123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377 |
- /* Implementation of the MATMUL intrinsic
- Copyright (C) 2002-2015 Free Software Foundation, Inc.
- Contributed by Paul Brook <paul@nowt.org>
- This file is part of the GNU Fortran runtime library (libgfortran).
- Libgfortran is free software; you can redistribute it and/or
- modify it under the terms of the GNU General Public
- License as published by the Free Software Foundation; either
- version 3 of the License, or (at your option) any later version.
- Libgfortran is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
- Under Section 7 of GPL version 3, you are granted additional
- permissions described in the GCC Runtime Library Exception, version
- 3.1, as published by the Free Software Foundation.
- You should have received a copy of the GNU General Public License and
- a copy of the GCC Runtime Library Exception along with this program;
- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
- <http://www.gnu.org/licenses/>. */
- #include "libgfortran.h"
- #include <stdlib.h>
- #include <string.h>
- #include <assert.h>
- #if defined (HAVE_GFC_INTEGER_1)
- /* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
- passed to us by the front-end, in which case we'll call it for large
- matrices. */
- typedef void (*blas_call)(const char *, const char *, const int *, const int *,
- const int *, const GFC_INTEGER_1 *, const GFC_INTEGER_1 *,
- const int *, const GFC_INTEGER_1 *, const int *,
- const GFC_INTEGER_1 *, GFC_INTEGER_1 *, const int *,
- int, int);
- /* The order of loops is different in the case of plain matrix
- multiplication C=MATMUL(A,B), and in the frequent special case where
- the argument A is the temporary result of a TRANSPOSE intrinsic:
- C=MATMUL(TRANSPOSE(A),B). Transposed temporaries are detected by
- looking at their strides.
- The equivalent Fortran pseudo-code is:
- DIMENSION A(M,COUNT), B(COUNT,N), C(M,N)
- IF (.NOT.IS_TRANSPOSED(A)) THEN
- C = 0
- DO J=1,N
- DO K=1,COUNT
- DO I=1,M
- C(I,J) = C(I,J)+A(I,K)*B(K,J)
- ELSE
- DO J=1,N
- DO I=1,M
- S = 0
- DO K=1,COUNT
- S = S+A(I,K)*B(K,J)
- C(I,J) = S
- ENDIF
- */
- /* If try_blas is set to a nonzero value, then the matmul function will
- see if there is a way to perform the matrix multiplication by a call
- to the BLAS gemm function. */
- extern void matmul_i1 (gfc_array_i1 * const restrict retarray,
- gfc_array_i1 * const restrict a, gfc_array_i1 * const restrict b, int try_blas,
- int blas_limit, blas_call gemm);
- export_proto(matmul_i1);
- void
- matmul_i1 (gfc_array_i1 * const restrict retarray,
- gfc_array_i1 * const restrict a, gfc_array_i1 * const restrict b, int try_blas,
- int blas_limit, blas_call gemm)
- {
- const GFC_INTEGER_1 * restrict abase;
- const GFC_INTEGER_1 * restrict bbase;
- GFC_INTEGER_1 * restrict dest;
- index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
- index_type x, y, n, count, xcount, ycount;
- assert (GFC_DESCRIPTOR_RANK (a) == 2
- || GFC_DESCRIPTOR_RANK (b) == 2);
- /* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
- Either A or B (but not both) can be rank 1:
- o One-dimensional argument A is implicitly treated as a row matrix
- dimensioned [1,count], so xcount=1.
- o One-dimensional argument B is implicitly treated as a column matrix
- dimensioned [count, 1], so ycount=1.
- */
- if (retarray->base_addr == NULL)
- {
- if (GFC_DESCRIPTOR_RANK (a) == 1)
- {
- GFC_DIMENSION_SET(retarray->dim[0], 0,
- GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
- }
- else if (GFC_DESCRIPTOR_RANK (b) == 1)
- {
- GFC_DIMENSION_SET(retarray->dim[0], 0,
- GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
- }
- else
- {
- GFC_DIMENSION_SET(retarray->dim[0], 0,
- GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
- GFC_DIMENSION_SET(retarray->dim[1], 0,
- GFC_DESCRIPTOR_EXTENT(b,1) - 1,
- GFC_DESCRIPTOR_EXTENT(retarray,0));
- }
- retarray->base_addr
- = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_1));
- retarray->offset = 0;
- }
- else if (unlikely (compile_options.bounds_check))
- {
- index_type ret_extent, arg_extent;
- if (GFC_DESCRIPTOR_RANK (a) == 1)
- {
- arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
- ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
- if (arg_extent != ret_extent)
- runtime_error ("Incorrect extent in return array in"
- " MATMUL intrinsic: is %ld, should be %ld",
- (long int) ret_extent, (long int) arg_extent);
- }
- else if (GFC_DESCRIPTOR_RANK (b) == 1)
- {
- arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
- ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
- if (arg_extent != ret_extent)
- runtime_error ("Incorrect extent in return array in"
- " MATMUL intrinsic: is %ld, should be %ld",
- (long int) ret_extent, (long int) arg_extent);
- }
- else
- {
- arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
- ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
- if (arg_extent != ret_extent)
- runtime_error ("Incorrect extent in return array in"
- " MATMUL intrinsic for dimension 1:"
- " is %ld, should be %ld",
- (long int) ret_extent, (long int) arg_extent);
- arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
- ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
- if (arg_extent != ret_extent)
- runtime_error ("Incorrect extent in return array in"
- " MATMUL intrinsic for dimension 2:"
- " is %ld, should be %ld",
- (long int) ret_extent, (long int) arg_extent);
- }
- }
- if (GFC_DESCRIPTOR_RANK (retarray) == 1)
- {
- /* One-dimensional result may be addressed in the code below
- either as a row or a column matrix. We want both cases to
- work. */
- rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
- }
- else
- {
- rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
- rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
- }
- if (GFC_DESCRIPTOR_RANK (a) == 1)
- {
- /* Treat it as a a row matrix A[1,count]. */
- axstride = GFC_DESCRIPTOR_STRIDE(a,0);
- aystride = 1;
- xcount = 1;
- count = GFC_DESCRIPTOR_EXTENT(a,0);
- }
- else
- {
- axstride = GFC_DESCRIPTOR_STRIDE(a,0);
- aystride = GFC_DESCRIPTOR_STRIDE(a,1);
- count = GFC_DESCRIPTOR_EXTENT(a,1);
- xcount = GFC_DESCRIPTOR_EXTENT(a,0);
- }
- if (count != GFC_DESCRIPTOR_EXTENT(b,0))
- {
- if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
- runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
- }
- if (GFC_DESCRIPTOR_RANK (b) == 1)
- {
- /* Treat it as a column matrix B[count,1] */
- bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
- /* bystride should never be used for 1-dimensional b.
- in case it is we want it to cause a segfault, rather than
- an incorrect result. */
- bystride = 0xDEADBEEF;
- ycount = 1;
- }
- else
- {
- bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
- bystride = GFC_DESCRIPTOR_STRIDE(b,1);
- ycount = GFC_DESCRIPTOR_EXTENT(b,1);
- }
- abase = a->base_addr;
- bbase = b->base_addr;
- dest = retarray->base_addr;
- /* Now that everything is set up, we're performing the multiplication
- itself. */
- #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
- if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
- && (bxstride == 1 || bystride == 1)
- && (((float) xcount) * ((float) ycount) * ((float) count)
- > POW3(blas_limit)))
- {
- const int m = xcount, n = ycount, k = count, ldc = rystride;
- const GFC_INTEGER_1 one = 1, zero = 0;
- const int lda = (axstride == 1) ? aystride : axstride,
- ldb = (bxstride == 1) ? bystride : bxstride;
- if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
- {
- assert (gemm != NULL);
- gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
- &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
- return;
- }
- }
- if (rxstride == 1 && axstride == 1 && bxstride == 1)
- {
- const GFC_INTEGER_1 * restrict bbase_y;
- GFC_INTEGER_1 * restrict dest_y;
- const GFC_INTEGER_1 * restrict abase_n;
- GFC_INTEGER_1 bbase_yn;
- if (rystride == xcount)
- memset (dest, 0, (sizeof (GFC_INTEGER_1) * xcount * ycount));
- else
- {
- for (y = 0; y < ycount; y++)
- for (x = 0; x < xcount; x++)
- dest[x + y*rystride] = (GFC_INTEGER_1)0;
- }
- for (y = 0; y < ycount; y++)
- {
- bbase_y = bbase + y*bystride;
- dest_y = dest + y*rystride;
- for (n = 0; n < count; n++)
- {
- abase_n = abase + n*aystride;
- bbase_yn = bbase_y[n];
- for (x = 0; x < xcount; x++)
- {
- dest_y[x] += abase_n[x] * bbase_yn;
- }
- }
- }
- }
- else if (rxstride == 1 && aystride == 1 && bxstride == 1)
- {
- if (GFC_DESCRIPTOR_RANK (a) != 1)
- {
- const GFC_INTEGER_1 *restrict abase_x;
- const GFC_INTEGER_1 *restrict bbase_y;
- GFC_INTEGER_1 *restrict dest_y;
- GFC_INTEGER_1 s;
- for (y = 0; y < ycount; y++)
- {
- bbase_y = &bbase[y*bystride];
- dest_y = &dest[y*rystride];
- for (x = 0; x < xcount; x++)
- {
- abase_x = &abase[x*axstride];
- s = (GFC_INTEGER_1) 0;
- for (n = 0; n < count; n++)
- s += abase_x[n] * bbase_y[n];
- dest_y[x] = s;
- }
- }
- }
- else
- {
- const GFC_INTEGER_1 *restrict bbase_y;
- GFC_INTEGER_1 s;
- for (y = 0; y < ycount; y++)
- {
- bbase_y = &bbase[y*bystride];
- s = (GFC_INTEGER_1) 0;
- for (n = 0; n < count; n++)
- s += abase[n*axstride] * bbase_y[n];
- dest[y*rystride] = s;
- }
- }
- }
- else if (axstride < aystride)
- {
- for (y = 0; y < ycount; y++)
- for (x = 0; x < xcount; x++)
- dest[x*rxstride + y*rystride] = (GFC_INTEGER_1)0;
- for (y = 0; y < ycount; y++)
- for (n = 0; n < count; n++)
- for (x = 0; x < xcount; x++)
- /* dest[x,y] += a[x,n] * b[n,y] */
- dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
- }
- else if (GFC_DESCRIPTOR_RANK (a) == 1)
- {
- const GFC_INTEGER_1 *restrict bbase_y;
- GFC_INTEGER_1 s;
- for (y = 0; y < ycount; y++)
- {
- bbase_y = &bbase[y*bystride];
- s = (GFC_INTEGER_1) 0;
- for (n = 0; n < count; n++)
- s += abase[n*axstride] * bbase_y[n*bxstride];
- dest[y*rxstride] = s;
- }
- }
- else
- {
- const GFC_INTEGER_1 *restrict abase_x;
- const GFC_INTEGER_1 *restrict bbase_y;
- GFC_INTEGER_1 *restrict dest_y;
- GFC_INTEGER_1 s;
- for (y = 0; y < ycount; y++)
- {
- bbase_y = &bbase[y*bystride];
- dest_y = &dest[y*rystride];
- for (x = 0; x < xcount; x++)
- {
- abase_x = &abase[x*axstride];
- s = (GFC_INTEGER_1) 0;
- for (n = 0; n < count; n++)
- s += abase_x[n*aystride] * bbase_y[n*bxstride];
- dest_y[x*rxstride] = s;
- }
- }
- }
- }
- #endif
|