123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430 |
- // Copyright 2010 The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- package draw
- import (
- "image"
- "image/color"
- "image/png"
- "os"
- "testing"
- )
- func eq(c0, c1 color.Color) bool {
- r0, g0, b0, a0 := c0.RGBA()
- r1, g1, b1, a1 := c1.RGBA()
- return r0 == r1 && g0 == g1 && b0 == b1 && a0 == a1
- }
- func fillBlue(alpha int) image.Image {
- return image.NewUniform(color.RGBA{0, 0, uint8(alpha), uint8(alpha)})
- }
- func fillAlpha(alpha int) image.Image {
- return image.NewUniform(color.Alpha{uint8(alpha)})
- }
- func vgradGreen(alpha int) image.Image {
- m := image.NewRGBA(image.Rect(0, 0, 16, 16))
- for y := 0; y < 16; y++ {
- for x := 0; x < 16; x++ {
- m.Set(x, y, color.RGBA{0, uint8(y * alpha / 15), 0, uint8(alpha)})
- }
- }
- return m
- }
- func vgradAlpha(alpha int) image.Image {
- m := image.NewAlpha(image.Rect(0, 0, 16, 16))
- for y := 0; y < 16; y++ {
- for x := 0; x < 16; x++ {
- m.Set(x, y, color.Alpha{uint8(y * alpha / 15)})
- }
- }
- return m
- }
- func vgradGreenNRGBA(alpha int) image.Image {
- m := image.NewNRGBA(image.Rect(0, 0, 16, 16))
- for y := 0; y < 16; y++ {
- for x := 0; x < 16; x++ {
- m.Set(x, y, color.RGBA{0, uint8(y * 0x11), 0, uint8(alpha)})
- }
- }
- return m
- }
- func vgradCr() image.Image {
- m := &image.YCbCr{
- Y: make([]byte, 16*16),
- Cb: make([]byte, 16*16),
- Cr: make([]byte, 16*16),
- YStride: 16,
- CStride: 16,
- SubsampleRatio: image.YCbCrSubsampleRatio444,
- Rect: image.Rect(0, 0, 16, 16),
- }
- for y := 0; y < 16; y++ {
- for x := 0; x < 16; x++ {
- m.Cr[y*m.CStride+x] = uint8(y * 0x11)
- }
- }
- return m
- }
- func hgradRed(alpha int) Image {
- m := image.NewRGBA(image.Rect(0, 0, 16, 16))
- for y := 0; y < 16; y++ {
- for x := 0; x < 16; x++ {
- m.Set(x, y, color.RGBA{uint8(x * alpha / 15), 0, 0, uint8(alpha)})
- }
- }
- return m
- }
- func gradYellow(alpha int) Image {
- m := image.NewRGBA(image.Rect(0, 0, 16, 16))
- for y := 0; y < 16; y++ {
- for x := 0; x < 16; x++ {
- m.Set(x, y, color.RGBA{uint8(x * alpha / 15), uint8(y * alpha / 15), 0, uint8(alpha)})
- }
- }
- return m
- }
- type drawTest struct {
- desc string
- src image.Image
- mask image.Image
- op Op
- expected color.Color
- }
- var drawTests = []drawTest{
- // Uniform mask (0% opaque).
- {"nop", vgradGreen(255), fillAlpha(0), Over, color.RGBA{136, 0, 0, 255}},
- {"clear", vgradGreen(255), fillAlpha(0), Src, color.RGBA{0, 0, 0, 0}},
- // Uniform mask (100%, 75%, nil) and uniform source.
- // At (x, y) == (8, 8):
- // The destination pixel is {136, 0, 0, 255}.
- // The source pixel is {0, 0, 90, 90}.
- {"fill", fillBlue(90), fillAlpha(255), Over, color.RGBA{88, 0, 90, 255}},
- {"fillSrc", fillBlue(90), fillAlpha(255), Src, color.RGBA{0, 0, 90, 90}},
- {"fillAlpha", fillBlue(90), fillAlpha(192), Over, color.RGBA{100, 0, 68, 255}},
- {"fillAlphaSrc", fillBlue(90), fillAlpha(192), Src, color.RGBA{0, 0, 68, 68}},
- {"fillNil", fillBlue(90), nil, Over, color.RGBA{88, 0, 90, 255}},
- {"fillNilSrc", fillBlue(90), nil, Src, color.RGBA{0, 0, 90, 90}},
- // Uniform mask (100%, 75%, nil) and variable source.
- // At (x, y) == (8, 8):
- // The destination pixel is {136, 0, 0, 255}.
- // The source pixel is {0, 48, 0, 90}.
- {"copy", vgradGreen(90), fillAlpha(255), Over, color.RGBA{88, 48, 0, 255}},
- {"copySrc", vgradGreen(90), fillAlpha(255), Src, color.RGBA{0, 48, 0, 90}},
- {"copyAlpha", vgradGreen(90), fillAlpha(192), Over, color.RGBA{100, 36, 0, 255}},
- {"copyAlphaSrc", vgradGreen(90), fillAlpha(192), Src, color.RGBA{0, 36, 0, 68}},
- {"copyNil", vgradGreen(90), nil, Over, color.RGBA{88, 48, 0, 255}},
- {"copyNilSrc", vgradGreen(90), nil, Src, color.RGBA{0, 48, 0, 90}},
- // Uniform mask (100%, 75%, nil) and variable NRGBA source.
- // At (x, y) == (8, 8):
- // The destination pixel is {136, 0, 0, 255}.
- // The source pixel is {0, 136, 0, 90} in NRGBA-space, which is {0, 48, 0, 90} in RGBA-space.
- // The result pixel is different than in the "copy*" test cases because of rounding errors.
- {"nrgba", vgradGreenNRGBA(90), fillAlpha(255), Over, color.RGBA{88, 46, 0, 255}},
- {"nrgbaSrc", vgradGreenNRGBA(90), fillAlpha(255), Src, color.RGBA{0, 46, 0, 90}},
- {"nrgbaAlpha", vgradGreenNRGBA(90), fillAlpha(192), Over, color.RGBA{100, 34, 0, 255}},
- {"nrgbaAlphaSrc", vgradGreenNRGBA(90), fillAlpha(192), Src, color.RGBA{0, 34, 0, 68}},
- {"nrgbaNil", vgradGreenNRGBA(90), nil, Over, color.RGBA{88, 46, 0, 255}},
- {"nrgbaNilSrc", vgradGreenNRGBA(90), nil, Src, color.RGBA{0, 46, 0, 90}},
- // Uniform mask (100%, 75%, nil) and variable YCbCr source.
- // At (x, y) == (8, 8):
- // The destination pixel is {136, 0, 0, 255}.
- // The source pixel is {0, 0, 136} in YCbCr-space, which is {11, 38, 0, 255} in RGB-space.
- {"ycbcr", vgradCr(), fillAlpha(255), Over, color.RGBA{11, 38, 0, 255}},
- {"ycbcrSrc", vgradCr(), fillAlpha(255), Src, color.RGBA{11, 38, 0, 255}},
- {"ycbcrAlpha", vgradCr(), fillAlpha(192), Over, color.RGBA{42, 28, 0, 255}},
- {"ycbcrAlphaSrc", vgradCr(), fillAlpha(192), Src, color.RGBA{8, 28, 0, 192}},
- {"ycbcrNil", vgradCr(), nil, Over, color.RGBA{11, 38, 0, 255}},
- {"ycbcrNilSrc", vgradCr(), nil, Src, color.RGBA{11, 38, 0, 255}},
- // Variable mask and variable source.
- // At (x, y) == (8, 8):
- // The destination pixel is {136, 0, 0, 255}.
- // The source pixel is {0, 0, 255, 255}.
- // The mask pixel's alpha is 102, or 40%.
- {"generic", fillBlue(255), vgradAlpha(192), Over, color.RGBA{81, 0, 102, 255}},
- {"genericSrc", fillBlue(255), vgradAlpha(192), Src, color.RGBA{0, 0, 102, 102}},
- }
- func makeGolden(dst image.Image, r image.Rectangle, src image.Image, sp image.Point, mask image.Image, mp image.Point, op Op) image.Image {
- // Since golden is a newly allocated image, we don't have to check if the
- // input source and mask images and the output golden image overlap.
- b := dst.Bounds()
- sb := src.Bounds()
- mb := image.Rect(-1e9, -1e9, 1e9, 1e9)
- if mask != nil {
- mb = mask.Bounds()
- }
- golden := image.NewRGBA(image.Rect(0, 0, b.Max.X, b.Max.Y))
- for y := r.Min.Y; y < r.Max.Y; y++ {
- sy := y + sp.Y - r.Min.Y
- my := y + mp.Y - r.Min.Y
- for x := r.Min.X; x < r.Max.X; x++ {
- if !(image.Pt(x, y).In(b)) {
- continue
- }
- sx := x + sp.X - r.Min.X
- if !(image.Pt(sx, sy).In(sb)) {
- continue
- }
- mx := x + mp.X - r.Min.X
- if !(image.Pt(mx, my).In(mb)) {
- continue
- }
- const M = 1<<16 - 1
- var dr, dg, db, da uint32
- if op == Over {
- dr, dg, db, da = dst.At(x, y).RGBA()
- }
- sr, sg, sb, sa := src.At(sx, sy).RGBA()
- ma := uint32(M)
- if mask != nil {
- _, _, _, ma = mask.At(mx, my).RGBA()
- }
- a := M - (sa * ma / M)
- golden.Set(x, y, color.RGBA64{
- uint16((dr*a + sr*ma) / M),
- uint16((dg*a + sg*ma) / M),
- uint16((db*a + sb*ma) / M),
- uint16((da*a + sa*ma) / M),
- })
- }
- }
- return golden.SubImage(b)
- }
- func TestDraw(t *testing.T) {
- rr := []image.Rectangle{
- image.Rect(0, 0, 0, 0),
- image.Rect(0, 0, 16, 16),
- image.Rect(3, 5, 12, 10),
- image.Rect(0, 0, 9, 9),
- image.Rect(8, 8, 16, 16),
- image.Rect(8, 0, 9, 16),
- image.Rect(0, 8, 16, 9),
- image.Rect(8, 8, 9, 9),
- image.Rect(8, 8, 8, 8),
- }
- for _, r := range rr {
- loop:
- for _, test := range drawTests {
- dst := hgradRed(255).(*image.RGBA).SubImage(r).(Image)
- // Draw the (src, mask, op) onto a copy of dst using a slow but obviously correct implementation.
- golden := makeGolden(dst, image.Rect(0, 0, 16, 16), test.src, image.ZP, test.mask, image.ZP, test.op)
- b := dst.Bounds()
- if !b.Eq(golden.Bounds()) {
- t.Errorf("draw %v %s: bounds %v versus %v", r, test.desc, dst.Bounds(), golden.Bounds())
- continue
- }
- // Draw the same combination onto the actual dst using the optimized DrawMask implementation.
- DrawMask(dst, image.Rect(0, 0, 16, 16), test.src, image.ZP, test.mask, image.ZP, test.op)
- if image.Pt(8, 8).In(r) {
- // Check that the resultant pixel at (8, 8) matches what we expect
- // (the expected value can be verified by hand).
- if !eq(dst.At(8, 8), test.expected) {
- t.Errorf("draw %v %s: at (8, 8) %v versus %v", r, test.desc, dst.At(8, 8), test.expected)
- continue
- }
- }
- // Check that the resultant dst image matches the golden output.
- for y := b.Min.Y; y < b.Max.Y; y++ {
- for x := b.Min.X; x < b.Max.X; x++ {
- if !eq(dst.At(x, y), golden.At(x, y)) {
- t.Errorf("draw %v %s: at (%d, %d), %v versus golden %v", r, test.desc, x, y, dst.At(x, y), golden.At(x, y))
- continue loop
- }
- }
- }
- }
- }
- }
- func TestDrawOverlap(t *testing.T) {
- for _, op := range []Op{Over, Src} {
- for yoff := -2; yoff <= 2; yoff++ {
- loop:
- for xoff := -2; xoff <= 2; xoff++ {
- m := gradYellow(127).(*image.RGBA)
- dst := m.SubImage(image.Rect(5, 5, 10, 10)).(*image.RGBA)
- src := m.SubImage(image.Rect(5+xoff, 5+yoff, 10+xoff, 10+yoff)).(*image.RGBA)
- b := dst.Bounds()
- // Draw the (src, mask, op) onto a copy of dst using a slow but obviously correct implementation.
- golden := makeGolden(dst, b, src, src.Bounds().Min, nil, image.ZP, op)
- if !b.Eq(golden.Bounds()) {
- t.Errorf("drawOverlap xoff=%d,yoff=%d: bounds %v versus %v", xoff, yoff, dst.Bounds(), golden.Bounds())
- continue
- }
- // Draw the same combination onto the actual dst using the optimized DrawMask implementation.
- DrawMask(dst, b, src, src.Bounds().Min, nil, image.ZP, op)
- // Check that the resultant dst image matches the golden output.
- for y := b.Min.Y; y < b.Max.Y; y++ {
- for x := b.Min.X; x < b.Max.X; x++ {
- if !eq(dst.At(x, y), golden.At(x, y)) {
- t.Errorf("drawOverlap xoff=%d,yoff=%d: at (%d, %d), %v versus golden %v", xoff, yoff, x, y, dst.At(x, y), golden.At(x, y))
- continue loop
- }
- }
- }
- }
- }
- }
- }
- // TestNonZeroSrcPt checks drawing with a non-zero src point parameter.
- func TestNonZeroSrcPt(t *testing.T) {
- a := image.NewRGBA(image.Rect(0, 0, 1, 1))
- b := image.NewRGBA(image.Rect(0, 0, 2, 2))
- b.Set(0, 0, color.RGBA{0, 0, 0, 5})
- b.Set(1, 0, color.RGBA{0, 0, 5, 5})
- b.Set(0, 1, color.RGBA{0, 5, 0, 5})
- b.Set(1, 1, color.RGBA{5, 0, 0, 5})
- Draw(a, image.Rect(0, 0, 1, 1), b, image.Pt(1, 1), Over)
- if !eq(color.RGBA{5, 0, 0, 5}, a.At(0, 0)) {
- t.Errorf("non-zero src pt: want %v got %v", color.RGBA{5, 0, 0, 5}, a.At(0, 0))
- }
- }
- func TestFill(t *testing.T) {
- rr := []image.Rectangle{
- image.Rect(0, 0, 0, 0),
- image.Rect(0, 0, 40, 30),
- image.Rect(10, 0, 40, 30),
- image.Rect(0, 20, 40, 30),
- image.Rect(10, 20, 40, 30),
- image.Rect(10, 20, 15, 25),
- image.Rect(10, 0, 35, 30),
- image.Rect(0, 15, 40, 16),
- image.Rect(24, 24, 25, 25),
- image.Rect(23, 23, 26, 26),
- image.Rect(22, 22, 27, 27),
- image.Rect(21, 21, 28, 28),
- image.Rect(20, 20, 29, 29),
- }
- for _, r := range rr {
- m := image.NewRGBA(image.Rect(0, 0, 40, 30)).SubImage(r).(*image.RGBA)
- b := m.Bounds()
- c := color.RGBA{11, 0, 0, 255}
- src := &image.Uniform{C: c}
- check := func(desc string) {
- for y := b.Min.Y; y < b.Max.Y; y++ {
- for x := b.Min.X; x < b.Max.X; x++ {
- if !eq(c, m.At(x, y)) {
- t.Errorf("%s fill: at (%d, %d), sub-image bounds=%v: want %v got %v", desc, x, y, r, c, m.At(x, y))
- return
- }
- }
- }
- }
- // Draw 1 pixel at a time.
- for y := b.Min.Y; y < b.Max.Y; y++ {
- for x := b.Min.X; x < b.Max.X; x++ {
- DrawMask(m, image.Rect(x, y, x+1, y+1), src, image.ZP, nil, image.ZP, Src)
- }
- }
- check("pixel")
- // Draw 1 row at a time.
- c = color.RGBA{0, 22, 0, 255}
- src = &image.Uniform{C: c}
- for y := b.Min.Y; y < b.Max.Y; y++ {
- DrawMask(m, image.Rect(b.Min.X, y, b.Max.X, y+1), src, image.ZP, nil, image.ZP, Src)
- }
- check("row")
- // Draw 1 column at a time.
- c = color.RGBA{0, 0, 33, 255}
- src = &image.Uniform{C: c}
- for x := b.Min.X; x < b.Max.X; x++ {
- DrawMask(m, image.Rect(x, b.Min.Y, x+1, b.Max.Y), src, image.ZP, nil, image.ZP, Src)
- }
- check("column")
- // Draw the whole image at once.
- c = color.RGBA{44, 55, 66, 77}
- src = &image.Uniform{C: c}
- DrawMask(m, b, src, image.ZP, nil, image.ZP, Src)
- check("whole")
- }
- }
- // TestFloydSteinbergCheckerboard tests that the result of Floyd-Steinberg
- // error diffusion of a uniform 50% gray source image with a black-and-white
- // palette is a checkerboard pattern.
- func TestFloydSteinbergCheckerboard(t *testing.T) {
- b := image.Rect(0, 0, 640, 480)
- // We can't represent 50% exactly, but 0x7fff / 0xffff is close enough.
- src := &image.Uniform{color.Gray16{0x7fff}}
- dst := image.NewPaletted(b, color.Palette{color.Black, color.White})
- FloydSteinberg.Draw(dst, b, src, image.Point{})
- nErr := 0
- for y := b.Min.Y; y < b.Max.Y; y++ {
- for x := b.Min.X; x < b.Max.X; x++ {
- got := dst.Pix[dst.PixOffset(x, y)]
- want := uint8(x+y) % 2
- if got != want {
- t.Errorf("at (%d, %d): got %d, want %d", x, y, got, want)
- if nErr++; nErr == 10 {
- t.Fatal("there may be more errors")
- }
- }
- }
- }
- }
- // embeddedPaletted is an Image that behaves like an *image.Paletted but whose
- // type is not *image.Paletted.
- type embeddedPaletted struct {
- *image.Paletted
- }
- // TestPaletted tests that the drawPaletted function behaves the same
- // regardless of whether dst is an *image.Paletted.
- func TestPaletted(t *testing.T) {
- f, err := os.Open("../testdata/video-001.png")
- if err != nil {
- t.Fatalf("open: %v", err)
- }
- defer f.Close()
- src, err := png.Decode(f)
- if err != nil {
- t.Fatalf("decode: %v", err)
- }
- b := src.Bounds()
- cgaPalette := color.Palette{
- color.RGBA{0x00, 0x00, 0x00, 0xff},
- color.RGBA{0x55, 0xff, 0xff, 0xff},
- color.RGBA{0xff, 0x55, 0xff, 0xff},
- color.RGBA{0xff, 0xff, 0xff, 0xff},
- }
- drawers := map[string]Drawer{
- "src": Src,
- "floyd-steinberg": FloydSteinberg,
- }
- loop:
- for dName, d := range drawers {
- dst0 := image.NewPaletted(b, cgaPalette)
- dst1 := image.NewPaletted(b, cgaPalette)
- d.Draw(dst0, b, src, image.Point{})
- d.Draw(embeddedPaletted{dst1}, b, src, image.Point{})
- for y := b.Min.Y; y < b.Max.Y; y++ {
- for x := b.Min.X; x < b.Max.X; x++ {
- if !eq(dst0.At(x, y), dst1.At(x, y)) {
- t.Errorf("%s: at (%d, %d), %v versus %v",
- dName, x, y, dst0.At(x, y), dst1.At(x, y))
- continue loop
- }
- }
- }
- }
- }
|