123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210 |
- /* Implementation of the NORM2 intrinsic
- Copyright (C) 2010-2015 Free Software Foundation, Inc.
- Contributed by Tobias Burnus <burnus@net-b.de>
- This file is part of the GNU Fortran runtime library (libgfortran).
- Libgfortran is free software; you can redistribute it and/or
- modify it under the terms of the GNU General Public
- License as published by the Free Software Foundation; either
- version 3 of the License, or (at your option) any later version.
- Libgfortran is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
- Under Section 7 of GPL version 3, you are granted additional
- permissions described in the GCC Runtime Library Exception, version
- 3.1, as published by the Free Software Foundation.
- You should have received a copy of the GNU General Public License and
- a copy of the GCC Runtime Library Exception along with this program;
- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
- <http://www.gnu.org/licenses/>. */
- #include "libgfortran.h"
- #include <stdlib.h>
- #include <math.h>
- #include <assert.h>
- #if defined (HAVE_GFC_REAL_4) && defined (HAVE_GFC_REAL_4) && defined (HAVE_SQRTF) && defined (HAVE_FABSF)
- #define MATHFUNC(funcname) funcname ## f
- extern void norm2_r4 (gfc_array_r4 * const restrict,
- gfc_array_r4 * const restrict, const index_type * const restrict);
- export_proto(norm2_r4);
- void
- norm2_r4 (gfc_array_r4 * const restrict retarray,
- gfc_array_r4 * const restrict array,
- const index_type * const restrict pdim)
- {
- index_type count[GFC_MAX_DIMENSIONS];
- index_type extent[GFC_MAX_DIMENSIONS];
- index_type sstride[GFC_MAX_DIMENSIONS];
- index_type dstride[GFC_MAX_DIMENSIONS];
- const GFC_REAL_4 * restrict base;
- GFC_REAL_4 * restrict dest;
- index_type rank;
- index_type n;
- index_type len;
- index_type delta;
- index_type dim;
- int continue_loop;
- /* Make dim zero based to avoid confusion. */
- dim = (*pdim) - 1;
- rank = GFC_DESCRIPTOR_RANK (array) - 1;
- len = GFC_DESCRIPTOR_EXTENT(array,dim);
- if (len < 0)
- len = 0;
- delta = GFC_DESCRIPTOR_STRIDE(array,dim);
- for (n = 0; n < dim; n++)
- {
- sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
- extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
- if (extent[n] < 0)
- extent[n] = 0;
- }
- for (n = dim; n < rank; n++)
- {
- sstride[n] = GFC_DESCRIPTOR_STRIDE(array, n + 1);
- extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
- if (extent[n] < 0)
- extent[n] = 0;
- }
- if (retarray->base_addr == NULL)
- {
- size_t alloc_size, str;
- for (n = 0; n < rank; n++)
- {
- if (n == 0)
- str = 1;
- else
- str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
- GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
- }
- retarray->offset = 0;
- retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
- alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
- retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_REAL_4));
- if (alloc_size == 0)
- {
- /* Make sure we have a zero-sized array. */
- GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
- return;
- }
- }
- else
- {
- if (rank != GFC_DESCRIPTOR_RANK (retarray))
- runtime_error ("rank of return array incorrect in"
- " NORM intrinsic: is %ld, should be %ld",
- (long int) (GFC_DESCRIPTOR_RANK (retarray)),
- (long int) rank);
- if (unlikely (compile_options.bounds_check))
- bounds_ifunction_return ((array_t *) retarray, extent,
- "return value", "NORM");
- }
- for (n = 0; n < rank; n++)
- {
- count[n] = 0;
- dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
- if (extent[n] <= 0)
- return;
- }
- base = array->base_addr;
- dest = retarray->base_addr;
- continue_loop = 1;
- while (continue_loop)
- {
- const GFC_REAL_4 * restrict src;
- GFC_REAL_4 result;
- src = base;
- {
- GFC_REAL_4 scale;
- result = 0;
- scale = 1;
- if (len <= 0)
- *dest = 0;
- else
- {
- for (n = 0; n < len; n++, src += delta)
- {
- if (*src != 0)
- {
- GFC_REAL_4 absX, val;
- absX = MATHFUNC(fabs) (*src);
- if (scale < absX)
- {
- val = scale / absX;
- result = 1 + result * val * val;
- scale = absX;
- }
- else
- {
- val = absX / scale;
- result += val * val;
- }
- }
- }
- result = scale * MATHFUNC(sqrt) (result);
- *dest = result;
- }
- }
- /* Advance to the next element. */
- count[0]++;
- base += sstride[0];
- dest += dstride[0];
- n = 0;
- while (count[n] == extent[n])
- {
- /* When we get to the end of a dimension, reset it and increment
- the next dimension. */
- count[n] = 0;
- /* We could precalculate these products, but this is a less
- frequently used path so probably not worth it. */
- base -= sstride[n] * extent[n];
- dest -= dstride[n] * extent[n];
- n++;
- if (n == rank)
- {
- /* Break out of the look. */
- continue_loop = 0;
- break;
- }
- else
- {
- count[n]++;
- base += sstride[n];
- dest += dstride[n];
- }
- }
- }
- }
- #endif
|