s_atan.c 4.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141
  1. /* @(#)s_atan.c 1.3 95/01/18 */
  2. /*
  3. * ====================================================
  4. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  5. *
  6. * Developed at SunSoft, a Sun Microsystems, Inc. business.
  7. * Permission to use, copy, modify, and distribute this
  8. * software is freely granted, provided that this notice
  9. * is preserved.
  10. * ====================================================
  11. *
  12. */
  13. /* atan(x)
  14. * Method
  15. * 1. Reduce x to positive by atan(x) = -atan(-x).
  16. * 2. According to the integer k=4t+0.25 chopped, t=x, the argument
  17. * is further reduced to one of the following intervals and the
  18. * arctangent of t is evaluated by the corresponding formula:
  19. *
  20. * [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
  21. * [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) )
  22. * [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) )
  23. * [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) )
  24. * [39/16,INF] atan(x) = atan(INF) + atan( -1/t )
  25. *
  26. * Constants:
  27. * The hexadecimal values are the intended ones for the following
  28. * constants. The decimal values may be used, provided that the
  29. * compiler will convert from decimal to binary accurately enough
  30. * to produce the hexadecimal values shown.
  31. */
  32. #include "fdlibm.h"
  33. #ifndef _DOUBLE_IS_32BITS
  34. #ifdef __STDC__
  35. static const double atanhi[] = {
  36. #else
  37. static double atanhi[] = {
  38. #endif
  39. 4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */
  40. 7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */
  41. 9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */
  42. 1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */
  43. };
  44. #ifdef __STDC__
  45. static const double atanlo[] = {
  46. #else
  47. static double atanlo[] = {
  48. #endif
  49. 2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */
  50. 3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */
  51. 1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */
  52. 6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */
  53. };
  54. #ifdef __STDC__
  55. static const double aT[] = {
  56. #else
  57. static double aT[] = {
  58. #endif
  59. 3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */
  60. -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */
  61. 1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */
  62. -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */
  63. 9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */
  64. -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */
  65. 6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */
  66. -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */
  67. 4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */
  68. -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */
  69. 1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */
  70. };
  71. #ifdef __STDC__
  72. static const double
  73. #else
  74. static double
  75. #endif
  76. one = 1.0,
  77. huge = 1.0e300;
  78. #ifdef __STDC__
  79. double atan(double x)
  80. #else
  81. double atan(x)
  82. double x;
  83. #endif
  84. {
  85. double w,s1,s2,z;
  86. int32_t ix,hx,id;
  87. GET_HIGH_WORD(hx,x);
  88. ix = hx&0x7fffffff;
  89. if(ix>=0x44100000) { /* if |x| >= 2^66 */
  90. uint32_t low;
  91. GET_LOW_WORD(low,x);
  92. if(ix>0x7ff00000||
  93. (ix==0x7ff00000&&(low!=0)))
  94. return x+x; /* NaN */
  95. if(hx>0) return atanhi[3]+atanlo[3];
  96. else return -atanhi[3]-atanlo[3];
  97. } if (ix < 0x3fdc0000) { /* |x| < 0.4375 */
  98. if (ix < 0x3e200000) { /* |x| < 2^-29 */
  99. if(huge+x>one) return x; /* raise inexact */
  100. }
  101. id = -1;
  102. } else {
  103. x = fabs(x);
  104. if (ix < 0x3ff30000) { /* |x| < 1.1875 */
  105. if (ix < 0x3fe60000) { /* 7/16 <=|x|<11/16 */
  106. id = 0; x = (2.0*x-one)/(2.0+x);
  107. } else { /* 11/16<=|x|< 19/16 */
  108. id = 1; x = (x-one)/(x+one);
  109. }
  110. } else {
  111. if (ix < 0x40038000) { /* |x| < 2.4375 */
  112. id = 2; x = (x-1.5)/(one+1.5*x);
  113. } else { /* 2.4375 <= |x| < 2^66 */
  114. id = 3; x = -1.0/x;
  115. }
  116. }}
  117. /* end of argument reduction */
  118. z = x*x;
  119. w = z*z;
  120. /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
  121. s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10])))));
  122. s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9]))));
  123. if (id<0) return x - x*(s1+s2);
  124. else {
  125. z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x);
  126. return (hx<0)? -z:z;
  127. }
  128. }
  129. #endif /* _DOUBLE_IS_32BITS */