e_hypot.c 3.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130
  1. /* @(#)e_hypot.c 1.3 95/01/18 */
  2. /*
  3. * ====================================================
  4. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  5. *
  6. * Developed at SunSoft, a Sun Microsystems, Inc. business.
  7. * Permission to use, copy, modify, and distribute this
  8. * software is freely granted, provided that this notice
  9. * is preserved.
  10. * ====================================================
  11. */
  12. /* __ieee754_hypot(x,y)
  13. *
  14. * Method :
  15. * If (assume round-to-nearest) z=x*x+y*y
  16. * has error less than sqrt(2)/2 ulp, than
  17. * sqrt(z) has error less than 1 ulp (exercise).
  18. *
  19. * So, compute sqrt(x*x+y*y) with some care as
  20. * follows to get the error below 1 ulp:
  21. *
  22. * Assume x>y>0;
  23. * (if possible, set rounding to round-to-nearest)
  24. * 1. if x > 2y use
  25. * x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
  26. * where x1 = x with lower 32 bits cleared, x2 = x-x1; else
  27. * 2. if x <= 2y use
  28. * t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
  29. * where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1,
  30. * y1= y with lower 32 bits chopped, y2 = y-y1.
  31. *
  32. * NOTE: scaling may be necessary if some argument is too
  33. * large or too tiny
  34. *
  35. * Special cases:
  36. * hypot(x,y) is INF if x or y is +INF or -INF; else
  37. * hypot(x,y) is NAN if x or y is NAN.
  38. *
  39. * Accuracy:
  40. * hypot(x,y) returns sqrt(x^2+y^2) with error less
  41. * than 1 ulps (units in the last place)
  42. */
  43. #include "fdlibm.h"
  44. #ifndef _DOUBLE_IS_32BITS
  45. #ifdef __STDC__
  46. double __ieee754_hypot(double x, double y)
  47. #else
  48. double __ieee754_hypot(x,y)
  49. double x, y;
  50. #endif
  51. {
  52. double a=x,b=y,t1,t2,y1,y2,w;
  53. uint32_t j,k,ha,hb,hx,hy;
  54. GET_HIGH_WORD(hx,x);
  55. GET_HIGH_WORD(hy,y);
  56. ha = hx&0x7fffffff; /* high word of x */
  57. hb = hy&0x7fffffff; /* high word of y */
  58. if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
  59. SET_HIGH_WORD(a,ha); /* a <- |a| */
  60. SET_HIGH_WORD(b,hb); /* b <- |b| */
  61. if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */
  62. k=0;
  63. if(ha > 0x5f300000) { /* a>2**500 */
  64. if(ha >= 0x7ff00000) { /* Inf or NaN */
  65. uint32_t la, lb;
  66. w = a+b; /* for sNaN */
  67. GET_LOW_WORD(la,a);
  68. GET_LOW_WORD(lb,b);
  69. if(((ha&0xfffff)|la)==0) w = a;
  70. if(((hb^0x7ff00000)|lb)==0) w = b;
  71. return w;
  72. }
  73. /* scale a and b by 2**-600 */
  74. ha -= 0x25800000; hb -= 0x25800000; k += 600;
  75. SET_HIGH_WORD(a,ha);
  76. SET_HIGH_WORD(b,hb);
  77. }
  78. if(hb < 0x20b00000) { /* b < 2**-500 */
  79. if(hb <= 0x000fffff) { /* subnormal b or 0 */
  80. uint32_t lb;
  81. GET_LOW_WORD(lb,b);
  82. if((hb|lb)==0) return a;
  83. t1=0;
  84. SET_HIGH_WORD(t1, 0x7fd00000); /* t1=2^1022 */
  85. b *= t1;
  86. a *= t1;
  87. k -= 1022;
  88. } else { /* scale a and b by 2^600 */
  89. ha += 0x25800000; /* a *= 2^600 */
  90. hb += 0x25800000; /* b *= 2^600 */
  91. k -= 600;
  92. SET_HIGH_WORD(a,ha);
  93. SET_HIGH_WORD(b,hb);
  94. }
  95. }
  96. /* medium size a and b */
  97. w = a-b;
  98. if (w>b) {
  99. t1 = 0;
  100. SET_HIGH_WORD(t1, ha);
  101. t2 = a-t1;
  102. w = sqrt(t1*t1-(b*(-b)-t2*(a+t1)));
  103. } else {
  104. a = a+a;
  105. y1 = 0;
  106. SET_HIGH_WORD(y1, hb);
  107. y2 = b - y1;
  108. t1 = 0;
  109. SET_HIGH_WORD(t1, ha+0x00100000);
  110. t2 = a - t1;
  111. w = sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b)));
  112. }
  113. if(k!=0) {
  114. uint32_t ht1;
  115. t1 = 1.0;
  116. GET_HIGH_WORD(ht1, t1);
  117. SET_HIGH_WORD(t1, ht1 + (k<<20));
  118. return t1*w;
  119. } else return w;
  120. }
  121. #endif /* defined(_DOUBLE_IS_32BITS) */