123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190 |
- /* GCC Quad-Precision Math Library
- Copyright (C) 2010, 2011 Free Software Foundation, Inc.
- Written by Francois-Xavier Coudert <fxcoudert@gcc.gnu.org>
- This file is part of the libquadmath library.
- Libquadmath is free software; you can redistribute it and/or
- modify it under the terms of the GNU Library General Public
- License as published by the Free Software Foundation; either
- version 2 of the License, or (at your option) any later version.
- Libquadmath is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Library General Public License for more details.
- You should have received a copy of the GNU Library General Public
- License along with libquadmath; see the file COPYING.LIB. If
- not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
- Boston, MA 02110-1301, USA. */
- #ifndef QUADMATH_IMP_H
- #define QUADMATH_IMP_H
- #include <stdint.h>
- #include <stdlib.h>
- #include "quadmath.h"
- #include "config.h"
- /* Under IEEE 754, an architecture may determine tininess of
- floating-point results either "before rounding" or "after
- rounding", but must do so in the same way for all operations
- returning binary results. Define TININESS_AFTER_ROUNDING to 1 for
- "after rounding" architectures, 0 for "before rounding"
- architectures. */
- #define TININESS_AFTER_ROUNDING 1
- /* Prototypes for internal functions. */
- extern int32_t __quadmath_rem_pio2q (__float128, __float128 *);
- extern void __quadmath_kernel_sincosq (__float128, __float128, __float128 *,
- __float128 *, int);
- extern __float128 __quadmath_kernel_sinq (__float128, __float128, int);
- extern __float128 __quadmath_kernel_cosq (__float128, __float128);
- extern __float128 __quadmath_x2y2m1q (__float128 x, __float128 y);
- extern int __quadmath_isinf_nsq (__float128 x);
- /* Frankly, if you have __float128, you have 64-bit integers, right? */
- #ifndef UINT64_C
- # error "No way!"
- #endif
- /* Main union type we use to manipulate the floating-point type. */
- typedef union
- {
- __float128 value;
- struct
- #ifdef __MINGW32__
- /* On mingw targets the ms-bitfields option is active by default.
- Therefore enforce gnu-bitfield style. */
- __attribute__ ((gcc_struct))
- #endif
- {
- #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
- unsigned negative:1;
- unsigned exponent:15;
- uint64_t mant_high:48;
- uint64_t mant_low:64;
- #else
- uint64_t mant_low:64;
- uint64_t mant_high:48;
- unsigned exponent:15;
- unsigned negative:1;
- #endif
- } ieee;
- struct
- {
- #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
- uint64_t high;
- uint64_t low;
- #else
- uint64_t low;
- uint64_t high;
- #endif
- } words64;
- struct
- {
- #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
- uint32_t w0;
- uint32_t w1;
- uint32_t w2;
- uint32_t w3;
- #else
- uint32_t w3;
- uint32_t w2;
- uint32_t w1;
- uint32_t w0;
- #endif
- } words32;
- struct
- #ifdef __MINGW32__
- /* Make sure we are using gnu-style bitfield handling. */
- __attribute__ ((gcc_struct))
- #endif
- {
- #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
- unsigned negative:1;
- unsigned exponent:15;
- unsigned quiet_nan:1;
- uint64_t mant_high:47;
- uint64_t mant_low:64;
- #else
- uint64_t mant_low:64;
- uint64_t mant_high:47;
- unsigned quiet_nan:1;
- unsigned exponent:15;
- unsigned negative:1;
- #endif
- } nan;
- } ieee854_float128;
- /* Get two 64 bit ints from a long double. */
- #define GET_FLT128_WORDS64(ix0,ix1,d) \
- do { \
- ieee854_float128 u; \
- u.value = (d); \
- (ix0) = u.words64.high; \
- (ix1) = u.words64.low; \
- } while (0)
- /* Set a long double from two 64 bit ints. */
- #define SET_FLT128_WORDS64(d,ix0,ix1) \
- do { \
- ieee854_float128 u; \
- u.words64.high = (ix0); \
- u.words64.low = (ix1); \
- (d) = u.value; \
- } while (0)
- /* Get the more significant 64 bits of a long double mantissa. */
- #define GET_FLT128_MSW64(v,d) \
- do { \
- ieee854_float128 u; \
- u.value = (d); \
- (v) = u.words64.high; \
- } while (0)
- /* Set the more significant 64 bits of a long double mantissa from an int. */
- #define SET_FLT128_MSW64(d,v) \
- do { \
- ieee854_float128 u; \
- u.value = (d); \
- u.words64.high = (v); \
- (d) = u.value; \
- } while (0)
- /* Get the least significant 64 bits of a long double mantissa. */
- #define GET_FLT128_LSW64(v,d) \
- do { \
- ieee854_float128 u; \
- u.value = (d); \
- (v) = u.words64.low; \
- } while (0)
- #define IEEE854_FLOAT128_BIAS 0x3fff
- #define QUADFP_NAN 0
- #define QUADFP_INFINITE 1
- #define QUADFP_ZERO 2
- #define QUADFP_SUBNORMAL 3
- #define QUADFP_NORMAL 4
- #define fpclassifyq(x) \
- __builtin_fpclassify (QUADFP_NAN, QUADFP_INFINITE, QUADFP_NORMAL, \
- QUADFP_SUBNORMAL, QUADFP_ZERO, x)
- #endif
|