123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226 |
- // Copyright 2013 The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- package sync
- import (
- "runtime"
- "sync/atomic"
- "unsafe"
- )
- // A Pool is a set of temporary objects that may be individually saved and
- // retrieved.
- //
- // Any item stored in the Pool may be removed automatically at any time without
- // notification. If the Pool holds the only reference when this happens, the
- // item might be deallocated.
- //
- // A Pool is safe for use by multiple goroutines simultaneously.
- //
- // Pool's purpose is to cache allocated but unused items for later reuse,
- // relieving pressure on the garbage collector. That is, it makes it easy to
- // build efficient, thread-safe free lists. However, it is not suitable for all
- // free lists.
- //
- // An appropriate use of a Pool is to manage a group of temporary items
- // silently shared among and potentially reused by concurrent independent
- // clients of a package. Pool provides a way to amortize allocation overhead
- // across many clients.
- //
- // An example of good use of a Pool is in the fmt package, which maintains a
- // dynamically-sized store of temporary output buffers. The store scales under
- // load (when many goroutines are actively printing) and shrinks when
- // quiescent.
- //
- // On the other hand, a free list maintained as part of a short-lived object is
- // not a suitable use for a Pool, since the overhead does not amortize well in
- // that scenario. It is more efficient to have such objects implement their own
- // free list.
- //
- type Pool struct {
- local unsafe.Pointer // local fixed-size per-P pool, actual type is [P]poolLocal
- localSize uintptr // size of the local array
- // New optionally specifies a function to generate
- // a value when Get would otherwise return nil.
- // It may not be changed concurrently with calls to Get.
- New func() interface{}
- }
- // Local per-P Pool appendix.
- type poolLocal struct {
- private interface{} // Can be used only by the respective P.
- shared []interface{} // Can be used by any P.
- Mutex // Protects shared.
- pad [128]byte // Prevents false sharing.
- }
- // Put adds x to the pool.
- func (p *Pool) Put(x interface{}) {
- if raceenabled {
- // Under race detector the Pool degenerates into no-op.
- // It's conforming, simple and does not introduce excessive
- // happens-before edges between unrelated goroutines.
- return
- }
- if x == nil {
- return
- }
- l := p.pin()
- if l.private == nil {
- l.private = x
- x = nil
- }
- runtime_procUnpin()
- if x == nil {
- return
- }
- l.Lock()
- l.shared = append(l.shared, x)
- l.Unlock()
- }
- // Get selects an arbitrary item from the Pool, removes it from the
- // Pool, and returns it to the caller.
- // Get may choose to ignore the pool and treat it as empty.
- // Callers should not assume any relation between values passed to Put and
- // the values returned by Get.
- //
- // If Get would otherwise return nil and p.New is non-nil, Get returns
- // the result of calling p.New.
- func (p *Pool) Get() interface{} {
- if raceenabled {
- if p.New != nil {
- return p.New()
- }
- return nil
- }
- l := p.pin()
- x := l.private
- l.private = nil
- runtime_procUnpin()
- if x != nil {
- return x
- }
- l.Lock()
- last := len(l.shared) - 1
- if last >= 0 {
- x = l.shared[last]
- l.shared = l.shared[:last]
- }
- l.Unlock()
- if x != nil {
- return x
- }
- return p.getSlow()
- }
- func (p *Pool) getSlow() (x interface{}) {
- // See the comment in pin regarding ordering of the loads.
- size := atomic.LoadUintptr(&p.localSize) // load-acquire
- local := p.local // load-consume
- // Try to steal one element from other procs.
- pid := runtime_procPin()
- runtime_procUnpin()
- for i := 0; i < int(size); i++ {
- l := indexLocal(local, (pid+i+1)%int(size))
- l.Lock()
- last := len(l.shared) - 1
- if last >= 0 {
- x = l.shared[last]
- l.shared = l.shared[:last]
- l.Unlock()
- break
- }
- l.Unlock()
- }
- if x == nil && p.New != nil {
- x = p.New()
- }
- return x
- }
- // pin pins the current goroutine to P, disables preemption and returns poolLocal pool for the P.
- // Caller must call runtime_procUnpin() when done with the pool.
- func (p *Pool) pin() *poolLocal {
- pid := runtime_procPin()
- // In pinSlow we store to localSize and then to local, here we load in opposite order.
- // Since we've disabled preemption, GC can not happen in between.
- // Thus here we must observe local at least as large localSize.
- // We can observe a newer/larger local, it is fine (we must observe its zero-initialized-ness).
- s := atomic.LoadUintptr(&p.localSize) // load-acquire
- l := p.local // load-consume
- if uintptr(pid) < s {
- return indexLocal(l, pid)
- }
- return p.pinSlow()
- }
- func (p *Pool) pinSlow() *poolLocal {
- // Retry under the mutex.
- // Can not lock the mutex while pinned.
- runtime_procUnpin()
- allPoolsMu.Lock()
- defer allPoolsMu.Unlock()
- pid := runtime_procPin()
- // poolCleanup won't be called while we are pinned.
- s := p.localSize
- l := p.local
- if uintptr(pid) < s {
- return indexLocal(l, pid)
- }
- if p.local == nil {
- allPools = append(allPools, p)
- }
- // If GOMAXPROCS changes between GCs, we re-allocate the array and lose the old one.
- size := runtime.GOMAXPROCS(0)
- local := make([]poolLocal, size)
- atomic.StorePointer((*unsafe.Pointer)(&p.local), unsafe.Pointer(&local[0])) // store-release
- atomic.StoreUintptr(&p.localSize, uintptr(size)) // store-release
- return &local[pid]
- }
- func poolCleanup() {
- // This function is called with the world stopped, at the beginning of a garbage collection.
- // It must not allocate and probably should not call any runtime functions.
- // Defensively zero out everything, 2 reasons:
- // 1. To prevent false retention of whole Pools.
- // 2. If GC happens while a goroutine works with l.shared in Put/Get,
- // it will retain whole Pool. So next cycle memory consumption would be doubled.
- for i, p := range allPools {
- allPools[i] = nil
- for i := 0; i < int(p.localSize); i++ {
- l := indexLocal(p.local, i)
- l.private = nil
- for j := range l.shared {
- l.shared[j] = nil
- }
- l.shared = nil
- }
- p.local = nil
- p.localSize = 0
- }
- allPools = []*Pool{}
- }
- var (
- allPoolsMu Mutex
- allPools []*Pool
- )
- func init() {
- runtime_registerPoolCleanup(poolCleanup)
- }
- func indexLocal(l unsafe.Pointer, i int) *poolLocal {
- return &(*[1000000]poolLocal)(l)[i]
- }
- // Implemented in runtime.
- func runtime_registerPoolCleanup(cleanup func())
- func runtime_procPin() int
- func runtime_procUnpin()
|