123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430 |
- /* Random.java -- a pseudo-random number generator
- Copyright (C) 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
- This file is part of GNU Classpath.
- GNU Classpath is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2, or (at your option)
- any later version.
- GNU Classpath is distributed in the hope that it will be useful, but
- WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- General Public License for more details.
- You should have received a copy of the GNU General Public License
- along with GNU Classpath; see the file COPYING. If not, write to the
- Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
- 02110-1301 USA.
- Linking this library statically or dynamically with other modules is
- making a combined work based on this library. Thus, the terms and
- conditions of the GNU General Public License cover the whole
- combination.
- As a special exception, the copyright holders of this library give you
- permission to link this library with independent modules to produce an
- executable, regardless of the license terms of these independent
- modules, and to copy and distribute the resulting executable under
- terms of your choice, provided that you also meet, for each linked
- independent module, the terms and conditions of the license of that
- module. An independent module is a module which is not derived from
- or based on this library. If you modify this library, you may extend
- this exception to your version of the library, but you are not
- obligated to do so. If you do not wish to do so, delete this
- exception statement from your version. */
- package java.util;
- import java.io.Serializable;
- /**
- * This class generates pseudorandom numbers. It uses the same
- * algorithm as the original JDK-class, so that your programs behave
- * exactly the same way, if started with the same seed.
- *
- * The algorithm is described in <em>The Art of Computer Programming,
- * Volume 2</em> by Donald Knuth in Section 3.2.1. It is a 48-bit seed,
- * linear congruential formula.
- *
- * If two instances of this class are created with the same seed and
- * the same calls to these classes are made, they behave exactly the
- * same way. This should be even true for foreign implementations
- * (like this), so every port must use the same algorithm as described
- * here.
- *
- * If you want to implement your own pseudorandom algorithm, you
- * should extend this class and overload the <code>next()</code> and
- * <code>setSeed(long)</code> method. In that case the above
- * paragraph doesn't apply to you.
- *
- * This class shouldn't be used for security sensitive purposes (like
- * generating passwords or encryption keys. See <code>SecureRandom</code>
- * in package <code>java.security</code> for this purpose.
- *
- * For simple random doubles between 0.0 and 1.0, you may consider using
- * Math.random instead.
- *
- * @see java.security.SecureRandom
- * @see Math#random()
- * @author Jochen Hoenicke
- * @author Eric Blake (ebb9@email.byu.edu)
- * @status updated to 1.4
- */
- public class Random implements Serializable
- {
- /**
- * True if the next nextGaussian is available. This is used by
- * nextGaussian, which generates two gaussian numbers by one call,
- * and returns the second on the second call.
- *
- * @serial whether nextNextGaussian is available
- * @see #nextGaussian()
- * @see #nextNextGaussian
- */
- private boolean haveNextNextGaussian;
- /**
- * The next nextGaussian, when available. This is used by nextGaussian,
- * which generates two gaussian numbers by one call, and returns the
- * second on the second call.
- *
- * @serial the second gaussian of a pair
- * @see #nextGaussian()
- * @see #haveNextNextGaussian
- */
- private double nextNextGaussian;
- /**
- * The seed. This is the number set by setSeed and which is used
- * in next.
- *
- * @serial the internal state of this generator
- * @see #next(int)
- */
- private long seed;
- /**
- * Compatible with JDK 1.0+.
- */
- private static final long serialVersionUID = 3905348978240129619L;
- /**
- * Creates a new pseudorandom number generator. The seed is initialized
- * to the current time, as if by
- * <code>setSeed(System.currentTimeMillis());</code>.
- *
- * @see System#currentTimeMillis()
- */
- public Random()
- {
- this(System.currentTimeMillis());
- }
- /**
- * Creates a new pseudorandom number generator, starting with the
- * specified seed, using <code>setSeed(seed);</code>.
- *
- * @param seed the initial seed
- */
- public Random(long seed)
- {
- setSeed(seed);
- }
- /**
- * Sets the seed for this pseudorandom number generator. As described
- * above, two instances of the same random class, starting with the
- * same seed, should produce the same results, if the same methods
- * are called. The implementation for java.util.Random is:
- *
- <pre>public synchronized void setSeed(long seed)
- {
- this.seed = (seed ^ 0x5DEECE66DL) & ((1L << 48) - 1);
- haveNextNextGaussian = false;
- }</pre>
- *
- * @param seed the new seed
- */
- public synchronized void setSeed(long seed)
- {
- this.seed = (seed ^ 0x5DEECE66DL) & ((1L << 48) - 1);
- haveNextNextGaussian = false;
- }
- /**
- * Generates the next pseudorandom number. This returns
- * an int value whose <code>bits</code> low order bits are
- * independent chosen random bits (0 and 1 are equally likely).
- * The implementation for java.util.Random is:
- *
- <pre>protected synchronized int next(int bits)
- {
- seed = (seed * 0x5DEECE66DL + 0xBL) & ((1L << 48) - 1);
- return (int) (seed >>> (48 - bits));
- }</pre>
- *
- * @param bits the number of random bits to generate, in the range 1..32
- * @return the next pseudorandom value
- * @since 1.1
- */
- protected synchronized int next(int bits)
- {
- seed = (seed * 0x5DEECE66DL + 0xBL) & ((1L << 48) - 1);
- return (int) (seed >>> (48 - bits));
- }
- /**
- * Fills an array of bytes with random numbers. All possible values
- * are (approximately) equally likely.
- * The JDK documentation gives no implementation, but it seems to be:
- *
- <pre>public void nextBytes(byte[] bytes)
- {
- for (int i = 0; i < bytes.length; i += 4)
- {
- int random = next(32);
- for (int j = 0; i + j < bytes.length && j < 4; j++)
- {
- bytes[i+j] = (byte) (random & 0xff)
- random >>= 8;
- }
- }
- }</pre>
- *
- * @param bytes the byte array that should be filled
- * @throws NullPointerException if bytes is null
- * @since 1.1
- */
- public void nextBytes(byte[] bytes)
- {
- int random;
- // Do a little bit unrolling of the above algorithm.
- int max = bytes.length & ~0x3;
- for (int i = 0; i < max; i += 4)
- {
- random = next(32);
- bytes[i] = (byte) random;
- bytes[i + 1] = (byte) (random >> 8);
- bytes[i + 2] = (byte) (random >> 16);
- bytes[i + 3] = (byte) (random >> 24);
- }
- if (max < bytes.length)
- {
- random = next(32);
- for (int j = max; j < bytes.length; j++)
- {
- bytes[j] = (byte) random;
- random >>= 8;
- }
- }
- }
- /**
- * Generates the next pseudorandom number. This returns
- * an int value whose 32 bits are independent chosen random bits
- * (0 and 1 are equally likely). The implementation for
- * java.util.Random is:
- *
- <pre>public int nextInt()
- {
- return next(32);
- }</pre>
- *
- * @return the next pseudorandom value
- */
- public int nextInt()
- {
- return next(32);
- }
- /**
- * Generates the next pseudorandom number. This returns
- * a value between 0(inclusive) and <code>n</code>(exclusive), and
- * each value has the same likelihodd (1/<code>n</code>).
- * (0 and 1 are equally likely). The implementation for
- * java.util.Random is:
- *
- <pre>
- public int nextInt(int n)
- {
- if (n <= 0)
- throw new IllegalArgumentException("n must be positive");
- if ((n & -n) == n) // i.e., n is a power of 2
- return (int)((n * (long) next(31)) >> 31);
- int bits, val;
- do
- {
- bits = next(31);
- val = bits % n;
- }
- while(bits - val + (n-1) < 0);
- return val;
- }</pre>
- *
- * <p>This algorithm would return every value with exactly the same
- * probability, if the next()-method would be a perfect random number
- * generator.
- *
- * The loop at the bottom only accepts a value, if the random
- * number was between 0 and the highest number less then 1<<31,
- * which is divisible by n. The probability for this is high for small
- * n, and the worst case is 1/2 (for n=(1<<30)+1).
- *
- * The special treatment for n = power of 2, selects the high bits of
- * the random number (the loop at the bottom would select the low order
- * bits). This is done, because the low order bits of linear congruential
- * number generators (like the one used in this class) are known to be
- * ``less random'' than the high order bits.
- *
- * @param n the upper bound
- * @throws IllegalArgumentException if the given upper bound is negative
- * @return the next pseudorandom value
- * @since 1.2
- */
- public int nextInt(int n)
- {
- if (n <= 0)
- throw new IllegalArgumentException("n must be positive");
- if ((n & -n) == n) // i.e., n is a power of 2
- return (int) ((n * (long) next(31)) >> 31);
- int bits, val;
- do
- {
- bits = next(31);
- val = bits % n;
- }
- while (bits - val + (n - 1) < 0);
- return val;
- }
- /**
- * Generates the next pseudorandom long number. All bits of this
- * long are independently chosen and 0 and 1 have equal likelihood.
- * The implementation for java.util.Random is:
- *
- <pre>public long nextLong()
- {
- return ((long) next(32) << 32) + next(32);
- }</pre>
- *
- * @return the next pseudorandom value
- */
- public long nextLong()
- {
- return ((long) next(32) << 32) + next(32);
- }
- /**
- * Generates the next pseudorandom boolean. True and false have
- * the same probability. The implementation is:
- *
- <pre>public boolean nextBoolean()
- {
- return next(1) != 0;
- }</pre>
- *
- * @return the next pseudorandom boolean
- * @since 1.2
- */
- public boolean nextBoolean()
- {
- return next(1) != 0;
- }
- /**
- * Generates the next pseudorandom float uniformly distributed
- * between 0.0f (inclusive) and 1.0f (exclusive). The
- * implementation is as follows.
- *
- <pre>public float nextFloat()
- {
- return next(24) / ((float)(1 << 24));
- }</pre>
- *
- * @return the next pseudorandom float
- */
- public float nextFloat()
- {
- return next(24) / (float) (1 << 24);
- }
- /**
- * Generates the next pseudorandom double uniformly distributed
- * between 0.0 (inclusive) and 1.0 (exclusive). The
- * implementation is as follows.
- *
- <pre>public double nextDouble()
- {
- return (((long) next(26) << 27) + next(27)) / (double)(1L << 53);
- }</pre>
- *
- * @return the next pseudorandom double
- */
- public double nextDouble()
- {
- return (((long) next(26) << 27) + next(27)) / (double) (1L << 53);
- }
- /**
- * Generates the next pseudorandom, Gaussian (normally) distributed
- * double value, with mean 0.0 and standard deviation 1.0.
- * The algorithm is as follows.
- *
- <pre>public synchronized double nextGaussian()
- {
- if (haveNextNextGaussian)
- {
- haveNextNextGaussian = false;
- return nextNextGaussian;
- }
- else
- {
- double v1, v2, s;
- do
- {
- v1 = 2 * nextDouble() - 1; // between -1.0 and 1.0
- v2 = 2 * nextDouble() - 1; // between -1.0 and 1.0
- s = v1 * v1 + v2 * v2;
- }
- while (s >= 1);
- double norm = Math.sqrt(-2 * Math.log(s) / s);
- nextNextGaussian = v2 * norm;
- haveNextNextGaussian = true;
- return v1 * norm;
- }
- }</pre>
- *
- * <p>This is described in section 3.4.1 of <em>The Art of Computer
- * Programming, Volume 2</em> by Donald Knuth.
- *
- * @return the next pseudorandom Gaussian distributed double
- */
- public synchronized double nextGaussian()
- {
- if (haveNextNextGaussian)
- {
- haveNextNextGaussian = false;
- return nextNextGaussian;
- }
- double v1, v2, s;
- do
- {
- v1 = 2 * nextDouble() - 1; // Between -1.0 and 1.0.
- v2 = 2 * nextDouble() - 1; // Between -1.0 and 1.0.
- s = v1 * v1 + v2 * v2;
- }
- while (s >= 1);
- double norm = Math.sqrt(-2 * Math.log(s) / s);
- nextNextGaussian = v2 * norm;
- haveNextNextGaussian = true;
- return v1 * norm;
- }
- }
|