123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416 |
- /* sha1.c - Functions to compute SHA1 message digest of files or
- memory blocks according to the NIST specification FIPS-180-1.
- Copyright (C) 2000, 2001, 2003, 2004, 2005, 2006, 2008 Free Software
- Foundation, Inc.
- This program is free software; you can redistribute it and/or modify it
- under the terms of the GNU General Public License as published by the
- Free Software Foundation; either version 2, or (at your option) any
- later version.
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
- You should have received a copy of the GNU General Public License
- along with this program; if not, write to the Free Software Foundation,
- Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */
- /* Written by Scott G. Miller
- Credits:
- Robert Klep <robert@ilse.nl> -- Expansion function fix
- */
- #include <config.h>
- #include "sha1.h"
- #include <stddef.h>
- #include <string.h>
- #if USE_UNLOCKED_IO
- # include "unlocked-io.h"
- #endif
- #ifdef WORDS_BIGENDIAN
- # define SWAP(n) (n)
- #else
- # define SWAP(n) \
- (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
- #endif
- #define BLOCKSIZE 4096
- #if BLOCKSIZE % 64 != 0
- # error "invalid BLOCKSIZE"
- #endif
- /* This array contains the bytes used to pad the buffer to the next
- 64-byte boundary. (RFC 1321, 3.1: Step 1) */
- static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ };
- /* Take a pointer to a 160 bit block of data (five 32 bit ints) and
- initialize it to the start constants of the SHA1 algorithm. This
- must be called before using hash in the call to sha1_hash. */
- void
- sha1_init_ctx (struct sha1_ctx *ctx)
- {
- ctx->A = 0x67452301;
- ctx->B = 0xefcdab89;
- ctx->C = 0x98badcfe;
- ctx->D = 0x10325476;
- ctx->E = 0xc3d2e1f0;
- ctx->total[0] = ctx->total[1] = 0;
- ctx->buflen = 0;
- }
- /* Put result from CTX in first 20 bytes following RESBUF. The result
- must be in little endian byte order.
- IMPORTANT: On some systems it is required that RESBUF is correctly
- aligned for a 32-bit value. */
- void *
- sha1_read_ctx (const struct sha1_ctx *ctx, void *resbuf)
- {
- ((sha1_uint32 *) resbuf)[0] = SWAP (ctx->A);
- ((sha1_uint32 *) resbuf)[1] = SWAP (ctx->B);
- ((sha1_uint32 *) resbuf)[2] = SWAP (ctx->C);
- ((sha1_uint32 *) resbuf)[3] = SWAP (ctx->D);
- ((sha1_uint32 *) resbuf)[4] = SWAP (ctx->E);
- return resbuf;
- }
- /* Process the remaining bytes in the internal buffer and the usual
- prolog according to the standard and write the result to RESBUF.
- IMPORTANT: On some systems it is required that RESBUF is correctly
- aligned for a 32-bit value. */
- void *
- sha1_finish_ctx (struct sha1_ctx *ctx, void *resbuf)
- {
- /* Take yet unprocessed bytes into account. */
- sha1_uint32 bytes = ctx->buflen;
- size_t size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4;
- /* Now count remaining bytes. */
- ctx->total[0] += bytes;
- if (ctx->total[0] < bytes)
- ++ctx->total[1];
- /* Put the 64-bit file length in *bits* at the end of the buffer. */
- ctx->buffer[size - 2] = SWAP ((ctx->total[1] << 3) | (ctx->total[0] >> 29));
- ctx->buffer[size - 1] = SWAP (ctx->total[0] << 3);
- memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 4 - bytes);
- /* Process last bytes. */
- sha1_process_block (ctx->buffer, size * 4, ctx);
- return sha1_read_ctx (ctx, resbuf);
- }
- /* Compute SHA1 message digest for bytes read from STREAM. The
- resulting message digest number will be written into the 16 bytes
- beginning at RESBLOCK. */
- int
- sha1_stream (FILE *stream, void *resblock)
- {
- struct sha1_ctx ctx;
- char buffer[BLOCKSIZE + 72];
- size_t sum;
- /* Initialize the computation context. */
- sha1_init_ctx (&ctx);
- /* Iterate over full file contents. */
- while (1)
- {
- /* We read the file in blocks of BLOCKSIZE bytes. One call of the
- computation function processes the whole buffer so that with the
- next round of the loop another block can be read. */
- size_t n;
- sum = 0;
- /* Read block. Take care for partial reads. */
- while (1)
- {
- n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
- sum += n;
- if (sum == BLOCKSIZE)
- break;
- if (n == 0)
- {
- /* Check for the error flag IFF N == 0, so that we don't
- exit the loop after a partial read due to e.g., EAGAIN
- or EWOULDBLOCK. */
- if (ferror (stream))
- return 1;
- goto process_partial_block;
- }
- /* We've read at least one byte, so ignore errors. But always
- check for EOF, since feof may be true even though N > 0.
- Otherwise, we could end up calling fread after EOF. */
- if (feof (stream))
- goto process_partial_block;
- }
- /* Process buffer with BLOCKSIZE bytes. Note that
- BLOCKSIZE % 64 == 0
- */
- sha1_process_block (buffer, BLOCKSIZE, &ctx);
- }
- process_partial_block:;
- /* Process any remaining bytes. */
- if (sum > 0)
- sha1_process_bytes (buffer, sum, &ctx);
- /* Construct result in desired memory. */
- sha1_finish_ctx (&ctx, resblock);
- return 0;
- }
- /* Compute SHA1 message digest for LEN bytes beginning at BUFFER. The
- result is always in little endian byte order, so that a byte-wise
- output yields to the wanted ASCII representation of the message
- digest. */
- void *
- sha1_buffer (const char *buffer, size_t len, void *resblock)
- {
- struct sha1_ctx ctx;
- /* Initialize the computation context. */
- sha1_init_ctx (&ctx);
- /* Process whole buffer but last len % 64 bytes. */
- sha1_process_bytes (buffer, len, &ctx);
- /* Put result in desired memory area. */
- return sha1_finish_ctx (&ctx, resblock);
- }
- void
- sha1_process_bytes (const void *buffer, size_t len, struct sha1_ctx *ctx)
- {
- /* When we already have some bits in our internal buffer concatenate
- both inputs first. */
- if (ctx->buflen != 0)
- {
- size_t left_over = ctx->buflen;
- size_t add = 128 - left_over > len ? len : 128 - left_over;
- memcpy (&((char *) ctx->buffer)[left_over], buffer, add);
- ctx->buflen += add;
- if (ctx->buflen > 64)
- {
- sha1_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
- ctx->buflen &= 63;
- /* The regions in the following copy operation cannot overlap. */
- memcpy (ctx->buffer,
- &((char *) ctx->buffer)[(left_over + add) & ~63],
- ctx->buflen);
- }
- buffer = (const char *) buffer + add;
- len -= add;
- }
- /* Process available complete blocks. */
- if (len >= 64)
- {
- #if !_STRING_ARCH_unaligned
- # define alignof(type) offsetof (struct { char c; type x; }, x)
- # define UNALIGNED_P(p) (((size_t) p) % alignof (sha1_uint32) != 0)
- if (UNALIGNED_P (buffer))
- while (len > 64)
- {
- sha1_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
- buffer = (const char *) buffer + 64;
- len -= 64;
- }
- else
- #endif
- {
- sha1_process_block (buffer, len & ~63, ctx);
- buffer = (const char *) buffer + (len & ~63);
- len &= 63;
- }
- }
- /* Move remaining bytes in internal buffer. */
- if (len > 0)
- {
- size_t left_over = ctx->buflen;
- memcpy (&((char *) ctx->buffer)[left_over], buffer, len);
- left_over += len;
- if (left_over >= 64)
- {
- sha1_process_block (ctx->buffer, 64, ctx);
- left_over -= 64;
- memcpy (ctx->buffer, &ctx->buffer[16], left_over);
- }
- ctx->buflen = left_over;
- }
- }
- /* --- Code below is the primary difference between md5.c and sha1.c --- */
- /* SHA1 round constants */
- #define K1 0x5a827999
- #define K2 0x6ed9eba1
- #define K3 0x8f1bbcdc
- #define K4 0xca62c1d6
- /* Round functions. Note that F2 is the same as F4. */
- #define F1(B,C,D) ( D ^ ( B & ( C ^ D ) ) )
- #define F2(B,C,D) (B ^ C ^ D)
- #define F3(B,C,D) ( ( B & C ) | ( D & ( B | C ) ) )
- #define F4(B,C,D) (B ^ C ^ D)
- /* Process LEN bytes of BUFFER, accumulating context into CTX.
- It is assumed that LEN % 64 == 0.
- Most of this code comes from GnuPG's cipher/sha1.c. */
- void
- sha1_process_block (const void *buffer, size_t len, struct sha1_ctx *ctx)
- {
- const sha1_uint32 *words = (const sha1_uint32*) buffer;
- size_t nwords = len / sizeof (sha1_uint32);
- const sha1_uint32 *endp = words + nwords;
- sha1_uint32 x[16];
- sha1_uint32 a = ctx->A;
- sha1_uint32 b = ctx->B;
- sha1_uint32 c = ctx->C;
- sha1_uint32 d = ctx->D;
- sha1_uint32 e = ctx->E;
- /* First increment the byte count. RFC 1321 specifies the possible
- length of the file up to 2^64 bits. Here we only compute the
- number of bytes. Do a double word increment. */
- ctx->total[0] += len;
- ctx->total[1] += ((len >> 31) >> 1) + (ctx->total[0] < len);
- #define rol(x, n) (((x) << (n)) | ((sha1_uint32) (x) >> (32 - (n))))
- #define M(I) ( tm = x[I&0x0f] ^ x[(I-14)&0x0f] \
- ^ x[(I-8)&0x0f] ^ x[(I-3)&0x0f] \
- , (x[I&0x0f] = rol(tm, 1)) )
- #define R(A,B,C,D,E,F,K,M) do { E += rol( A, 5 ) \
- + F( B, C, D ) \
- + K \
- + M; \
- B = rol( B, 30 ); \
- } while(0)
- while (words < endp)
- {
- sha1_uint32 tm;
- int t;
- for (t = 0; t < 16; t++)
- {
- x[t] = SWAP (*words);
- words++;
- }
- R( a, b, c, d, e, F1, K1, x[ 0] );
- R( e, a, b, c, d, F1, K1, x[ 1] );
- R( d, e, a, b, c, F1, K1, x[ 2] );
- R( c, d, e, a, b, F1, K1, x[ 3] );
- R( b, c, d, e, a, F1, K1, x[ 4] );
- R( a, b, c, d, e, F1, K1, x[ 5] );
- R( e, a, b, c, d, F1, K1, x[ 6] );
- R( d, e, a, b, c, F1, K1, x[ 7] );
- R( c, d, e, a, b, F1, K1, x[ 8] );
- R( b, c, d, e, a, F1, K1, x[ 9] );
- R( a, b, c, d, e, F1, K1, x[10] );
- R( e, a, b, c, d, F1, K1, x[11] );
- R( d, e, a, b, c, F1, K1, x[12] );
- R( c, d, e, a, b, F1, K1, x[13] );
- R( b, c, d, e, a, F1, K1, x[14] );
- R( a, b, c, d, e, F1, K1, x[15] );
- R( e, a, b, c, d, F1, K1, M(16) );
- R( d, e, a, b, c, F1, K1, M(17) );
- R( c, d, e, a, b, F1, K1, M(18) );
- R( b, c, d, e, a, F1, K1, M(19) );
- R( a, b, c, d, e, F2, K2, M(20) );
- R( e, a, b, c, d, F2, K2, M(21) );
- R( d, e, a, b, c, F2, K2, M(22) );
- R( c, d, e, a, b, F2, K2, M(23) );
- R( b, c, d, e, a, F2, K2, M(24) );
- R( a, b, c, d, e, F2, K2, M(25) );
- R( e, a, b, c, d, F2, K2, M(26) );
- R( d, e, a, b, c, F2, K2, M(27) );
- R( c, d, e, a, b, F2, K2, M(28) );
- R( b, c, d, e, a, F2, K2, M(29) );
- R( a, b, c, d, e, F2, K2, M(30) );
- R( e, a, b, c, d, F2, K2, M(31) );
- R( d, e, a, b, c, F2, K2, M(32) );
- R( c, d, e, a, b, F2, K2, M(33) );
- R( b, c, d, e, a, F2, K2, M(34) );
- R( a, b, c, d, e, F2, K2, M(35) );
- R( e, a, b, c, d, F2, K2, M(36) );
- R( d, e, a, b, c, F2, K2, M(37) );
- R( c, d, e, a, b, F2, K2, M(38) );
- R( b, c, d, e, a, F2, K2, M(39) );
- R( a, b, c, d, e, F3, K3, M(40) );
- R( e, a, b, c, d, F3, K3, M(41) );
- R( d, e, a, b, c, F3, K3, M(42) );
- R( c, d, e, a, b, F3, K3, M(43) );
- R( b, c, d, e, a, F3, K3, M(44) );
- R( a, b, c, d, e, F3, K3, M(45) );
- R( e, a, b, c, d, F3, K3, M(46) );
- R( d, e, a, b, c, F3, K3, M(47) );
- R( c, d, e, a, b, F3, K3, M(48) );
- R( b, c, d, e, a, F3, K3, M(49) );
- R( a, b, c, d, e, F3, K3, M(50) );
- R( e, a, b, c, d, F3, K3, M(51) );
- R( d, e, a, b, c, F3, K3, M(52) );
- R( c, d, e, a, b, F3, K3, M(53) );
- R( b, c, d, e, a, F3, K3, M(54) );
- R( a, b, c, d, e, F3, K3, M(55) );
- R( e, a, b, c, d, F3, K3, M(56) );
- R( d, e, a, b, c, F3, K3, M(57) );
- R( c, d, e, a, b, F3, K3, M(58) );
- R( b, c, d, e, a, F3, K3, M(59) );
- R( a, b, c, d, e, F4, K4, M(60) );
- R( e, a, b, c, d, F4, K4, M(61) );
- R( d, e, a, b, c, F4, K4, M(62) );
- R( c, d, e, a, b, F4, K4, M(63) );
- R( b, c, d, e, a, F4, K4, M(64) );
- R( a, b, c, d, e, F4, K4, M(65) );
- R( e, a, b, c, d, F4, K4, M(66) );
- R( d, e, a, b, c, F4, K4, M(67) );
- R( c, d, e, a, b, F4, K4, M(68) );
- R( b, c, d, e, a, F4, K4, M(69) );
- R( a, b, c, d, e, F4, K4, M(70) );
- R( e, a, b, c, d, F4, K4, M(71) );
- R( d, e, a, b, c, F4, K4, M(72) );
- R( c, d, e, a, b, F4, K4, M(73) );
- R( b, c, d, e, a, F4, K4, M(74) );
- R( a, b, c, d, e, F4, K4, M(75) );
- R( e, a, b, c, d, F4, K4, M(76) );
- R( d, e, a, b, c, F4, K4, M(77) );
- R( c, d, e, a, b, F4, K4, M(78) );
- R( b, c, d, e, a, F4, K4, M(79) );
- a = ctx->A += a;
- b = ctx->B += b;
- c = ctx->C += c;
- d = ctx->D += d;
- e = ctx->E += e;
- }
- }
|