123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190 |
- // Copyright 2011 The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- // Package ecdsa implements the Elliptic Curve Digital Signature Algorithm, as
- // defined in FIPS 186-3.
- package ecdsa
- // References:
- // [NSA]: Suite B implementer's guide to FIPS 186-3,
- // http://www.nsa.gov/ia/_files/ecdsa.pdf
- // [SECG]: SECG, SEC1
- // http://www.secg.org/download/aid-780/sec1-v2.pdf
- import (
- "crypto"
- "crypto/elliptic"
- "encoding/asn1"
- "io"
- "math/big"
- )
- // PublicKey represents an ECDSA public key.
- type PublicKey struct {
- elliptic.Curve
- X, Y *big.Int
- }
- // PrivateKey represents a ECDSA private key.
- type PrivateKey struct {
- PublicKey
- D *big.Int
- }
- type ecdsaSignature struct {
- R, S *big.Int
- }
- // Public returns the public key corresponding to priv.
- func (priv *PrivateKey) Public() crypto.PublicKey {
- return &priv.PublicKey
- }
- // Sign signs msg with priv, reading randomness from rand. This method is
- // intended to support keys where the private part is kept in, for example, a
- // hardware module. Common uses should use the Sign function in this package
- // directly.
- func (priv *PrivateKey) Sign(rand io.Reader, msg []byte, opts crypto.SignerOpts) ([]byte, error) {
- r, s, err := Sign(rand, priv, msg)
- if err != nil {
- return nil, err
- }
- return asn1.Marshal(ecdsaSignature{r, s})
- }
- var one = new(big.Int).SetInt64(1)
- // randFieldElement returns a random element of the field underlying the given
- // curve using the procedure given in [NSA] A.2.1.
- func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) {
- params := c.Params()
- b := make([]byte, params.BitSize/8+8)
- _, err = io.ReadFull(rand, b)
- if err != nil {
- return
- }
- k = new(big.Int).SetBytes(b)
- n := new(big.Int).Sub(params.N, one)
- k.Mod(k, n)
- k.Add(k, one)
- return
- }
- // GenerateKey generates a public and private key pair.
- func GenerateKey(c elliptic.Curve, rand io.Reader) (priv *PrivateKey, err error) {
- k, err := randFieldElement(c, rand)
- if err != nil {
- return
- }
- priv = new(PrivateKey)
- priv.PublicKey.Curve = c
- priv.D = k
- priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes())
- return
- }
- // hashToInt converts a hash value to an integer. There is some disagreement
- // about how this is done. [NSA] suggests that this is done in the obvious
- // manner, but [SECG] truncates the hash to the bit-length of the curve order
- // first. We follow [SECG] because that's what OpenSSL does. Additionally,
- // OpenSSL right shifts excess bits from the number if the hash is too large
- // and we mirror that too.
- func hashToInt(hash []byte, c elliptic.Curve) *big.Int {
- orderBits := c.Params().N.BitLen()
- orderBytes := (orderBits + 7) / 8
- if len(hash) > orderBytes {
- hash = hash[:orderBytes]
- }
- ret := new(big.Int).SetBytes(hash)
- excess := len(hash)*8 - orderBits
- if excess > 0 {
- ret.Rsh(ret, uint(excess))
- }
- return ret
- }
- // fermatInverse calculates the inverse of k in GF(P) using Fermat's method.
- // This has better constant-time properties than Euclid's method (implemented
- // in math/big.Int.ModInverse) although math/big itself isn't strictly
- // constant-time so it's not perfect.
- func fermatInverse(k, N *big.Int) *big.Int {
- two := big.NewInt(2)
- nMinus2 := new(big.Int).Sub(N, two)
- return new(big.Int).Exp(k, nMinus2, N)
- }
- // Sign signs an arbitrary length hash (which should be the result of hashing a
- // larger message) using the private key, priv. It returns the signature as a
- // pair of integers. The security of the private key depends on the entropy of
- // rand.
- func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) {
- // See [NSA] 3.4.1
- c := priv.PublicKey.Curve
- N := c.Params().N
- var k, kInv *big.Int
- for {
- for {
- k, err = randFieldElement(c, rand)
- if err != nil {
- r = nil
- return
- }
- kInv = fermatInverse(k, N)
- r, _ = priv.Curve.ScalarBaseMult(k.Bytes())
- r.Mod(r, N)
- if r.Sign() != 0 {
- break
- }
- }
- e := hashToInt(hash, c)
- s = new(big.Int).Mul(priv.D, r)
- s.Add(s, e)
- s.Mul(s, kInv)
- s.Mod(s, N)
- if s.Sign() != 0 {
- break
- }
- }
- return
- }
- // Verify verifies the signature in r, s of hash using the public key, pub. Its
- // return value records whether the signature is valid.
- func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool {
- // See [NSA] 3.4.2
- c := pub.Curve
- N := c.Params().N
- if r.Sign() == 0 || s.Sign() == 0 {
- return false
- }
- if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 {
- return false
- }
- e := hashToInt(hash, c)
- w := new(big.Int).ModInverse(s, N)
- u1 := e.Mul(e, w)
- u1.Mod(u1, N)
- u2 := w.Mul(r, w)
- u2.Mod(u2, N)
- x1, y1 := c.ScalarBaseMult(u1.Bytes())
- x2, y2 := c.ScalarMult(pub.X, pub.Y, u2.Bytes())
- x, y := c.Add(x1, y1, x2, y2)
- if x.Sign() == 0 && y.Sign() == 0 {
- return false
- }
- x.Mod(x, N)
- return x.Cmp(r) == 0
- }
|