e_sqrt.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452
  1. /* @(#)e_sqrt.c 1.3 95/01/18 */
  2. /*
  3. * ====================================================
  4. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  5. *
  6. * Developed at SunSoft, a Sun Microsystems, Inc. business.
  7. * Permission to use, copy, modify, and distribute this
  8. * software is freely granted, provided that this notice
  9. * is preserved.
  10. * ====================================================
  11. */
  12. /* __ieee754_sqrt(x)
  13. * Return correctly rounded sqrt.
  14. * ------------------------------------------
  15. * | Use the hardware sqrt if you have one |
  16. * ------------------------------------------
  17. * Method:
  18. * Bit by bit method using integer arithmetic. (Slow, but portable)
  19. * 1. Normalization
  20. * Scale x to y in [1,4) with even powers of 2:
  21. * find an integer k such that 1 <= (y=x*2^(2k)) < 4, then
  22. * sqrt(x) = 2^k * sqrt(y)
  23. * 2. Bit by bit computation
  24. * Let q = sqrt(y) truncated to i bit after binary point (q = 1),
  25. * i 0
  26. * i+1 2
  27. * s = 2*q , and y = 2 * ( y - q ). (1)
  28. * i i i i
  29. *
  30. * To compute q from q , one checks whether
  31. * i+1 i
  32. *
  33. * -(i+1) 2
  34. * (q + 2 ) <= y. (2)
  35. * i
  36. * -(i+1)
  37. * If (2) is false, then q = q ; otherwise q = q + 2 .
  38. * i+1 i i+1 i
  39. *
  40. * With some algebric manipulation, it is not difficult to see
  41. * that (2) is equivalent to
  42. * -(i+1)
  43. * s + 2 <= y (3)
  44. * i i
  45. *
  46. * The advantage of (3) is that s and y can be computed by
  47. * i i
  48. * the following recurrence formula:
  49. * if (3) is false
  50. *
  51. * s = s , y = y ; (4)
  52. * i+1 i i+1 i
  53. *
  54. * otherwise,
  55. * -i -(i+1)
  56. * s = s + 2 , y = y - s - 2 (5)
  57. * i+1 i i+1 i i
  58. *
  59. * One may easily use induction to prove (4) and (5).
  60. * Note. Since the left hand side of (3) contain only i+2 bits,
  61. * it does not necessary to do a full (53-bit) comparison
  62. * in (3).
  63. * 3. Final rounding
  64. * After generating the 53 bits result, we compute one more bit.
  65. * Together with the remainder, we can decide whether the
  66. * result is exact, bigger than 1/2ulp, or less than 1/2ulp
  67. * (it will never equal to 1/2ulp).
  68. * The rounding mode can be detected by checking whether
  69. * huge + tiny is equal to huge, and whether huge - tiny is
  70. * equal to huge for some floating point number "huge" and "tiny".
  71. *
  72. * Special cases:
  73. * sqrt(+-0) = +-0 ... exact
  74. * sqrt(inf) = inf
  75. * sqrt(-ve) = NaN ... with invalid signal
  76. * sqrt(NaN) = NaN ... with invalid signal for signaling NaN
  77. *
  78. * Other methods : see the appended file at the end of the program below.
  79. *---------------
  80. */
  81. #include "fdlibm.h"
  82. #ifndef _DOUBLE_IS_32BITS
  83. #ifdef __STDC__
  84. static const double one = 1.0, tiny=1.0e-300;
  85. #else
  86. static double one = 1.0, tiny=1.0e-300;
  87. #endif
  88. #ifdef __STDC__
  89. double __ieee754_sqrt(double x)
  90. #else
  91. double __ieee754_sqrt(x)
  92. double x;
  93. #endif
  94. {
  95. double z;
  96. int32_t sign = (int)0x80000000;
  97. uint32_t r,t1,s1,ix1,q1;
  98. int32_t ix0,s0,q,m,t,i;
  99. EXTRACT_WORDS(ix0,ix1,x);
  100. /* take care of Inf and NaN */
  101. if((ix0&0x7ff00000)==0x7ff00000) {
  102. return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf
  103. sqrt(-inf)=sNaN */
  104. }
  105. /* take care of zero */
  106. if(ix0<=0) {
  107. if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */
  108. else if(ix0<0)
  109. return (x-x)/(x-x); /* sqrt(-ve) = sNaN */
  110. }
  111. /* normalize x */
  112. m = (ix0>>20);
  113. if(m==0) { /* subnormal x */
  114. while(ix0==0) {
  115. m -= 21;
  116. ix0 |= (ix1>>11); ix1 <<= 21;
  117. }
  118. for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;
  119. m -= i-1;
  120. ix0 |= (ix1>>(32-i));
  121. ix1 <<= i;
  122. }
  123. m -= 1023; /* unbias exponent */
  124. ix0 = (ix0&0x000fffff)|0x00100000;
  125. if(m&1){ /* odd m, double x to make it even */
  126. ix0 += ix0 + ((ix1&sign)>>31);
  127. ix1 += ix1;
  128. }
  129. m >>= 1; /* m = [m/2] */
  130. /* generate sqrt(x) bit by bit */
  131. ix0 += ix0 + ((ix1&sign)>>31);
  132. ix1 += ix1;
  133. q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */
  134. r = 0x00200000; /* r = moving bit from right to left */
  135. while(r!=0) {
  136. t = s0+r;
  137. if(t<=ix0) {
  138. s0 = t+r;
  139. ix0 -= t;
  140. q += r;
  141. }
  142. ix0 += ix0 + ((ix1&sign)>>31);
  143. ix1 += ix1;
  144. r>>=1;
  145. }
  146. r = sign;
  147. while(r!=0) {
  148. t1 = s1+r;
  149. t = s0;
  150. if((t<ix0)||((t==ix0)&&(t1<=ix1))) {
  151. s1 = t1+r;
  152. if(((t1&sign)==(uint32_t)sign)&&(s1&sign)==0) s0 += 1;
  153. ix0 -= t;
  154. if (ix1 < t1) ix0 -= 1;
  155. ix1 -= t1;
  156. q1 += r;
  157. }
  158. ix0 += ix0 + ((ix1&sign)>>31);
  159. ix1 += ix1;
  160. r>>=1;
  161. }
  162. /* use floating add to find out rounding direction */
  163. if((ix0|ix1)!=0) {
  164. z = one-tiny; /* trigger inexact flag */
  165. if (z>=one) {
  166. z = one+tiny;
  167. if (q1==(uint32_t)0xffffffff) { q1=0; q += 1;}
  168. else if (z>one) {
  169. if (q1==(uint32_t)0xfffffffe) q+=1;
  170. q1+=2;
  171. } else
  172. q1 += (q1&1);
  173. }
  174. }
  175. ix0 = (q>>1)+0x3fe00000;
  176. ix1 = q1>>1;
  177. if ((q&1)==1) ix1 |= sign;
  178. ix0 += (m <<20);
  179. INSERT_WORDS(z,ix0,ix1);
  180. return z;
  181. }
  182. #endif /* defined(_DOUBLE_IS_32BITS) */
  183. /*
  184. Other methods (use floating-point arithmetic)
  185. -------------
  186. (This is a copy of a drafted paper by Prof W. Kahan
  187. and K.C. Ng, written in May, 1986)
  188. Two algorithms are given here to implement sqrt(x)
  189. (IEEE double precision arithmetic) in software.
  190. Both supply sqrt(x) correctly rounded. The first algorithm (in
  191. Section A) uses newton iterations and involves four divisions.
  192. The second one uses reciproot iterations to avoid division, but
  193. requires more multiplications. Both algorithms need the ability
  194. to chop results of arithmetic operations instead of round them,
  195. and the INEXACT flag to indicate when an arithmetic operation
  196. is executed exactly with no roundoff error, all part of the
  197. standard (IEEE 754-1985). The ability to perform shift, add,
  198. subtract and logical AND operations upon 32-bit words is needed
  199. too, though not part of the standard.
  200. A. sqrt(x) by Newton Iteration
  201. (1) Initial approximation
  202. Let x0 and x1 be the leading and the trailing 32-bit words of
  203. a floating point number x (in IEEE double format) respectively
  204. 1 11 52 ...widths
  205. ------------------------------------------------------
  206. x: |s| e | f |
  207. ------------------------------------------------------
  208. msb lsb msb lsb ...order
  209. ------------------------ ------------------------
  210. x0: |s| e | f1 | x1: | f2 |
  211. ------------------------ ------------------------
  212. By performing shifts and subtracts on x0 and x1 (both regarded
  213. as integers), we obtain an 8-bit approximation of sqrt(x) as
  214. follows.
  215. k := (x0>>1) + 0x1ff80000;
  216. y0 := k - T1[31&(k>>15)]. ... y ~ sqrt(x) to 8 bits
  217. Here k is a 32-bit integer and T1[] is an integer array containing
  218. correction terms. Now magically the floating value of y (y's
  219. leading 32-bit word is y0, the value of its trailing word is 0)
  220. approximates sqrt(x) to almost 8-bit.
  221. Value of T1:
  222. static int T1[32]= {
  223. 0, 1024, 3062, 5746, 9193, 13348, 18162, 23592,
  224. 29598, 36145, 43202, 50740, 58733, 67158, 75992, 85215,
  225. 83599, 71378, 60428, 50647, 41945, 34246, 27478, 21581,
  226. 16499, 12183, 8588, 5674, 3403, 1742, 661, 130,};
  227. (2) Iterative refinement
  228. Apply Heron's rule three times to y, we have y approximates
  229. sqrt(x) to within 1 ulp (Unit in the Last Place):
  230. y := (y+x/y)/2 ... almost 17 sig. bits
  231. y := (y+x/y)/2 ... almost 35 sig. bits
  232. y := y-(y-x/y)/2 ... within 1 ulp
  233. Remark 1.
  234. Another way to improve y to within 1 ulp is:
  235. y := (y+x/y) ... almost 17 sig. bits to 2*sqrt(x)
  236. y := y - 0x00100006 ... almost 18 sig. bits to sqrt(x)
  237. 2
  238. (x-y )*y
  239. y := y + 2* ---------- ...within 1 ulp
  240. 2
  241. 3y + x
  242. This formula has one division fewer than the one above; however,
  243. it requires more multiplications and additions. Also x must be
  244. scaled in advance to avoid spurious overflow in evaluating the
  245. expression 3y*y+x. Hence it is not recommended uless division
  246. is slow. If division is very slow, then one should use the
  247. reciproot algorithm given in section B.
  248. (3) Final adjustment
  249. By twiddling y's last bit it is possible to force y to be
  250. correctly rounded according to the prevailing rounding mode
  251. as follows. Let r and i be copies of the rounding mode and
  252. inexact flag before entering the square root program. Also we
  253. use the expression y+-ulp for the next representable floating
  254. numbers (up and down) of y. Note that y+-ulp = either fixed
  255. point y+-1, or multiply y by nextafter(1,+-inf) in chopped
  256. mode.
  257. I := FALSE; ... reset INEXACT flag I
  258. R := RZ; ... set rounding mode to round-toward-zero
  259. z := x/y; ... chopped quotient, possibly inexact
  260. If(not I) then { ... if the quotient is exact
  261. if(z=y) {
  262. I := i; ... restore inexact flag
  263. R := r; ... restore rounded mode
  264. return sqrt(x):=y.
  265. } else {
  266. z := z - ulp; ... special rounding
  267. }
  268. }
  269. i := TRUE; ... sqrt(x) is inexact
  270. If (r=RN) then z=z+ulp ... rounded-to-nearest
  271. If (r=RP) then { ... round-toward-+inf
  272. y = y+ulp; z=z+ulp;
  273. }
  274. y := y+z; ... chopped sum
  275. y0:=y0-0x00100000; ... y := y/2 is correctly rounded.
  276. I := i; ... restore inexact flag
  277. R := r; ... restore rounded mode
  278. return sqrt(x):=y.
  279. (4) Special cases
  280. Square root of +inf, +-0, or NaN is itself;
  281. Square root of a negative number is NaN with invalid signal.
  282. B. sqrt(x) by Reciproot Iteration
  283. (1) Initial approximation
  284. Let x0 and x1 be the leading and the trailing 32-bit words of
  285. a floating point number x (in IEEE double format) respectively
  286. (see section A). By performing shifs and subtracts on x0 and y0,
  287. we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.
  288. k := 0x5fe80000 - (x0>>1);
  289. y0:= k - T2[63&(k>>14)]. ... y ~ 1/sqrt(x) to 7.8 bits
  290. Here k is a 32-bit integer and T2[] is an integer array
  291. containing correction terms. Now magically the floating
  292. value of y (y's leading 32-bit word is y0, the value of
  293. its trailing word y1 is set to zero) approximates 1/sqrt(x)
  294. to almost 7.8-bit.
  295. Value of T2:
  296. static int T2[64]= {
  297. 0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866,
  298. 0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
  299. 0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
  300. 0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
  301. 0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
  302. 0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
  303. 0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
  304. 0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd,};
  305. (2) Iterative refinement
  306. Apply Reciproot iteration three times to y and multiply the
  307. result by x to get an approximation z that matches sqrt(x)
  308. to about 1 ulp. To be exact, we will have
  309. -1ulp < sqrt(x)-z<1.0625ulp.
  310. ... set rounding mode to Round-to-nearest
  311. y := y*(1.5-0.5*x*y*y) ... almost 15 sig. bits to 1/sqrt(x)
  312. y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
  313. ... special arrangement for better accuracy
  314. z := x*y ... 29 bits to sqrt(x), with z*y<1
  315. z := z + 0.5*z*(1-z*y) ... about 1 ulp to sqrt(x)
  316. Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
  317. (a) the term z*y in the final iteration is always less than 1;
  318. (b) the error in the final result is biased upward so that
  319. -1 ulp < sqrt(x) - z < 1.0625 ulp
  320. instead of |sqrt(x)-z|<1.03125ulp.
  321. (3) Final adjustment
  322. By twiddling y's last bit it is possible to force y to be
  323. correctly rounded according to the prevailing rounding mode
  324. as follows. Let r and i be copies of the rounding mode and
  325. inexact flag before entering the square root program. Also we
  326. use the expression y+-ulp for the next representable floating
  327. numbers (up and down) of y. Note that y+-ulp = either fixed
  328. point y+-1, or multiply y by nextafter(1,+-inf) in chopped
  329. mode.
  330. R := RZ; ... set rounding mode to round-toward-zero
  331. switch(r) {
  332. case RN: ... round-to-nearest
  333. if(x<= z*(z-ulp)...chopped) z = z - ulp; else
  334. if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;
  335. break;
  336. case RZ:case RM: ... round-to-zero or round-to--inf
  337. R:=RP; ... reset rounding mod to round-to-+inf
  338. if(x<z*z ... rounded up) z = z - ulp; else
  339. if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;
  340. break;
  341. case RP: ... round-to-+inf
  342. if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else
  343. if(x>z*z ...chopped) z = z+ulp;
  344. break;
  345. }
  346. Remark 3. The above comparisons can be done in fixed point. For
  347. example, to compare x and w=z*z chopped, it suffices to compare
  348. x1 and w1 (the trailing parts of x and w), regarding them as
  349. two's complement integers.
  350. ...Is z an exact square root?
  351. To determine whether z is an exact square root of x, let z1 be the
  352. trailing part of z, and also let x0 and x1 be the leading and
  353. trailing parts of x.
  354. If ((z1&0x03ffffff)!=0) ... not exact if trailing 26 bits of z!=0
  355. I := 1; ... Raise Inexact flag: z is not exact
  356. else {
  357. j := 1 - [(x0>>20)&1] ... j = logb(x) mod 2
  358. k := z1 >> 26; ... get z's 25-th and 26-th
  359. fraction bits
  360. I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
  361. }
  362. R:= r ... restore rounded mode
  363. return sqrt(x):=z.
  364. If multiplication is cheaper then the foregoing red tape, the
  365. Inexact flag can be evaluated by
  366. I := i;
  367. I := (z*z!=x) or I.
  368. Note that z*z can overwrite I; this value must be sensed if it is
  369. True.
  370. Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
  371. zero.
  372. --------------------
  373. z1: | f2 |
  374. --------------------
  375. bit 31 bit 0
  376. Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd
  377. or even of logb(x) have the following relations:
  378. -------------------------------------------------
  379. bit 27,26 of z1 bit 1,0 of x1 logb(x)
  380. -------------------------------------------------
  381. 00 00 odd and even
  382. 01 01 even
  383. 10 10 odd
  384. 10 00 even
  385. 11 01 even
  386. -------------------------------------------------
  387. (4) Special cases (see (4) of Section A).
  388. */