====================================================
  4. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  5. *
  6. * Developed at SunSoft, a Sun Microsystems, Inc. business.
  7. * Permission to use, copy, modify, and distribute this
  8. * software is freely granted, provided that this notice
  9. * is preserved.
  10. * ====================================================
  11. */
  12. /* tan(x)
  13. * Return tangent function of x.
  14. *
  15. * kernel function:
  16. * __kernel_tan ... tangent function on [-pi/4,pi/4]
  17. * __ieee754_rem_pio2 ... argument reduction routine
  18. *
  19. * Method.
  20. * Let S,C and T denote the sin, cos and tan respectively on
  21. * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
  22. * in [-pi/4 , +pi/4], and let n = k mod 4.
  23. * We have
  24. *
  25. * n sin(x) cos(x) tan(x)
  26. * ----------------------------------------------------------
  27. * 0 S C T
  28. * 1 C -S -1/T
  29. * 2 -S -C T
  30. * 3 -C S -1/T
  31. * ----------------------------------------------------------
  32. *
  33. * Special cases:
  34. * Let trig be any of sin, cos, or tan.
  35. * trig(+-INF) is NaN, with signals;
  36. * trig(NaN) is that NaN;
  37. *
  38. * Accuracy:
  39. * TRIG(x) returns trig(x) nearly rounded
  40. */
  41. #include "fdlibm.h"
  42. #ifndef _DOUBLE_IS_32BITS
  43. #ifdef __STDC__
  44. double tan(double x)
  45. #else
  46. double tan(x)
  47. double x;
  48. #endif
  49. {
  50. double y[2],z=0.0;
  51. int32_t n, ix;
  52. /* High word of x. */
  53. GET_HIGH_WORD(ix,x);
  54. /* |x| ~< pi/4 */
  55. ix &= 0x7fffffff;
  56. if(ix <= 0x3fe921fb) return __kernel_tan(x,z,1);
  57. /* tan(Inf or NaN) is NaN */
  58. else if (ix>=0x7ff00000) return x-x; /* NaN */
  59. /* argument reduction needed */
  60. else {
  61. n = __ieee754_rem_pio2(x,y);
  62. return __kernel_tan(y[0],y[1],1-((n&1)<<1)); /* 1 -- n even
  63. -1 -- n odd */
  64. }
  65. }
  66. #endif /* _DOUBLE_IS_32BITS */