123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547 |
- // Copyright 2009 The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- // Package strconv implements conversions to and from string representations
- // of basic data types.
- package strconv
- // decimal to binary floating point conversion.
- // Algorithm:
- // 1) Store input in multiprecision decimal.
- // 2) Multiply/divide decimal by powers of two until in range [0.5, 1)
- // 3) Multiply by 2^precision and round to get mantissa.
- import "math"
- import "runtime"
- var optimize = true // can change for testing
- func equalIgnoreCase(s1, s2 string) bool {
- if len(s1) != len(s2) {
- return false
- }
- for i := 0; i < len(s1); i++ {
- c1 := s1[i]
- if 'A' <= c1 && c1 <= 'Z' {
- c1 += 'a' - 'A'
- }
- c2 := s2[i]
- if 'A' <= c2 && c2 <= 'Z' {
- c2 += 'a' - 'A'
- }
- if c1 != c2 {
- return false
- }
- }
- return true
- }
- func special(s string) (f float64, ok bool) {
- if len(s) == 0 {
- return
- }
- switch s[0] {
- default:
- return
- case '+':
- if equalIgnoreCase(s, "+inf") || equalIgnoreCase(s, "+infinity") {
- return math.Inf(1), true
- }
- case '-':
- if equalIgnoreCase(s, "-inf") || equalIgnoreCase(s, "-infinity") {
- return math.Inf(-1), true
- }
- case 'n', 'N':
- if equalIgnoreCase(s, "nan") {
- return math.NaN(), true
- }
- case 'i', 'I':
- if equalIgnoreCase(s, "inf") || equalIgnoreCase(s, "infinity") {
- return math.Inf(1), true
- }
- }
- return
- }
- func (b *decimal) set(s string) (ok bool) {
- i := 0
- b.neg = false
- b.trunc = false
- // optional sign
- if i >= len(s) {
- return
- }
- switch {
- case s[i] == '+':
- i++
- case s[i] == '-':
- b.neg = true
- i++
- }
- // digits
- sawdot := false
- sawdigits := false
- for ; i < len(s); i++ {
- switch {
- case s[i] == '.':
- if sawdot {
- return
- }
- sawdot = true
- b.dp = b.nd
- continue
- case '0' <= s[i] && s[i] <= '9':
- sawdigits = true
- if s[i] == '0' && b.nd == 0 { // ignore leading zeros
- b.dp--
- continue
- }
- if b.nd < len(b.d) {
- b.d[b.nd] = s[i]
- b.nd++
- } else if s[i] != '0' {
- b.trunc = true
- }
- continue
- }
- break
- }
- if !sawdigits {
- return
- }
- if !sawdot {
- b.dp = b.nd
- }
- // optional exponent moves decimal point.
- // if we read a very large, very long number,
- // just be sure to move the decimal point by
- // a lot (say, 100000). it doesn't matter if it's
- // not the exact number.
- if i < len(s) && (s[i] == 'e' || s[i] == 'E') {
- i++
- if i >= len(s) {
- return
- }
- esign := 1
- if s[i] == '+' {
- i++
- } else if s[i] == '-' {
- i++
- esign = -1
- }
- if i >= len(s) || s[i] < '0' || s[i] > '9' {
- return
- }
- e := 0
- for ; i < len(s) && '0' <= s[i] && s[i] <= '9'; i++ {
- if e < 10000 {
- e = e*10 + int(s[i]) - '0'
- }
- }
- b.dp += e * esign
- }
- if i != len(s) {
- return
- }
- ok = true
- return
- }
- // readFloat reads a decimal mantissa and exponent from a float
- // string representation. It sets ok to false if the number could
- // not fit return types or is invalid.
- func readFloat(s string) (mantissa uint64, exp int, neg, trunc, ok bool) {
- const uint64digits = 19
- i := 0
- // optional sign
- if i >= len(s) {
- return
- }
- switch {
- case s[i] == '+':
- i++
- case s[i] == '-':
- neg = true
- i++
- }
- // digits
- sawdot := false
- sawdigits := false
- nd := 0
- ndMant := 0
- dp := 0
- for ; i < len(s); i++ {
- switch c := s[i]; true {
- case c == '.':
- if sawdot {
- return
- }
- sawdot = true
- dp = nd
- continue
- case '0' <= c && c <= '9':
- sawdigits = true
- if c == '0' && nd == 0 { // ignore leading zeros
- dp--
- continue
- }
- nd++
- if ndMant < uint64digits {
- mantissa *= 10
- mantissa += uint64(c - '0')
- ndMant++
- } else if s[i] != '0' {
- trunc = true
- }
- continue
- }
- break
- }
- if !sawdigits {
- return
- }
- if !sawdot {
- dp = nd
- }
- // optional exponent moves decimal point.
- // if we read a very large, very long number,
- // just be sure to move the decimal point by
- // a lot (say, 100000). it doesn't matter if it's
- // not the exact number.
- if i < len(s) && (s[i] == 'e' || s[i] == 'E') {
- i++
- if i >= len(s) {
- return
- }
- esign := 1
- if s[i] == '+' {
- i++
- } else if s[i] == '-' {
- i++
- esign = -1
- }
- if i >= len(s) || s[i] < '0' || s[i] > '9' {
- return
- }
- e := 0
- for ; i < len(s) && '0' <= s[i] && s[i] <= '9'; i++ {
- if e < 10000 {
- e = e*10 + int(s[i]) - '0'
- }
- }
- dp += e * esign
- }
- if i != len(s) {
- return
- }
- exp = dp - ndMant
- ok = true
- return
- }
- // decimal power of ten to binary power of two.
- var powtab = []int{1, 3, 6, 9, 13, 16, 19, 23, 26}
- func (d *decimal) floatBits(flt *floatInfo) (b uint64, overflow bool) {
- var exp int
- var mant uint64
- // Zero is always a special case.
- if d.nd == 0 {
- mant = 0
- exp = flt.bias
- goto out
- }
- // Obvious overflow/underflow.
- // These bounds are for 64-bit floats.
- // Will have to change if we want to support 80-bit floats in the future.
- if d.dp > 310 {
- goto overflow
- }
- if d.dp < -330 {
- // zero
- mant = 0
- exp = flt.bias
- goto out
- }
- // Scale by powers of two until in range [0.5, 1.0)
- exp = 0
- for d.dp > 0 {
- var n int
- if d.dp >= len(powtab) {
- n = 27
- } else {
- n = powtab[d.dp]
- }
- d.Shift(-n)
- exp += n
- }
- for d.dp < 0 || d.dp == 0 && d.d[0] < '5' {
- var n int
- if -d.dp >= len(powtab) {
- n = 27
- } else {
- n = powtab[-d.dp]
- }
- d.Shift(n)
- exp -= n
- }
- // Our range is [0.5,1) but floating point range is [1,2).
- exp--
- // Minimum representable exponent is flt.bias+1.
- // If the exponent is smaller, move it up and
- // adjust d accordingly.
- if exp < flt.bias+1 {
- n := flt.bias + 1 - exp
- d.Shift(-n)
- exp += n
- }
- if exp-flt.bias >= 1<<flt.expbits-1 {
- goto overflow
- }
- // Extract 1+flt.mantbits bits.
- d.Shift(int(1 + flt.mantbits))
- mant = d.RoundedInteger()
- // Rounding might have added a bit; shift down.
- if mant == 2<<flt.mantbits {
- mant >>= 1
- exp++
- if exp-flt.bias >= 1<<flt.expbits-1 {
- goto overflow
- }
- }
- // Denormalized?
- if mant&(1<<flt.mantbits) == 0 {
- exp = flt.bias
- }
- goto out
- overflow:
- // ±Inf
- mant = 0
- exp = 1<<flt.expbits - 1 + flt.bias
- overflow = true
- out:
- // Assemble bits.
- bits := mant & (uint64(1)<<flt.mantbits - 1)
- bits |= uint64((exp-flt.bias)&(1<<flt.expbits-1)) << flt.mantbits
- if d.neg {
- bits |= 1 << flt.mantbits << flt.expbits
- }
- return bits, overflow
- }
- // Exact powers of 10.
- var float64pow10 = []float64{
- 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
- 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
- 1e20, 1e21, 1e22,
- }
- var float32pow10 = []float32{1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10}
- // If possible to convert decimal representation to 64-bit float f exactly,
- // entirely in floating-point math, do so, avoiding the expense of decimalToFloatBits.
- // Three common cases:
- // value is exact integer
- // value is exact integer * exact power of ten
- // value is exact integer / exact power of ten
- // These all produce potentially inexact but correctly rounded answers.
- func atof64exact(mantissa uint64, exp int, neg bool) (f float64, ok bool) {
- if mantissa>>float64info.mantbits != 0 {
- return
- }
- // gccgo gets this wrong on 32-bit i386 when not using -msse.
- // See TestRoundTrip in atof_test.go for a test case.
- if runtime.GOARCH == "386" {
- return
- }
- f = float64(mantissa)
- if neg {
- f = -f
- }
- switch {
- case exp == 0:
- // an integer.
- return f, true
- // Exact integers are <= 10^15.
- // Exact powers of ten are <= 10^22.
- case exp > 0 && exp <= 15+22: // int * 10^k
- // If exponent is big but number of digits is not,
- // can move a few zeros into the integer part.
- if exp > 22 {
- f *= float64pow10[exp-22]
- exp = 22
- }
- if f > 1e15 || f < -1e15 {
- // the exponent was really too large.
- return
- }
- return f * float64pow10[exp], true
- case exp < 0 && exp >= -22: // int / 10^k
- return f / float64pow10[-exp], true
- }
- return
- }
- // If possible to compute mantissa*10^exp to 32-bit float f exactly,
- // entirely in floating-point math, do so, avoiding the machinery above.
- func atof32exact(mantissa uint64, exp int, neg bool) (f float32, ok bool) {
- if mantissa>>float32info.mantbits != 0 {
- return
- }
- f = float32(mantissa)
- if neg {
- f = -f
- }
- switch {
- case exp == 0:
- return f, true
- // Exact integers are <= 10^7.
- // Exact powers of ten are <= 10^10.
- case exp > 0 && exp <= 7+10: // int * 10^k
- // If exponent is big but number of digits is not,
- // can move a few zeros into the integer part.
- if exp > 10 {
- f *= float32pow10[exp-10]
- exp = 10
- }
- if f > 1e7 || f < -1e7 {
- // the exponent was really too large.
- return
- }
- return f * float32pow10[exp], true
- case exp < 0 && exp >= -10: // int / 10^k
- return f / float32pow10[-exp], true
- }
- return
- }
- const fnParseFloat = "ParseFloat"
- func atof32(s string) (f float32, err error) {
- if val, ok := special(s); ok {
- return float32(val), nil
- }
- if optimize {
- // Parse mantissa and exponent.
- mantissa, exp, neg, trunc, ok := readFloat(s)
- if ok {
- // Try pure floating-point arithmetic conversion.
- if !trunc {
- if f, ok := atof32exact(mantissa, exp, neg); ok {
- return f, nil
- }
- }
- // Try another fast path.
- ext := new(extFloat)
- if ok := ext.AssignDecimal(mantissa, exp, neg, trunc, &float32info); ok {
- b, ovf := ext.floatBits(&float32info)
- f = math.Float32frombits(uint32(b))
- if ovf {
- err = rangeError(fnParseFloat, s)
- }
- return f, err
- }
- }
- }
- var d decimal
- if !d.set(s) {
- return 0, syntaxError(fnParseFloat, s)
- }
- b, ovf := d.floatBits(&float32info)
- f = math.Float32frombits(uint32(b))
- if ovf {
- err = rangeError(fnParseFloat, s)
- }
- return f, err
- }
- func atof64(s string) (f float64, err error) {
- if val, ok := special(s); ok {
- return val, nil
- }
- if optimize {
- // Parse mantissa and exponent.
- mantissa, exp, neg, trunc, ok := readFloat(s)
- if ok {
- // Try pure floating-point arithmetic conversion.
- if !trunc {
- if f, ok := atof64exact(mantissa, exp, neg); ok {
- return f, nil
- }
- }
- // Try another fast path.
- ext := new(extFloat)
- if ok := ext.AssignDecimal(mantissa, exp, neg, trunc, &float64info); ok {
- b, ovf := ext.floatBits(&float64info)
- f = math.Float64frombits(b)
- if ovf {
- err = rangeError(fnParseFloat, s)
- }
- return f, err
- }
- }
- }
- var d decimal
- if !d.set(s) {
- return 0, syntaxError(fnParseFloat, s)
- }
- b, ovf := d.floatBits(&float64info)
- f = math.Float64frombits(b)
- if ovf {
- err = rangeError(fnParseFloat, s)
- }
- return f, err
- }
- // ParseFloat converts the string s to a floating-point number
- // with the precision specified by bitSize: 32 for float32, or 64 for float64.
- // When bitSize=32, the result still has type float64, but it will be
- // convertible to float32 without changing its value.
- //
- // If s is well-formed and near a valid floating point number,
- // ParseFloat returns the nearest floating point number rounded
- // using IEEE754 unbiased rounding.
- //
- // The errors that ParseFloat returns have concrete type *NumError
- // and include err.Num = s.
- //
- // If s is not syntactically well-formed, ParseFloat returns err.Err = ErrSyntax.
- //
- // If s is syntactically well-formed but is more than 1/2 ULP
- // away from the largest floating point number of the given size,
- // ParseFloat returns f = ±Inf, err.Err = ErrRange.
- func ParseFloat(s string, bitSize int) (f float64, err error) {
- if bitSize == 32 {
- f1, err1 := atof32(s)
- return float64(f1), err1
- }
- f1, err1 := atof64(s)
- return f1, err1
- }
|