123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179 |
- // i386-signal.h - Catch runtime signals and turn them into exceptions
- // on an i386 based Linux system.
- /* Copyright (C) 1998, 1999, 2001, 2002, 2006, 2007, 2011
- Free Software Foundation
- This file is part of libgcj.
- This software is copyrighted work licensed under the terms of the
- Libgcj License. Please consult the file "LIBGCJ_LICENSE" for
- details. */
- #ifdef __i386__
- #ifndef JAVA_SIGNAL_H
- #define JAVA_SIGNAL_H 1
- #include <signal.h>
- #include <sys/syscall.h>
- #define HANDLE_SEGV 1
- #define HANDLE_FPE 1
- #define SIGNAL_HANDLER(_name) \
- static void _Jv_##_name (int, siginfo_t *, \
- void *_p __attribute__ ((__unused__)))
- #define HANDLE_DIVIDE_OVERFLOW \
- do \
- { \
- struct ucontext *_uc = (struct ucontext *)_p; \
- gregset_t &_gregs = _uc->uc_mcontext.gregs; \
- unsigned char *_eip = (unsigned char *)_gregs[REG_EIP]; \
- \
- /* According to the JVM spec, "if the dividend is the negative \
- * integer of largest possible magnitude for the type and the \
- * divisor is -1, then overflow occurs and the result is equal to \
- * the dividend. Despite the overflow, no exception occurs". \
- \
- * We handle this by inspecting the instruction which generated the \
- * signal and advancing ip to point to the following instruction. \
- * As the instructions are variable length it is necessary to do a \
- * little calculation to figure out where the following instruction \
- * actually is. \
- \
- */ \
- \
- /* Detect a signed division of Integer.MIN_VALUE. */ \
- if (_eip[0] == 0xf7) \
- { \
- bool _min_value_dividend = false; \
- unsigned char _modrm = _eip[1]; \
- \
- if (((_modrm >> 3) & 7) == 7) /* Signed divide */ \
- { \
- _min_value_dividend = \
- _gregs[REG_EAX] == (greg_t)0x80000000UL; \
- } \
- \
- if (_min_value_dividend) \
- { \
- unsigned char _rm = _modrm & 7; \
- _gregs[REG_EDX] = 0; /* the remainder is zero */ \
- switch (_modrm >> 6) \
- { \
- case 0: /* register indirect */ \
- if (_rm == 5) /* 32-bit displacement */ \
- _eip += 4; \
- if (_rm == 4) /* A SIB byte follows the ModR/M byte */ \
- _eip += 1; \
- break; \
- case 1: /* register indirect + 8-bit displacement */ \
- _eip += 1; \
- if (_rm == 4) /* A SIB byte follows the ModR/M byte */ \
- _eip += 1; \
- break; \
- case 2: /* register indirect + 32-bit displacement */ \
- _eip += 4; \
- if (_rm == 4) /* A SIB byte follows the ModR/M byte */ \
- _eip += 1; \
- break; \
- case 3: \
- break; \
- } \
- _eip += 2; \
- _gregs[REG_EIP] = (greg_t)_eip; \
- return; \
- } \
- } \
- } \
- while (0)
- /* We use kernel_sigaction here because we're calling the kernel
- directly rather than via glibc. The sigaction structure that the
- syscall uses is a different shape from the one in userland and not
- visible to us in a header file so we define it here. */
- extern "C"
- {
- struct kernel_sigaction
- {
- void (*k_sa_sigaction)(int,siginfo_t *,void *);
- unsigned long k_sa_flags;
- void (*k_sa_restorer) (void);
- sigset_t k_sa_mask;
- };
- }
- #define MAKE_THROW_FRAME(_exception)
- #define RESTORE(name, syscall) RESTORE2 (name, syscall)
- #define RESTORE2(name, syscall) \
- asm \
- ( \
- ".text\n" \
- ".byte 0 # Yes, this really is necessary\n" \
- " .align 16\n" \
- "__" #name ":\n" \
- " movl $" #syscall ", %eax\n" \
- " int $0x80" \
- );
- /* The return code for realtime-signals. */
- RESTORE (restore_rt, __NR_rt_sigreturn)
- void restore_rt (void) asm ("__restore_rt")
- __attribute__ ((visibility ("hidden")));
- #define INIT_SEGV \
- do \
- { \
- struct kernel_sigaction act; \
- act.k_sa_sigaction = _Jv_catch_segv; \
- sigemptyset (&act.k_sa_mask); \
- act.k_sa_flags = SA_SIGINFO|0x4000000; \
- act.k_sa_restorer = restore_rt; \
- syscall (SYS_rt_sigaction, SIGSEGV, &act, NULL, _NSIG / 8); \
- } \
- while (0)
- #define INIT_FPE \
- do \
- { \
- struct kernel_sigaction act; \
- act.k_sa_sigaction = _Jv_catch_fpe; \
- sigemptyset (&act.k_sa_mask); \
- act.k_sa_flags = SA_SIGINFO|0x4000000; \
- act.k_sa_restorer = restore_rt; \
- syscall (SYS_rt_sigaction, SIGFPE, &act, NULL, _NSIG / 8); \
- } \
- while (0)
- /* You might wonder why we use syscall(SYS_sigaction) in INIT_FPE
- * instead of the standard sigaction(). This is necessary because of
- * the shenanigans above where we increment the PC saved in the
- * context and then return. This trick will only work when we are
- * called _directly_ by the kernel, because linuxthreads wraps signal
- * handlers and its wrappers do not copy the sigcontext struct back
- * when returning from a signal handler. If we return from our divide
- * handler to a linuxthreads wrapper, we will lose the PC adjustment
- * we made and return to the faulting instruction again. Using
- * syscall(SYS_sigaction) causes our handler to be called directly
- * by the kernel, bypassing any wrappers.
- * Also, there may not be any unwind info in the linuxthreads
- * library's signal handlers and so we can't unwind through them
- * anyway. */
- #endif /* JAVA_SIGNAL_H */
-
- #else /* __i386__ */
- /* This is for the 64-bit subsystem on i386. */
- #define sigcontext_struct sigcontext
- #include <java-signal-aux.h>
- #endif /* __i386__ */
|