123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560 |
- /* java.math.BigDecimal -- Arbitrary precision decimals.
- Copyright (C) 1999, 2000, 2001, 2003, 2005, 2006 Free Software Foundation, Inc.
- This file is part of GNU Classpath.
- GNU Classpath is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2, or (at your option)
- any later version.
- GNU Classpath is distributed in the hope that it will be useful, but
- WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- General Public License for more details.
- You should have received a copy of the GNU General Public License
- along with GNU Classpath; see the file COPYING. If not, write to the
- Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
- 02110-1301 USA.
- Linking this library statically or dynamically with other modules is
- making a combined work based on this library. Thus, the terms and
- conditions of the GNU General Public License cover the whole
- combination.
- As a special exception, the copyright holders of this library give you
- permission to link this library with independent modules to produce an
- executable, regardless of the license terms of these independent
- modules, and to copy and distribute the resulting executable under
- terms of your choice, provided that you also meet, for each linked
- independent module, the terms and conditions of the license of that
- module. An independent module is a module which is not derived from
- or based on this library. If you modify this library, you may extend
- this exception to your version of the library, but you are not
- obligated to do so. If you do not wish to do so, delete this
- exception statement from your version. */
- package java.math;
- import gnu.java.lang.CPStringBuilder;
- public class BigDecimal extends Number implements Comparable<BigDecimal>
- {
- private BigInteger intVal;
- private int scale;
- private int precision = 0;
- private static final long serialVersionUID = 6108874887143696463L;
- /**
- * The constant zero as a BigDecimal with scale zero.
- * @since 1.5
- */
- public static final BigDecimal ZERO =
- new BigDecimal (BigInteger.ZERO, 0);
- /**
- * The constant one as a BigDecimal with scale zero.
- * @since 1.5
- */
- public static final BigDecimal ONE =
- new BigDecimal (BigInteger.ONE, 0);
- /**
- * The constant ten as a BigDecimal with scale zero.
- * @since 1.5
- */
- public static final BigDecimal TEN =
- new BigDecimal (BigInteger.TEN, 0);
- public static final int ROUND_UP = 0;
- public static final int ROUND_DOWN = 1;
- public static final int ROUND_CEILING = 2;
- public static final int ROUND_FLOOR = 3;
- public static final int ROUND_HALF_UP = 4;
- public static final int ROUND_HALF_DOWN = 5;
- public static final int ROUND_HALF_EVEN = 6;
- public static final int ROUND_UNNECESSARY = 7;
- /**
- * Constructs a new BigDecimal whose unscaled value is val and whose
- * scale is zero.
- * @param val the value of the new BigDecimal
- * @since 1.5
- */
- public BigDecimal (int val)
- {
- this.intVal = BigInteger.valueOf(val);
- this.scale = 0;
- }
- /**
- * Constructs a BigDecimal using the BigDecimal(int) constructor and then
- * rounds according to the MathContext.
- * @param val the value for the initial (unrounded) BigDecimal
- * @param mc the MathContext specifying the rounding
- * @throws ArithmeticException if the result is inexact but the rounding type
- * is RoundingMode.UNNECESSARY
- * @since 1.5
- */
- public BigDecimal (int val, MathContext mc)
- {
- this (val);
- if (mc.getPrecision() != 0)
- {
- BigDecimal result = this.round(mc);
- this.intVal = result.intVal;
- this.scale = result.scale;
- this.precision = result.precision;
- }
- }
- /**
- * Constructs a new BigDecimal whose unscaled value is val and whose
- * scale is zero.
- * @param val the value of the new BigDecimal
- */
- public BigDecimal (long val)
- {
- this.intVal = BigInteger.valueOf(val);
- this.scale = 0;
- }
- /**
- * Constructs a BigDecimal from the long in the same way as BigDecimal(long)
- * and then rounds according to the MathContext.
- * @param val the long from which we create the initial BigDecimal
- * @param mc the MathContext that specifies the rounding behaviour
- * @throws ArithmeticException if the result is inexact but the rounding type
- * is RoundingMode.UNNECESSARY
- * @since 1.5
- */
- public BigDecimal (long val, MathContext mc)
- {
- this(val);
- if (mc.getPrecision() != 0)
- {
- BigDecimal result = this.round(mc);
- this.intVal = result.intVal;
- this.scale = result.scale;
- this.precision = result.precision;
- }
- }
- /**
- * Constructs a BigDecimal whose value is given by num rounded according to
- * mc. Since num is already a BigInteger, the rounding refers only to the
- * precision setting in mc, if mc.getPrecision() returns an int lower than
- * the number of digits in num, then rounding is necessary.
- * @param num the unscaledValue, before rounding
- * @param mc the MathContext that specifies the precision
- * @throws ArithmeticException if the result is inexact but the rounding type
- * is RoundingMode.UNNECESSARY
- * * @since 1.5
- */
- public BigDecimal (BigInteger num, MathContext mc)
- {
- this (num, 0);
- if (mc.getPrecision() != 0)
- {
- BigDecimal result = this.round(mc);
- this.intVal = result.intVal;
- this.scale = result.scale;
- this.precision = result.precision;
- }
- }
- /**
- * Constructs a BigDecimal from the String val according to the same
- * rules as the BigDecimal(String) constructor and then rounds
- * according to the MathContext mc.
- * @param val the String from which we construct the initial BigDecimal
- * @param mc the MathContext that specifies the rounding
- * @throws ArithmeticException if the result is inexact but the rounding type
- * is RoundingMode.UNNECESSARY
- * @since 1.5
- */
- public BigDecimal (String val, MathContext mc)
- {
- this (val);
- if (mc.getPrecision() != 0)
- {
- BigDecimal result = this.round(mc);
- this.intVal = result.intVal;
- this.scale = result.scale;
- this.precision = result.precision;
- }
- }
- /**
- * Constructs a BigDecimal whose unscaled value is num and whose
- * scale is zero.
- * @param num the value of the new BigDecimal
- */
- public BigDecimal (BigInteger num)
- {
- this (num, 0);
- }
- /**
- * Constructs a BigDecimal whose unscaled value is num and whose
- * scale is scale.
- * @param num
- * @param scale
- */
- public BigDecimal (BigInteger num, int scale)
- {
- this.intVal = num;
- this.scale = scale;
- }
- /**
- * Constructs a BigDecimal using the BigDecimal(BigInteger, int)
- * constructor and then rounds according to the MathContext.
- * @param num the unscaled value of the unrounded BigDecimal
- * @param scale the scale of the unrounded BigDecimal
- * @param mc the MathContext specifying the rounding
- * @throws ArithmeticException if the result is inexact but the rounding type
- * is RoundingMode.UNNECESSARY
- * @since 1.5
- */
- public BigDecimal (BigInteger num, int scale, MathContext mc)
- {
- this (num, scale);
- if (mc.getPrecision() != 0)
- {
- BigDecimal result = this.round(mc);
- this.intVal = result.intVal;
- this.scale = result.scale;
- this.precision = result.precision;
- }
- }
- /**
- * Constructs a BigDecimal in the same way as BigDecimal(double) and then
- * rounds according to the MathContext.
- * @param num the double from which the initial BigDecimal is created
- * @param mc the MathContext that specifies the rounding behaviour
- * @throws ArithmeticException if the result is inexact but the rounding type
- * is RoundingMode.UNNECESSARY
- * @since 1.5
- */
- public BigDecimal (double num, MathContext mc)
- {
- this (num);
- if (mc.getPrecision() != 0)
- {
- BigDecimal result = this.round(mc);
- this.intVal = result.intVal;
- this.scale = result.scale;
- this.precision = result.precision;
- }
- }
- public BigDecimal (double num) throws NumberFormatException
- {
- if (Double.isInfinite (num) || Double.isNaN (num))
- throw new NumberFormatException ("invalid argument: " + num);
- // Note we can't convert NUM to a String and then use the
- // String-based constructor. The BigDecimal documentation makes
- // it clear that the two constructors work differently.
- final int mantissaBits = 52;
- final int exponentBits = 11;
- final long mantMask = (1L << mantissaBits) - 1;
- final long expMask = (1L << exponentBits) - 1;
- long bits = Double.doubleToLongBits (num);
- long mantissa = bits & mantMask;
- long exponent = (bits >>> mantissaBits) & expMask;
- boolean denormal = exponent == 0;
- // Correct the exponent for the bias.
- exponent -= denormal ? 1022 : 1023;
- // Now correct the exponent to account for the bits to the right
- // of the decimal.
- exponent -= mantissaBits;
- // Ordinary numbers have an implied leading `1' bit.
- if (! denormal)
- mantissa |= (1L << mantissaBits);
- // Shave off factors of 10.
- while (exponent < 0 && (mantissa & 1) == 0)
- {
- ++exponent;
- mantissa >>= 1;
- }
- intVal = BigInteger.valueOf (bits < 0 ? - mantissa : mantissa);
- if (exponent < 0)
- {
- // We have MANTISSA * 2 ^ (EXPONENT).
- // Since (1/2)^N == 5^N * 10^-N we can easily convert this
- // into a power of 10.
- scale = (int) (- exponent);
- BigInteger mult = BigInteger.valueOf (5).pow (scale);
- intVal = intVal.multiply (mult);
- }
- else
- {
- intVal = intVal.shiftLeft ((int) exponent);
- scale = 0;
- }
- }
- /**
- * Constructs a BigDecimal from the char subarray and rounding
- * according to the MathContext.
- * @param in the char array
- * @param offset the start of the subarray
- * @param len the length of the subarray
- * @param mc the MathContext for rounding
- * @throws NumberFormatException if the char subarray is not a valid
- * BigDecimal representation
- * @throws ArithmeticException if the result is inexact but the rounding
- * mode is RoundingMode.UNNECESSARY
- * @since 1.5
- */
- public BigDecimal(char[] in, int offset, int len, MathContext mc)
- {
- this(in, offset, len);
- // If mc has precision other than zero then we must round.
- if (mc.getPrecision() != 0)
- {
- BigDecimal temp = this.round(mc);
- this.intVal = temp.intVal;
- this.scale = temp.scale;
- this.precision = temp.precision;
- }
- }
- /**
- * Constructs a BigDecimal from the char array and rounding according
- * to the MathContext.
- * @param in the char array
- * @param mc the MathContext
- * @throws NumberFormatException if <code>in</code> is not a valid BigDecimal
- * representation
- * @throws ArithmeticException if the result is inexact but the rounding mode
- * is RoundingMode.UNNECESSARY
- * @since 1.5
- */
- public BigDecimal(char[] in, MathContext mc)
- {
- this(in, 0, in.length);
- // If mc has precision other than zero then we must round.
- if (mc.getPrecision() != 0)
- {
- BigDecimal temp = this.round(mc);
- this.intVal = temp.intVal;
- this.scale = temp.scale;
- this.precision = temp.precision;
- }
- }
- /**
- * Constructs a BigDecimal from the given char array, accepting the same
- * sequence of characters as the BigDecimal(String) constructor.
- * @param in the char array
- * @throws NumberFormatException if <code>in</code> is not a valid BigDecimal
- * representation
- * @since 1.5
- */
- public BigDecimal(char[] in)
- {
- this(in, 0, in.length);
- }
- /**
- * Constructs a BigDecimal from a char subarray, accepting the same sequence
- * of characters as the BigDecimal(String) constructor.
- * @param in the char array
- * @param offset the start of the subarray
- * @param len the length of the subarray
- * @throws NumberFormatException if <code>in</code> is not a valid
- * BigDecimal representation.
- * @since 1.5
- */
- public BigDecimal(char[] in, int offset, int len)
- {
- // start is the index into the char array where the significand starts
- int start = offset;
- // end is one greater than the index of the last character used
- int end = offset + len;
- // point is the index into the char array where the exponent starts
- // (or, if there is no exponent, this is equal to end)
- int point = offset;
- // dot is the index into the char array where the decimal point is
- // found, or -1 if there is no decimal point
- int dot = -1;
- // The following examples show what these variables mean. Note that
- // point and dot don't yet have the correct values, they will be
- // properly assigned in a loop later on in this method.
- //
- // Example 1
- //
- // + 1 0 2 . 4 6 9
- // __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
- //
- // offset = 2, len = 8, start = 3, dot = 6, point = end = 10
- //
- // Example 2
- //
- // + 2 3 4 . 6 1 3 E - 1
- // __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
- //
- // offset = 2, len = 11, start = 3, dot = 6, point = 10, end = 13
- //
- // Example 3
- //
- // - 1 2 3 4 5 e 7
- // __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
- //
- // offset = 2, len = 8, start = 3, dot = -1, point = 8, end = 10
- // Determine the sign of the number.
- boolean negative = false;
- if (in[offset] == '+')
- {
- ++start;
- ++point;
- }
- else if (in[offset] == '-')
- {
- ++start;
- ++point;
- negative = true;
- }
- // Check each character looking for the decimal point and the
- // start of the exponent.
- while (point < end)
- {
- char c = in[point];
- if (c == '.')
- {
- // If dot != -1 then we've seen more than one decimal point.
- if (dot != -1)
- throw new NumberFormatException("multiple `.'s in number");
- dot = point;
- }
- // Break when we reach the start of the exponent.
- else if (c == 'e' || c == 'E')
- break;
- // Throw an exception if the character was not a decimal or an
- // exponent and is not a digit.
- else if (!Character.isDigit(c))
- throw new NumberFormatException("unrecognized character at " + point
- + ": " + c);
- ++point;
- }
- // val is a StringBuilder from which we'll create a BigInteger
- // which will be the unscaled value for this BigDecimal
- CPStringBuilder val = new CPStringBuilder(point - start - 1);
- if (dot != -1)
- {
- // If there was a decimal we must combine the two parts that
- // contain only digits and we must set the scale properly.
- val.append(in, start, dot - start);
- val.append(in, dot + 1, point - dot - 1);
- scale = point - 1 - dot;
- }
- else
- {
- // If there was no decimal then the unscaled value is just the number
- // formed from all the digits and the scale is zero.
- val.append(in, start, point - start);
- scale = 0;
- }
- if (val.length() == 0)
- throw new NumberFormatException("no digits seen");
- // Prepend a negative sign if necessary.
- if (negative)
- val.insert(0, '-');
- intVal = new BigInteger(val.toString());
- // Now parse exponent.
- // If point < end that means we broke out of the previous loop when we
- // saw an 'e' or an 'E'.
- if (point < end)
- {
- point++;
- // Ignore a '+' sign.
- if (in[point] == '+')
- point++;
- // Throw an exception if there were no digits found after the 'e'
- // or 'E'.
- if (point >= end)
- throw new NumberFormatException("no exponent following e or E");
- try
- {
- // Adjust the scale according to the exponent.
- // Remember that the value of a BigDecimal is
- // unscaledValue x Math.pow(10, -scale)
- scale -= Integer.parseInt(new String(in, point, end - point));
- }
- catch (NumberFormatException ex)
- {
- throw new NumberFormatException("malformed exponent");
- }
- }
- }
- public BigDecimal (String num) throws NumberFormatException
- {
- int len = num.length();
- int start = 0, point = 0;
- int dot = -1;
- boolean negative = false;
- if (num.charAt(0) == '+')
- {
- ++start;
- ++point;
- }
- else if (num.charAt(0) == '-')
- {
- ++start;
- ++point;
- negative = true;
- }
- while (point < len)
- {
- char c = num.charAt (point);
- if (c == '.')
- {
- if (dot >= 0)
- throw new NumberFormatException ("multiple `.'s in number");
- dot = point;
- }
- else if (c == 'e' || c == 'E')
- break;
- else if (Character.digit (c, 10) < 0)
- throw new NumberFormatException ("unrecognized character: " + c);
- ++point;
- }
- String val;
- if (dot >= 0)
- {
- val = num.substring (start, dot) + num.substring (dot + 1, point);
- scale = point - 1 - dot;
- }
- else
- {
- val = num.substring (start, point);
- scale = 0;
- }
- if (val.length () == 0)
- throw new NumberFormatException ("no digits seen");
- if (negative)
- val = "-" + val;
- intVal = new BigInteger (val);
- // Now parse exponent.
- if (point < len)
- {
- point++;
- if (num.charAt(point) == '+')
- point++;
- if (point >= len )
- throw new NumberFormatException ("no exponent following e or E");
- try
- {
- scale -= Integer.parseInt (num.substring (point));
- }
- catch (NumberFormatException ex)
- {
- throw new NumberFormatException ("malformed exponent");
- }
- }
- }
- public static BigDecimal valueOf (long val)
- {
- return valueOf (val, 0);
- }
- public static BigDecimal valueOf (long val, int scale)
- throws NumberFormatException
- {
- if ((scale == 0) && ((int)val == val))
- switch ((int) val)
- {
- case 0:
- return ZERO;
- case 1:
- return ONE;
- }
- return new BigDecimal (BigInteger.valueOf (val), scale);
- }
- public BigDecimal add (BigDecimal val)
- {
- // For addition, need to line up decimals. Note that the movePointRight
- // method cannot be used for this as it might return a BigDecimal with
- // scale == 0 instead of the scale we need.
- BigInteger op1 = intVal;
- BigInteger op2 = val.intVal;
- if (scale < val.scale)
- op1 = op1.multiply (BigInteger.TEN.pow (val.scale - scale));
- else if (scale > val.scale)
- op2 = op2.multiply (BigInteger.TEN.pow (scale - val.scale));
- return new BigDecimal (op1.add (op2), Math.max (scale, val.scale));
- }
- /**
- * Returns a BigDecimal whose value is found first by calling the
- * method add(val) and then by rounding according to the MathContext mc.
- * @param val the augend
- * @param mc the MathContext for rounding
- * @throws ArithmeticException if the value is inexact but the rounding is
- * RoundingMode.UNNECESSARY
- * @return <code>this</code> + <code>val</code>, rounded if need be
- * @since 1.5
- */
- public BigDecimal add (BigDecimal val, MathContext mc)
- {
- return add(val).round(mc);
- }
- public BigDecimal subtract (BigDecimal val)
- {
- return this.add(val.negate());
- }
- /**
- * Returns a BigDecimal whose value is found first by calling the
- * method subtract(val) and then by rounding according to the MathContext mc.
- * @param val the subtrahend
- * @param mc the MathContext for rounding
- * @throws ArithmeticException if the value is inexact but the rounding is
- * RoundingMode.UNNECESSARY
- * @return <code>this</code> - <code>val</code>, rounded if need be
- * @since 1.5
- */
- public BigDecimal subtract (BigDecimal val, MathContext mc)
- {
- return subtract(val).round(mc);
- }
- public BigDecimal multiply (BigDecimal val)
- {
- return new BigDecimal (intVal.multiply (val.intVal), scale + val.scale);
- }
- /**
- * Returns a BigDecimal whose value is (this x val) before it is rounded
- * according to the MathContext mc.
- * @param val the multiplicand
- * @param mc the MathContext for rounding
- * @return a new BigDecimal with value approximately (this x val)
- * @throws ArithmeticException if the value is inexact but the rounding mode
- * is RoundingMode.UNNECESSARY
- * @since 1.5
- */
- public BigDecimal multiply (BigDecimal val, MathContext mc)
- {
- return multiply(val).round(mc);
- }
- public BigDecimal divide (BigDecimal val, int roundingMode)
- throws ArithmeticException, IllegalArgumentException
- {
- return divide (val, scale, roundingMode);
- }
- /**
- * Returns a BigDecimal whose value is (this / val), with the specified scale
- * and rounding according to the RoundingMode
- * @param val the divisor
- * @param scale the scale of the BigDecimal returned
- * @param roundingMode the rounding mode to use
- * @return a BigDecimal whose value is approximately (this / val)
- * @throws ArithmeticException if divisor is zero or the rounding mode is
- * UNNECESSARY but the specified scale cannot represent the value exactly
- * @since 1.5
- */
- public BigDecimal divide(BigDecimal val,
- int scale, RoundingMode roundingMode)
- {
- return divide (val, scale, roundingMode.ordinal());
- }
- /**
- * Returns a BigDecimal whose value is (this / val) rounded according to the
- * RoundingMode
- * @param val the divisor
- * @param roundingMode the rounding mode to use
- * @return a BigDecimal whose value is approximately (this / val)
- * @throws ArithmeticException if divisor is zero or the rounding mode is
- * UNNECESSARY but the specified scale cannot represent the value exactly
- */
- public BigDecimal divide (BigDecimal val, RoundingMode roundingMode)
- {
- return divide (val, scale, roundingMode.ordinal());
- }
- public BigDecimal divide(BigDecimal val, int newScale, int roundingMode)
- throws ArithmeticException, IllegalArgumentException
- {
- if (roundingMode < 0 || roundingMode > 7)
- throw
- new IllegalArgumentException("illegal rounding mode: " + roundingMode);
- if (intVal.signum () == 0) // handle special case of 0.0/0.0
- return newScale == 0 ? ZERO : new BigDecimal (ZERO.intVal, newScale);
- // Ensure that pow gets a non-negative value.
- BigInteger valIntVal = val.intVal;
- int power = newScale - (scale - val.scale);
- if (power < 0)
- {
- // Effectively increase the scale of val to avoid an
- // ArithmeticException for a negative power.
- valIntVal = valIntVal.multiply (BigInteger.TEN.pow (-power));
- power = 0;
- }
- BigInteger dividend = intVal.multiply (BigInteger.TEN.pow (power));
- BigInteger parts[] = dividend.divideAndRemainder (valIntVal);
- BigInteger unrounded = parts[0];
- if (parts[1].signum () == 0) // no remainder, no rounding necessary
- return new BigDecimal (unrounded, newScale);
- if (roundingMode == ROUND_UNNECESSARY)
- throw new ArithmeticException ("Rounding necessary");
- int sign = intVal.signum () * valIntVal.signum ();
- if (roundingMode == ROUND_CEILING)
- roundingMode = (sign > 0) ? ROUND_UP : ROUND_DOWN;
- else if (roundingMode == ROUND_FLOOR)
- roundingMode = (sign < 0) ? ROUND_UP : ROUND_DOWN;
- else
- {
- // half is -1 if remainder*2 < positive intValue (*power), 0 if equal,
- // 1 if >. This implies that the remainder to round is less than,
- // equal to, or greater than half way to the next digit.
- BigInteger posRemainder
- = parts[1].signum () < 0 ? parts[1].negate() : parts[1];
- valIntVal = valIntVal.signum () < 0 ? valIntVal.negate () : valIntVal;
- int half = posRemainder.shiftLeft(1).compareTo(valIntVal);
- switch(roundingMode)
- {
- case ROUND_HALF_UP:
- roundingMode = (half < 0) ? ROUND_DOWN : ROUND_UP;
- break;
- case ROUND_HALF_DOWN:
- roundingMode = (half > 0) ? ROUND_UP : ROUND_DOWN;
- break;
- case ROUND_HALF_EVEN:
- if (half < 0)
- roundingMode = ROUND_DOWN;
- else if (half > 0)
- roundingMode = ROUND_UP;
- else if (unrounded.testBit(0)) // odd, then ROUND_HALF_UP
- roundingMode = ROUND_UP;
- else // even, ROUND_HALF_DOWN
- roundingMode = ROUND_DOWN;
- break;
- }
- }
- if (roundingMode == ROUND_UP)
- unrounded = unrounded.add (BigInteger.valueOf (sign > 0 ? 1 : -1));
- // roundingMode == ROUND_DOWN
- return new BigDecimal (unrounded, newScale);
- }
- /**
- * Performs division, if the resulting quotient requires rounding
- * (has a nonterminating decimal expansion),
- * an ArithmeticException is thrown.
- * #see divide(BigDecimal, int, int)
- * @since 1.5
- */
- public BigDecimal divide(BigDecimal divisor)
- throws ArithmeticException, IllegalArgumentException
- {
- return divide(divisor, scale, ROUND_UNNECESSARY);
- }
- /**
- * Returns a BigDecimal whose value is the remainder in the quotient
- * this / val. This is obtained by
- * subtract(divideToIntegralValue(val).multiply(val)).
- * @param val the divisor
- * @return a BigDecimal whose value is the remainder
- * @throws ArithmeticException if val == 0
- * @since 1.5
- */
- public BigDecimal remainder(BigDecimal val)
- {
- return subtract(divideToIntegralValue(val).multiply(val));
- }
- /**
- * Returns a BigDecimal array, the first element of which is the integer part
- * of this / val, and the second element of which is the remainder of
- * that quotient.
- * @param val the divisor
- * @return the above described BigDecimal array
- * @throws ArithmeticException if val == 0
- * @since 1.5
- */
- public BigDecimal[] divideAndRemainder(BigDecimal val)
- {
- BigDecimal[] result = new BigDecimal[2];
- result[0] = divideToIntegralValue(val);
- result[1] = subtract(result[0].multiply(val));
- return result;
- }
- /**
- * Returns a BigDecimal whose value is the integer part of the quotient
- * this / val. The preferred scale is this.scale - val.scale.
- * @param val the divisor
- * @return a BigDecimal whose value is the integer part of this / val.
- * @throws ArithmeticException if val == 0
- * @since 1.5
- */
- public BigDecimal divideToIntegralValue(BigDecimal val)
- {
- return divide(val, ROUND_DOWN).floor().setScale(scale - val.scale, ROUND_DOWN);
- }
- /**
- * Mutates this BigDecimal into one with no fractional part, whose value is
- * equal to the largest integer that is <= to this BigDecimal. Note that
- * since this method is private it is okay to mutate this BigDecimal.
- * @return the BigDecimal obtained through the floor operation on this
- * BigDecimal.
- */
- private BigDecimal floor()
- {
- if (scale <= 0)
- return this;
- String intValStr = intVal.toString();
- intValStr = intValStr.substring(0, intValStr.length() - scale);
- intVal = new BigInteger(intValStr).multiply(BigInteger.TEN.pow(scale));
- return this;
- }
- public int compareTo (BigDecimal val)
- {
- if (scale == val.scale)
- return intVal.compareTo (val.intVal);
- BigInteger thisParts[] =
- intVal.divideAndRemainder (BigInteger.TEN.pow (scale));
- BigInteger valParts[] =
- val.intVal.divideAndRemainder (BigInteger.TEN.pow (val.scale));
- int compare;
- if ((compare = thisParts[0].compareTo (valParts[0])) != 0)
- return compare;
- // quotients are the same, so compare remainders
- // Add some trailing zeros to the remainder with the smallest scale
- if (scale < val.scale)
- thisParts[1] = thisParts[1].multiply
- (BigInteger.valueOf (10).pow (val.scale - scale));
- else if (scale > val.scale)
- valParts[1] = valParts[1].multiply
- (BigInteger.valueOf (10).pow (scale - val.scale));
- // and compare them
- return thisParts[1].compareTo (valParts[1]);
- }
- public boolean equals (Object o)
- {
- return (o instanceof BigDecimal
- && scale == ((BigDecimal) o).scale
- && compareTo ((BigDecimal) o) == 0);
- }
- public int hashCode()
- {
- return intValue() ^ scale;
- }
- public BigDecimal max (BigDecimal val)
- {
- switch (compareTo (val))
- {
- case 1:
- return this;
- default:
- return val;
- }
- }
- public BigDecimal min (BigDecimal val)
- {
- switch (compareTo (val))
- {
- case -1:
- return this;
- default:
- return val;
- }
- }
- public BigDecimal movePointLeft (int n)
- {
- return (n < 0) ? movePointRight (-n) : new BigDecimal (intVal, scale + n);
- }
- public BigDecimal movePointRight (int n)
- {
- if (n < 0)
- return movePointLeft (-n);
- if (scale >= n)
- return new BigDecimal (intVal, scale - n);
- return new BigDecimal (intVal.multiply
- (BigInteger.TEN.pow (n - scale)), 0);
- }
- public int signum ()
- {
- return intVal.signum ();
- }
- public int scale ()
- {
- return scale;
- }
- public BigInteger unscaledValue()
- {
- return intVal;
- }
- public BigDecimal abs ()
- {
- return new BigDecimal (intVal.abs (), scale);
- }
- public BigDecimal negate ()
- {
- return new BigDecimal (intVal.negate (), scale);
- }
- /**
- * Returns a BigDecimal whose value is found first by negating this via
- * the negate() method, then by rounding according to the MathContext mc.
- * @param mc the MathContext for rounding
- * @return a BigDecimal whose value is approximately (-this)
- * @throws ArithmeticException if the value is inexact but the rounding mode
- * is RoundingMode.UNNECESSARY
- * @since 1.5
- */
- public BigDecimal negate(MathContext mc)
- {
- BigDecimal result = negate();
- if (mc.getPrecision() != 0)
- result = result.round(mc);
- return result;
- }
- /**
- * Returns this BigDecimal. This is included for symmetry with the
- * method negate().
- * @return this
- * @since 1.5
- */
- public BigDecimal plus()
- {
- return this;
- }
- /**
- * Returns a BigDecimal whose value is found by rounding <code>this</code>
- * according to the MathContext. This is the same as round(MathContext).
- * @param mc the MathContext for rounding
- * @return a BigDecimal whose value is <code>this</code> before being rounded
- * @throws ArithmeticException if the value is inexact but the rounding mode
- * is RoundingMode.UNNECESSARY
- * @since 1.5
- */
- public BigDecimal plus(MathContext mc)
- {
- return round(mc);
- }
- /**
- * Returns a BigDecimal which is this BigDecimal rounded according to the
- * MathContext rounding settings.
- * @param mc the MathContext that tells us how to round
- * @return the rounded BigDecimal
- */
- public BigDecimal round(MathContext mc)
- {
- int mcPrecision = mc.getPrecision();
- int numToChop = precision() - mcPrecision;
- // If mc specifies not to chop any digits or if we've already chopped
- // enough digits (say by using a MathContext in the constructor for this
- // BigDecimal) then just return this.
- if (mcPrecision == 0 || numToChop <= 0)
- return this;
- // Make a new BigDecimal which is the correct power of 10 to chop off
- // the required number of digits and then call divide.
- BigDecimal div = new BigDecimal(BigInteger.TEN.pow(numToChop));
- BigDecimal rounded = divide(div, scale, mc.getRoundingMode().ordinal());
- rounded.scale -= numToChop;
- rounded.precision = mcPrecision;
- return rounded;
- }
- /**
- * Returns the precision of this BigDecimal (the number of digits in the
- * unscaled value). The precision of a zero value is 1.
- * @return the number of digits in the unscaled value, or 1 if the value
- * is zero.
- */
- public int precision()
- {
- if (precision == 0)
- {
- String s = intVal.toString();
- precision = s.length() - (( s.charAt(0) == '-' ) ? 1 : 0);
- }
- return precision;
- }
- /**
- * Returns the String representation of this BigDecimal, using scientific
- * notation if necessary. The following steps are taken to generate
- * the result:
- *
- * 1. the BigInteger unscaledValue's toString method is called and if
- * <code>scale == 0<code> is returned.
- * 2. an <code>int adjExp</code> is created which is equal to the negation
- * of <code>scale</code> plus the number of digits in the unscaled value,
- * minus one.
- * 3. if <code>scale >= 0 && adjExp >= -6</code> then we represent this
- * BigDecimal without scientific notation. A decimal is added if the
- * scale is positive and zeros are prepended as necessary.
- * 4. if scale is negative or adjExp is less than -6 we use scientific
- * notation. If the unscaled value has more than one digit, a decimal
- * as inserted after the first digit, the character 'E' is appended
- * and adjExp is appended.
- */
- public String toString()
- {
- // bigStr is the String representation of the unscaled value. If
- // scale is zero we simply return this.
- String bigStr = intVal.toString();
- if (scale == 0)
- return bigStr;
- boolean negative = (bigStr.charAt(0) == '-');
- int point = bigStr.length() - scale - (negative ? 1 : 0);
- CPStringBuilder val = new CPStringBuilder();
- if (scale >= 0 && (point - 1) >= -6)
- {
- // Convert to character form without scientific notation.
- if (point <= 0)
- {
- // Zeros need to be prepended to the StringBuilder.
- if (negative)
- val.append('-');
- // Prepend a '0' and a '.' and then as many more '0's as necessary.
- val.append('0').append('.');
- while (point < 0)
- {
- val.append('0');
- point++;
- }
- // Append the unscaled value.
- val.append(bigStr.substring(negative ? 1 : 0));
- }
- else
- {
- // No zeros need to be prepended so the String is simply the
- // unscaled value with the decimal point inserted.
- val.append(bigStr);
- val.insert(point + (negative ? 1 : 0), '.');
- }
- }
- else
- {
- // We must use scientific notation to represent this BigDecimal.
- val.append(bigStr);
- // If there is more than one digit in the unscaled value we put a
- // decimal after the first digit.
- if (bigStr.length() > 1)
- val.insert( ( negative ? 2 : 1 ), '.');
- // And then append 'E' and the exponent = (point - 1).
- val.append('E');
- if (point - 1 >= 0)
- val.append('+');
- val.append( point - 1 );
- }
- return val.toString();
- }
- /**
- * Returns the String representation of this BigDecimal, using engineering
- * notation if necessary. This is similar to toString() but when exponents
- * are used the exponent is made to be a multiple of 3 such that the integer
- * part is between 1 and 999.
- *
- * @return a String representation of this BigDecimal in engineering notation
- * @since 1.5
- */
- public String toEngineeringString()
- {
- // bigStr is the String representation of the unscaled value. If
- // scale is zero we simply return this.
- String bigStr = intVal.toString();
- if (scale == 0)
- return bigStr;
- boolean negative = (bigStr.charAt(0) == '-');
- int point = bigStr.length() - scale - (negative ? 1 : 0);
- // This is the adjusted exponent described above.
- int adjExp = point - 1;
- CPStringBuilder val = new CPStringBuilder();
- if (scale >= 0 && adjExp >= -6)
- {
- // Convert to character form without scientific notation.
- if (point <= 0)
- {
- // Zeros need to be prepended to the StringBuilder.
- if (negative)
- val.append('-');
- // Prepend a '0' and a '.' and then as many more '0's as necessary.
- val.append('0').append('.');
- while (point < 0)
- {
- val.append('0');
- point++;
- }
- // Append the unscaled value.
- val.append(bigStr.substring(negative ? 1 : 0));
- }
- else
- {
- // No zeros need to be prepended so the String is simply the
- // unscaled value with the decimal point inserted.
- val.append(bigStr);
- val.insert(point + (negative ? 1 : 0), '.');
- }
- }
- else
- {
- // We must use scientific notation to represent this BigDecimal.
- // The exponent must be a multiple of 3 and the integer part
- // must be between 1 and 999.
- val.append(bigStr);
- int zeros = adjExp % 3;
- int dot = 1;
- if (adjExp > 0)
- {
- // If the exponent is positive we just move the decimal to the
- // right and decrease the exponent until it is a multiple of 3.
- dot += zeros;
- adjExp -= zeros;
- }
- else
- {
- // If the exponent is negative then we move the dot to the right
- // and decrease the exponent (increase its magnitude) until
- // it is a multiple of 3. Note that this is not adjExp -= zeros
- // because the mod operator doesn't give us the distance to the
- // correct multiple of 3. (-5 mod 3) is -2 but the distance from
- // -5 to the correct multiple of 3 (-6) is 1, not 2.
- if (zeros == -2)
- {
- dot += 1;
- adjExp -= 1;
- }
- else if (zeros == -1)
- {
- dot += 2;
- adjExp -= 2;
- }
- }
- // Either we have to append zeros because, for example, 1.1E+5 should
- // be 110E+3, or we just have to put the decimal in the right place.
- if (dot > val.length())
- {
- while (dot > val.length())
- val.append('0');
- }
- else if (bigStr.length() > dot)
- val.insert(dot + (negative ? 1 : 0), '.');
- // And then append 'E' and the exponent (adjExp).
- val.append('E');
- if (adjExp >= 0)
- val.append('+');
- val.append(adjExp);
- }
- return val.toString();
- }
- /**
- * Returns a String representation of this BigDecimal without using
- * scientific notation. This is how toString() worked for releases 1.4
- * and previous. Zeros may be added to the end of the String. For
- * example, an unscaled value of 1234 and a scale of -3 would result in
- * the String 1234000, but the toString() method would return
- * 1.234E+6.
- * @return a String representation of this BigDecimal
- * @since 1.5
- */
- public String toPlainString()
- {
- // If the scale is zero we simply return the String representation of the
- // unscaled value.
- String bigStr = intVal.toString();
- if (scale == 0)
- return bigStr;
- // Remember if we have to put a negative sign at the start.
- boolean negative = (bigStr.charAt(0) == '-');
- int point = bigStr.length() - scale - (negative ? 1 : 0);
- CPStringBuilder sb = new CPStringBuilder(bigStr.length() + 2
- + (point <= 0 ? (-point + 1) : 0));
- if (point <= 0)
- {
- // We have to prepend zeros and a decimal point.
- if (negative)
- sb.append('-');
- sb.append('0').append('.');
- while (point < 0)
- {
- sb.append('0');
- point++;
- }
- sb.append(bigStr.substring(negative ? 1 : 0));
- }
- else if (point < bigStr.length())
- {
- // No zeros need to be prepended or appended, just put the decimal
- // in the right place.
- sb.append(bigStr);
- sb.insert(point + (negative ? 1 : 0), '.');
- }
- else
- {
- // We must append zeros instead of using scientific notation.
- sb.append(bigStr);
- for (int i = bigStr.length(); i < point; i++)
- sb.append('0');
- }
- return sb.toString();
- }
- /**
- * Converts this BigDecimal to a BigInteger. Any fractional part will
- * be discarded.
- * @return a BigDecimal whose value is equal to floor[this]
- */
- public BigInteger toBigInteger ()
- {
- // If scale > 0 then we must divide, if scale > 0 then we must multiply,
- // and if scale is zero then we just return intVal;
- if (scale > 0)
- return intVal.divide (BigInteger.TEN.pow (scale));
- else if (scale < 0)
- return intVal.multiply(BigInteger.TEN.pow(-scale));
- return intVal;
- }
- /**
- * Converts this BigDecimal into a BigInteger, throwing an
- * ArithmeticException if the conversion is not exact.
- * @return a BigInteger whose value is equal to the value of this BigDecimal
- * @since 1.5
- */
- public BigInteger toBigIntegerExact()
- {
- if (scale > 0)
- {
- // If we have to divide, we must check if the result is exact.
- BigInteger[] result =
- intVal.divideAndRemainder(BigInteger.TEN.pow(scale));
- if (result[1].equals(BigInteger.ZERO))
- return result[0];
- throw new ArithmeticException("No exact BigInteger representation");
- }
- else if (scale < 0)
- // If we're multiplying instead, then we needn't check for exactness.
- return intVal.multiply(BigInteger.TEN.pow(-scale));
- // If the scale is zero we can simply return intVal.
- return intVal;
- }
- public int intValue ()
- {
- return toBigInteger ().intValue ();
- }
- /**
- * Returns a BigDecimal which is numerically equal to this BigDecimal but
- * with no trailing zeros in the representation. For example, if this
- * BigDecimal has [unscaledValue, scale] = [6313000, 4] this method returns
- * a BigDecimal with [unscaledValue, scale] = [6313, 1]. As another
- * example, [12400, -2] would become [124, -4].
- * @return a numerically equal BigDecimal with no trailing zeros
- */
- public BigDecimal stripTrailingZeros()
- {
- String intValStr = intVal.toString();
- int newScale = scale;
- int pointer = intValStr.length() - 1;
- // This loop adjusts pointer which will be used to give us the substring
- // of intValStr to use in our new BigDecimal, and also accordingly
- // adjusts the scale of our new BigDecimal.
- while (intValStr.charAt(pointer) == '0')
- {
- pointer --;
- newScale --;
- }
- // Create a new BigDecimal with the appropriate substring and then
- // set its scale.
- BigDecimal result = new BigDecimal(intValStr.substring(0, pointer + 1));
- result.scale = newScale;
- return result;
- }
- public long longValue ()
- {
- return toBigInteger().longValue();
- }
- public float floatValue()
- {
- return Float.valueOf(toString()).floatValue();
- }
- public double doubleValue()
- {
- return Double.valueOf(toString()).doubleValue();
- }
- public BigDecimal setScale (int scale) throws ArithmeticException
- {
- return setScale (scale, ROUND_UNNECESSARY);
- }
- public BigDecimal setScale (int scale, int roundingMode)
- throws ArithmeticException, IllegalArgumentException
- {
- // NOTE: The 1.5 JRE doesn't throw this, ones prior to it do and
- // the spec says it should. Nevertheless, if 1.6 doesn't fix this
- // we should consider removing it.
- if( scale < 0 ) throw new ArithmeticException("Scale parameter < 0.");
- return divide (ONE, scale, roundingMode);
- }
- /**
- * Returns a BigDecimal whose value is the same as this BigDecimal but whose
- * representation has a scale of <code>newScale</code>. If the scale is
- * reduced then rounding may occur, according to the RoundingMode.
- * @param newScale
- * @param roundingMode
- * @return a BigDecimal whose scale is as given, whose value is
- * <code>this</code> with possible rounding
- * @throws ArithmeticException if the rounding mode is UNNECESSARY but
- * rounding is required
- * @since 1.5
- */
- public BigDecimal setScale(int newScale, RoundingMode roundingMode)
- {
- return setScale(newScale, roundingMode.ordinal());
- }
- /**
- * Returns a new BigDecimal constructed from the BigDecimal(String)
- * constructor using the Double.toString(double) method to obtain
- * the String.
- * @param val the double value used in Double.toString(double)
- * @return a BigDecimal representation of val
- * @throws NumberFormatException if val is NaN or infinite
- * @since 1.5
- */
- public static BigDecimal valueOf(double val)
- {
- if (Double.isInfinite(val) || Double.isNaN(val))
- throw new NumberFormatException("argument cannot be NaN or infinite.");
- return new BigDecimal(Double.toString(val));
- }
- /**
- * Returns a BigDecimal whose numerical value is the numerical value
- * of this BigDecimal multiplied by 10 to the power of <code>n</code>.
- * @param n the power of ten
- * @return the new BigDecimal
- * @since 1.5
- */
- public BigDecimal scaleByPowerOfTen(int n)
- {
- BigDecimal result = new BigDecimal(intVal, scale - n);
- result.precision = precision;
- return result;
- }
- /**
- * Returns a BigDecimal whose value is <code>this</code> to the power of
- * <code>n</code>.
- * @param n the power
- * @return the new BigDecimal
- * @since 1.5
- */
- public BigDecimal pow(int n)
- {
- if (n < 0 || n > 999999999)
- throw new ArithmeticException("n must be between 0 and 999999999");
- BigDecimal result = new BigDecimal(intVal.pow(n), scale * n);
- return result;
- }
- /**
- * Returns a BigDecimal whose value is determined by first calling pow(n)
- * and then by rounding according to the MathContext mc.
- * @param n the power
- * @param mc the MathContext
- * @return the new BigDecimal
- * @throws ArithmeticException if n < 0 or n > 999999999 or if the result is
- * inexact but the rounding is RoundingMode.UNNECESSARY
- * @since 1.5
- */
- public BigDecimal pow(int n, MathContext mc)
- {
- // FIXME: The specs claim to use the X3.274-1996 algorithm. We
- // currently do not.
- return pow(n).round(mc);
- }
- /**
- * Returns a BigDecimal whose value is the absolute value of this BigDecimal
- * with rounding according to the given MathContext.
- * @param mc the MathContext
- * @return the new BigDecimal
- */
- public BigDecimal abs(MathContext mc)
- {
- BigDecimal result = abs();
- result = result.round(mc);
- return result;
- }
- /**
- * Returns the size of a unit in the last place of this BigDecimal. This
- * returns a BigDecimal with [unscaledValue, scale] = [1, this.scale()].
- * @return the size of a unit in the last place of <code>this</code>.
- * @since 1.5
- */
- public BigDecimal ulp()
- {
- return new BigDecimal(BigInteger.ONE, scale);
- }
- /**
- * Converts this BigDecimal to a long value.
- * @return the long value
- * @throws ArithmeticException if rounding occurs or if overflow occurs
- * @since 1.5
- */
- public long longValueExact()
- {
- // Set scale will throw an exception if rounding occurs.
- BigDecimal temp = setScale(0, ROUND_UNNECESSARY);
- BigInteger tempVal = temp.intVal;
- // Check for overflow.
- long result = intVal.longValue();
- if (tempVal.compareTo(BigInteger.valueOf(Long.MAX_VALUE)) > 1
- || (result < 0 && signum() == 1) || (result > 0 && signum() == -1))
- throw new ArithmeticException("this BigDecimal is too " +
- "large to fit into the return type");
- return intVal.longValue();
- }
- /**
- * Converts this BigDecimal into an int by first calling longValueExact
- * and then checking that the <code>long</code> returned from that
- * method fits into an <code>int</code>.
- * @return an int whose value is <code>this</code>
- * @throws ArithmeticException if this BigDecimal has a fractional part
- * or is too large to fit into an int.
- * @since 1.5
- */
- public int intValueExact()
- {
- long temp = longValueExact();
- int result = (int)temp;
- if (result != temp)
- throw new ArithmeticException ("this BigDecimal cannot fit into an int");
- return result;
- }
- /**
- * Converts this BigDecimal into a byte by first calling longValueExact
- * and then checking that the <code>long</code> returned from that
- * method fits into a <code>byte</code>.
- * @return a byte whose value is <code>this</code>
- * @throws ArithmeticException if this BigDecimal has a fractional part
- * or is too large to fit into a byte.
- * @since 1.5
- */
- public byte byteValueExact()
- {
- long temp = longValueExact();
- byte result = (byte)temp;
- if (result != temp)
- throw new ArithmeticException ("this BigDecimal cannot fit into a byte");
- return result;
- }
- /**
- * Converts this BigDecimal into a short by first calling longValueExact
- * and then checking that the <code>long</code> returned from that
- * method fits into a <code>short</code>.
- * @return a short whose value is <code>this</code>
- * @throws ArithmeticException if this BigDecimal has a fractional part
- * or is too large to fit into a short.
- * @since 1.5
- */
- public short shortValueExact()
- {
- long temp = longValueExact();
- short result = (short)temp;
- if (result != temp)
- throw new ArithmeticException ("this BigDecimal cannot fit into a short");
- return result;
- }
- }
|