123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337 |
- `/* Specific implementation of the UNPACK intrinsic
- Copyright (C) 2008-2015 Free Software Foundation, Inc.
- Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on
- unpack_generic.c by Paul Brook <paul@nowt.org>.
- This file is part of the GNU Fortran runtime library (libgfortran).
- Libgfortran is free software; you can redistribute it and/or
- modify it under the terms of the GNU General Public
- License as published by the Free Software Foundation; either
- version 3 of the License, or (at your option) any later version.
- Ligbfortran is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
- Under Section 7 of GPL version 3, you are granted additional
- permissions described in the GCC Runtime Library Exception, version
- 3.1, as published by the Free Software Foundation.
- You should have received a copy of the GNU General Public License and
- a copy of the GCC Runtime Library Exception along with this program;
- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
- <http://www.gnu.org/licenses/>. */
- #include "libgfortran.h"
- #include <stdlib.h>
- #include <assert.h>
- #include <string.h>'
- include(iparm.m4)dnl
- `#if defined (HAVE_'rtype_name`)
- void
- unpack0_'rtype_code` ('rtype` *ret, const 'rtype` *vector,
- const gfc_array_l1 *mask, const 'rtype_name` *fptr)
- {
- /* r.* indicates the return array. */
- index_type rstride[GFC_MAX_DIMENSIONS];
- index_type rstride0;
- index_type rs;
- 'rtype_name` * restrict rptr;
- /* v.* indicates the vector array. */
- index_type vstride0;
- 'rtype_name` *vptr;
- /* Value for field, this is constant. */
- const 'rtype_name` fval = *fptr;
- /* m.* indicates the mask array. */
- index_type mstride[GFC_MAX_DIMENSIONS];
- index_type mstride0;
- const GFC_LOGICAL_1 *mptr;
- index_type count[GFC_MAX_DIMENSIONS];
- index_type extent[GFC_MAX_DIMENSIONS];
- index_type n;
- index_type dim;
- int empty;
- int mask_kind;
- empty = 0;
- mptr = mask->base_addr;
- /* Use the same loop for all logical types, by using GFC_LOGICAL_1
- and using shifting to address size and endian issues. */
- mask_kind = GFC_DESCRIPTOR_SIZE (mask);
- if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
- #ifdef HAVE_GFC_LOGICAL_16
- || mask_kind == 16
- #endif
- )
- {
- /* Do not convert a NULL pointer as we use test for NULL below. */
- if (mptr)
- mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
- }
- else
- runtime_error ("Funny sized logical array");
- if (ret->base_addr == NULL)
- {
- /* The front end has signalled that we need to populate the
- return array descriptor. */
- dim = GFC_DESCRIPTOR_RANK (mask);
- rs = 1;
- for (n = 0; n < dim; n++)
- {
- count[n] = 0;
- GFC_DIMENSION_SET(ret->dim[n], 0,
- GFC_DESCRIPTOR_EXTENT(mask,n) - 1, rs);
- extent[n] = GFC_DESCRIPTOR_EXTENT(ret,n);
- empty = empty || extent[n] <= 0;
- rstride[n] = GFC_DESCRIPTOR_STRIDE(ret,n);
- mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
- rs *= extent[n];
- }
- ret->offset = 0;
- ret->base_addr = xmallocarray (rs, sizeof ('rtype_name`));
- }
- else
- {
- dim = GFC_DESCRIPTOR_RANK (ret);
- /* Initialize to avoid -Wmaybe-uninitialized complaints. */
- rstride[0] = 1;
- for (n = 0; n < dim; n++)
- {
- count[n] = 0;
- extent[n] = GFC_DESCRIPTOR_EXTENT(ret,n);
- empty = empty || extent[n] <= 0;
- rstride[n] = GFC_DESCRIPTOR_STRIDE(ret,n);
- mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
- }
- if (rstride[0] == 0)
- rstride[0] = 1;
- }
- if (empty)
- return;
- if (mstride[0] == 0)
- mstride[0] = 1;
- vstride0 = GFC_DESCRIPTOR_STRIDE(vector,0);
- if (vstride0 == 0)
- vstride0 = 1;
- rstride0 = rstride[0];
- mstride0 = mstride[0];
- rptr = ret->base_addr;
- vptr = vector->base_addr;
- while (rptr)
- {
- if (*mptr)
- {
- /* From vector. */
- *rptr = *vptr;
- vptr += vstride0;
- }
- else
- {
- /* From field. */
- *rptr = fval;
- }
- /* Advance to the next element. */
- rptr += rstride0;
- mptr += mstride0;
- count[0]++;
- n = 0;
- while (count[n] == extent[n])
- {
- /* When we get to the end of a dimension, reset it and increment
- the next dimension. */
- count[n] = 0;
- /* We could precalculate these products, but this is a less
- frequently used path so probably not worth it. */
- rptr -= rstride[n] * extent[n];
- mptr -= mstride[n] * extent[n];
- n++;
- if (n >= dim)
- {
- /* Break out of the loop. */
- rptr = NULL;
- break;
- }
- else
- {
- count[n]++;
- rptr += rstride[n];
- mptr += mstride[n];
- }
- }
- }
- }
- void
- unpack1_'rtype_code` ('rtype` *ret, const 'rtype` *vector,
- const gfc_array_l1 *mask, const 'rtype` *field)
- {
- /* r.* indicates the return array. */
- index_type rstride[GFC_MAX_DIMENSIONS];
- index_type rstride0;
- index_type rs;
- 'rtype_name` * restrict rptr;
- /* v.* indicates the vector array. */
- index_type vstride0;
- 'rtype_name` *vptr;
- /* f.* indicates the field array. */
- index_type fstride[GFC_MAX_DIMENSIONS];
- index_type fstride0;
- const 'rtype_name` *fptr;
- /* m.* indicates the mask array. */
- index_type mstride[GFC_MAX_DIMENSIONS];
- index_type mstride0;
- const GFC_LOGICAL_1 *mptr;
- index_type count[GFC_MAX_DIMENSIONS];
- index_type extent[GFC_MAX_DIMENSIONS];
- index_type n;
- index_type dim;
- int empty;
- int mask_kind;
- empty = 0;
- mptr = mask->base_addr;
- /* Use the same loop for all logical types, by using GFC_LOGICAL_1
- and using shifting to address size and endian issues. */
- mask_kind = GFC_DESCRIPTOR_SIZE (mask);
- if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
- #ifdef HAVE_GFC_LOGICAL_16
- || mask_kind == 16
- #endif
- )
- {
- /* Do not convert a NULL pointer as we use test for NULL below. */
- if (mptr)
- mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
- }
- else
- runtime_error ("Funny sized logical array");
- if (ret->base_addr == NULL)
- {
- /* The front end has signalled that we need to populate the
- return array descriptor. */
- dim = GFC_DESCRIPTOR_RANK (mask);
- rs = 1;
- for (n = 0; n < dim; n++)
- {
- count[n] = 0;
- GFC_DIMENSION_SET(ret->dim[n], 0,
- GFC_DESCRIPTOR_EXTENT(mask,n) - 1, rs);
- extent[n] = GFC_DESCRIPTOR_EXTENT(ret,n);
- empty = empty || extent[n] <= 0;
- rstride[n] = GFC_DESCRIPTOR_STRIDE(ret,n);
- fstride[n] = GFC_DESCRIPTOR_STRIDE(field,n);
- mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
- rs *= extent[n];
- }
- ret->offset = 0;
- ret->base_addr = xmallocarray (rs, sizeof ('rtype_name`));
- }
- else
- {
- dim = GFC_DESCRIPTOR_RANK (ret);
- /* Initialize to avoid -Wmaybe-uninitialized complaints. */
- rstride[0] = 1;
- for (n = 0; n < dim; n++)
- {
- count[n] = 0;
- extent[n] = GFC_DESCRIPTOR_EXTENT(ret,n);
- empty = empty || extent[n] <= 0;
- rstride[n] = GFC_DESCRIPTOR_STRIDE(ret,n);
- fstride[n] = GFC_DESCRIPTOR_STRIDE(field,n);
- mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
- }
- if (rstride[0] == 0)
- rstride[0] = 1;
- }
- if (empty)
- return;
- if (fstride[0] == 0)
- fstride[0] = 1;
- if (mstride[0] == 0)
- mstride[0] = 1;
- vstride0 = GFC_DESCRIPTOR_STRIDE(vector,0);
- if (vstride0 == 0)
- vstride0 = 1;
- rstride0 = rstride[0];
- fstride0 = fstride[0];
- mstride0 = mstride[0];
- rptr = ret->base_addr;
- fptr = field->base_addr;
- vptr = vector->base_addr;
- while (rptr)
- {
- if (*mptr)
- {
- /* From vector. */
- *rptr = *vptr;
- vptr += vstride0;
- }
- else
- {
- /* From field. */
- *rptr = *fptr;
- }
- /* Advance to the next element. */
- rptr += rstride0;
- fptr += fstride0;
- mptr += mstride0;
- count[0]++;
- n = 0;
- while (count[n] == extent[n])
- {
- /* When we get to the end of a dimension, reset it and increment
- the next dimension. */
- count[n] = 0;
- /* We could precalculate these products, but this is a less
- frequently used path so probably not worth it. */
- rptr -= rstride[n] * extent[n];
- fptr -= fstride[n] * extent[n];
- mptr -= mstride[n] * extent[n];
- n++;
- if (n >= dim)
- {
- /* Break out of the loop. */
- rptr = NULL;
- break;
- }
- else
- {
- count[n]++;
- rptr += rstride[n];
- fptr += fstride[n];
- mptr += mstride[n];
- }
- }
- }
- }
- #endif
- '
|