123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237 |
- // Copyright 2011 The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- package math
- /*
- Floating-point sine and cosine.
- */
- // The original C code, the long comment, and the constants
- // below were from http://netlib.sandia.gov/cephes/cmath/sin.c,
- // available from http://www.netlib.org/cephes/cmath.tgz.
- // The go code is a simplified version of the original C.
- //
- // sin.c
- //
- // Circular sine
- //
- // SYNOPSIS:
- //
- // double x, y, sin();
- // y = sin( x );
- //
- // DESCRIPTION:
- //
- // Range reduction is into intervals of pi/4. The reduction error is nearly
- // eliminated by contriving an extended precision modular arithmetic.
- //
- // Two polynomial approximating functions are employed.
- // Between 0 and pi/4 the sine is approximated by
- // x + x**3 P(x**2).
- // Between pi/4 and pi/2 the cosine is represented as
- // 1 - x**2 Q(x**2).
- //
- // ACCURACY:
- //
- // Relative error:
- // arithmetic domain # trials peak rms
- // DEC 0, 10 150000 3.0e-17 7.8e-18
- // IEEE -1.07e9,+1.07e9 130000 2.1e-16 5.4e-17
- //
- // Partial loss of accuracy begins to occur at x = 2**30 = 1.074e9. The loss
- // is not gradual, but jumps suddenly to about 1 part in 10e7. Results may
- // be meaningless for x > 2**49 = 5.6e14.
- //
- // cos.c
- //
- // Circular cosine
- //
- // SYNOPSIS:
- //
- // double x, y, cos();
- // y = cos( x );
- //
- // DESCRIPTION:
- //
- // Range reduction is into intervals of pi/4. The reduction error is nearly
- // eliminated by contriving an extended precision modular arithmetic.
- //
- // Two polynomial approximating functions are employed.
- // Between 0 and pi/4 the cosine is approximated by
- // 1 - x**2 Q(x**2).
- // Between pi/4 and pi/2 the sine is represented as
- // x + x**3 P(x**2).
- //
- // ACCURACY:
- //
- // Relative error:
- // arithmetic domain # trials peak rms
- // IEEE -1.07e9,+1.07e9 130000 2.1e-16 5.4e-17
- // DEC 0,+1.07e9 17000 3.0e-17 7.2e-18
- //
- // Cephes Math Library Release 2.8: June, 2000
- // Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
- //
- // The readme file at http://netlib.sandia.gov/cephes/ says:
- // Some software in this archive may be from the book _Methods and
- // Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
- // International, 1989) or from the Cephes Mathematical Library, a
- // commercial product. In either event, it is copyrighted by the author.
- // What you see here may be used freely but it comes with no support or
- // guarantee.
- //
- // The two known misprints in the book are repaired here in the
- // source listings for the gamma function and the incomplete beta
- // integral.
- //
- // Stephen L. Moshier
- // moshier@na-net.ornl.gov
- // sin coefficients
- var _sin = [...]float64{
- 1.58962301576546568060E-10, // 0x3de5d8fd1fd19ccd
- -2.50507477628578072866E-8, // 0xbe5ae5e5a9291f5d
- 2.75573136213857245213E-6, // 0x3ec71de3567d48a1
- -1.98412698295895385996E-4, // 0xbf2a01a019bfdf03
- 8.33333333332211858878E-3, // 0x3f8111111110f7d0
- -1.66666666666666307295E-1, // 0xbfc5555555555548
- }
- // cos coefficients
- var _cos = [...]float64{
- -1.13585365213876817300E-11, // 0xbda8fa49a0861a9b
- 2.08757008419747316778E-9, // 0x3e21ee9d7b4e3f05
- -2.75573141792967388112E-7, // 0xbe927e4f7eac4bc6
- 2.48015872888517045348E-5, // 0x3efa01a019c844f5
- -1.38888888888730564116E-3, // 0xbf56c16c16c14f91
- 4.16666666666665929218E-2, // 0x3fa555555555554b
- }
- // Cos returns the cosine of the radian argument x.
- //
- // Special cases are:
- // Cos(±Inf) = NaN
- // Cos(NaN) = NaN
- //extern cos
- func libc_cos(float64) float64
- func Cos(x float64) float64 {
- return libc_cos(x)
- }
- func cos(x float64) float64 {
- const (
- PI4A = 7.85398125648498535156E-1 // 0x3fe921fb40000000, Pi/4 split into three parts
- PI4B = 3.77489470793079817668E-8 // 0x3e64442d00000000,
- PI4C = 2.69515142907905952645E-15 // 0x3ce8469898cc5170,
- M4PI = 1.273239544735162542821171882678754627704620361328125 // 4/pi
- )
- // special cases
- switch {
- case IsNaN(x) || IsInf(x, 0):
- return NaN()
- }
- // make argument positive
- sign := false
- if x < 0 {
- x = -x
- }
- j := int64(x * M4PI) // integer part of x/(Pi/4), as integer for tests on the phase angle
- y := float64(j) // integer part of x/(Pi/4), as float
- // map zeros to origin
- if j&1 == 1 {
- j += 1
- y += 1
- }
- j &= 7 // octant modulo 2Pi radians (360 degrees)
- if j > 3 {
- j -= 4
- sign = !sign
- }
- if j > 1 {
- sign = !sign
- }
- z := ((x - y*PI4A) - y*PI4B) - y*PI4C // Extended precision modular arithmetic
- zz := z * z
- if j == 1 || j == 2 {
- y = z + z*zz*((((((_sin[0]*zz)+_sin[1])*zz+_sin[2])*zz+_sin[3])*zz+_sin[4])*zz+_sin[5])
- } else {
- y = 1.0 - 0.5*zz + zz*zz*((((((_cos[0]*zz)+_cos[1])*zz+_cos[2])*zz+_cos[3])*zz+_cos[4])*zz+_cos[5])
- }
- if sign {
- y = -y
- }
- return y
- }
- // Sin returns the sine of the radian argument x.
- //
- // Special cases are:
- // Sin(±0) = ±0
- // Sin(±Inf) = NaN
- // Sin(NaN) = NaN
- //extern sin
- func libc_sin(float64) float64
- func Sin(x float64) float64 {
- return libc_sin(x)
- }
- func sin(x float64) float64 {
- const (
- PI4A = 7.85398125648498535156E-1 // 0x3fe921fb40000000, Pi/4 split into three parts
- PI4B = 3.77489470793079817668E-8 // 0x3e64442d00000000,
- PI4C = 2.69515142907905952645E-15 // 0x3ce8469898cc5170,
- M4PI = 1.273239544735162542821171882678754627704620361328125 // 4/pi
- )
- // special cases
- switch {
- case x == 0 || IsNaN(x):
- return x // return ±0 || NaN()
- case IsInf(x, 0):
- return NaN()
- }
- // make argument positive but save the sign
- sign := false
- if x < 0 {
- x = -x
- sign = true
- }
- j := int64(x * M4PI) // integer part of x/(Pi/4), as integer for tests on the phase angle
- y := float64(j) // integer part of x/(Pi/4), as float
- // map zeros to origin
- if j&1 == 1 {
- j += 1
- y += 1
- }
- j &= 7 // octant modulo 2Pi radians (360 degrees)
- // reflect in x axis
- if j > 3 {
- sign = !sign
- j -= 4
- }
- z := ((x - y*PI4A) - y*PI4B) - y*PI4C // Extended precision modular arithmetic
- zz := z * z
- if j == 1 || j == 2 {
- y = 1.0 - 0.5*zz + zz*zz*((((((_cos[0]*zz)+_cos[1])*zz+_cos[2])*zz+_cos[3])*zz+_cos[4])*zz+_cos[5])
- } else {
- y = z + z*zz*((((((_sin[0]*zz)+_sin[1])*zz+_sin[2])*zz+_sin[3])*zz+_sin[4])*zz+_sin[5])
- }
- if sign {
- y = -y
- }
- return y
- }
|