1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798 |
- // Copyright 2009 The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- package math
- // The original C code, the long comment, and the constants
- // below were from http://netlib.sandia.gov/cephes/cmath/sin.c,
- // available from http://www.netlib.org/cephes/cmath.tgz.
- // The go code is a simplified version of the original C.
- // tanh.c
- //
- // Hyperbolic tangent
- //
- // SYNOPSIS:
- //
- // double x, y, tanh();
- //
- // y = tanh( x );
- //
- // DESCRIPTION:
- //
- // Returns hyperbolic tangent of argument in the range MINLOG to MAXLOG.
- // MAXLOG = 8.8029691931113054295988e+01 = log(2**127)
- // MINLOG = -8.872283911167299960540e+01 = log(2**-128)
- //
- // A rational function is used for |x| < 0.625. The form
- // x + x**3 P(x)/Q(x) of Cody & Waite is employed.
- // Otherwise,
- // tanh(x) = sinh(x)/cosh(x) = 1 - 2/(exp(2x) + 1).
- //
- // ACCURACY:
- //
- // Relative error:
- // arithmetic domain # trials peak rms
- // IEEE -2,2 30000 2.5e-16 5.8e-17
- //
- // Cephes Math Library Release 2.8: June, 2000
- // Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
- //
- // The readme file at http://netlib.sandia.gov/cephes/ says:
- // Some software in this archive may be from the book _Methods and
- // Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
- // International, 1989) or from the Cephes Mathematical Library, a
- // commercial product. In either event, it is copyrighted by the author.
- // What you see here may be used freely but it comes with no support or
- // guarantee.
- //
- // The two known misprints in the book are repaired here in the
- // source listings for the gamma function and the incomplete beta
- // integral.
- //
- // Stephen L. Moshier
- // moshier@na-net.ornl.gov
- //
- var tanhP = [...]float64{
- -9.64399179425052238628E-1,
- -9.92877231001918586564E1,
- -1.61468768441708447952E3,
- }
- var tanhQ = [...]float64{
- 1.12811678491632931402E2,
- 2.23548839060100448583E3,
- 4.84406305325125486048E3,
- }
- // Tanh returns the hyperbolic tangent of x.
- //
- // Special cases are:
- // Tanh(±0) = ±0
- // Tanh(±Inf) = ±1
- // Tanh(NaN) = NaN
- func Tanh(x float64) float64 {
- const MAXLOG = 8.8029691931113054295988e+01 // log(2**127)
- z := Abs(x)
- switch {
- case z > 0.5*MAXLOG:
- if x < 0 {
- return -1
- }
- return 1
- case z >= 0.625:
- s := Exp(2 * z)
- z = 1 - 2/(s+1)
- if x < 0 {
- z = -z
- }
- default:
- if x == 0 {
- return x
- }
- s := x * x
- z = x + x*s*((tanhP[0]*s+tanhP[1])*s+tanhP[2])/(((s+tanhQ[0])*s+tanhQ[1])*s+tanhQ[2])
- }
- return z
- }
|