123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426 |
- /* Square.java --
- Copyright (C) 2001, 2002, 2003, 2006 Free Software Foundation, Inc.
- This file is a part of GNU Classpath.
- GNU Classpath is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2 of the License, or (at
- your option) any later version.
- GNU Classpath is distributed in the hope that it will be useful, but
- WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- General Public License for more details.
- You should have received a copy of the GNU General Public License
- along with GNU Classpath; if not, write to the Free Software
- Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
- USA
- Linking this library statically or dynamically with other modules is
- making a combined work based on this library. Thus, the terms and
- conditions of the GNU General Public License cover the whole
- combination.
- As a special exception, the copyright holders of this library give you
- permission to link this library with independent modules to produce an
- executable, regardless of the license terms of these independent
- modules, and to copy and distribute the resulting executable under
- terms of your choice, provided that you also meet, for each linked
- independent module, the terms and conditions of the license of that
- module. An independent module is a module which is not derived from
- or based on this library. If you modify this library, you may extend
- this exception to your version of the library, but you are not
- obligated to do so. If you do not wish to do so, delete this
- exception statement from your version. */
- package gnu.javax.crypto.cipher;
- import gnu.java.security.Registry;
- import gnu.java.security.util.Util;
- import java.security.InvalidKeyException;
- import java.util.ArrayList;
- import java.util.Collections;
- import java.util.Iterator;
- /**
- * Square is a 128-bit key, 128-bit block cipher algorithm developed by Joan
- * Daemen, Lars Knudsen and Vincent Rijmen.
- * <p>
- * References:
- * <ol>
- * <li><a href="http://www.esat.kuleuven.ac.be/~rijmen/square/">The block
- * cipher Square</a>.<br>
- * <a href="mailto:daemen.j@protonworld.com">Joan Daemen</a>, <a
- * href="mailto:lars.knudsen@esat.kuleuven.ac.be">Lars Knudsen</a> and <a
- * href="mailto:vincent.rijmen@esat.kuleuven.ac.be">Vincent Rijmen</a>.</li>
- * </ol>
- */
- public final class Square
- extends BaseCipher
- {
- private static final int DEFAULT_BLOCK_SIZE = 16; // in bytes
- private static final int DEFAULT_KEY_SIZE = 16; // in bytes
- private static final int ROUNDS = 8;
- private static final int ROOT = 0x1F5; // for generating GF(2**8)
- private static final int[] OFFSET = new int[ROUNDS];
- private static final String Sdata =
- "\uB1CE\uC395\u5AAD\uE702\u4D44\uFB91\u0C87\uA150"
- + "\uCB67\u54DD\u468F\uE14E\uF0FD\uFCEB\uF9C4\u1A6E"
- + "\u5EF5\uCC8D\u1C56\u43FE\u0761\uF875\u59FF\u0322"
- + "\u8AD1\u13EE\u8800\u0E34\u1580\u94E3\uEDB5\u5323"
- + "\u4B47\u17A7\u9035\uABD8\uB8DF\u4F57\u9A92\uDB1B"
- + "\u3CC8\u9904\u8EE0\uD77D\u85BB\u402C\u3A45\uF142"
- + "\u6520\u4118\u7225\u9370\u3605\uF20B\uA379\uEC08"
- + "\u2731\u32B6\u7CB0\u0A73\u5B7B\uB781\uD20D\u6A26"
- + "\u9E58\u9C83\u74B3\uAC30\u7A69\u770F\uAE21\uDED0"
- + "\u2E97\u10A4\u98A8\uD468\u2D62\u296D\u1649\u76C7"
- + "\uE8C1\u9637\uE5CA\uF4E9\u6312\uC2A6\u14BC\uD328"
- + "\uAF2F\uE624\u52C6\uA009\uBD8C\uCF5D\u115F\u01C5"
- + "\u9F3D\uA29B\uC93B\uBE51\u191F\u3F5C\uB2EF\u4ACD"
- + "\uBFBA\u6F64\uD9F3\u3EB4\uAADC\uD506\uC07E\uF666"
- + "\u6C84\u7138\uB91D\u7F9D\u488B\u2ADA\uA533\u8239"
- + "\uD678\u86FA\uE42B\uA91E\u8960\u6BEA\u554C\uF7E2";
- /** Substitution boxes for encryption and decryption. */
- private static final byte[] Se = new byte[256];
- private static final byte[] Sd = new byte[256];
- /** Transposition boxes for encryption and decryption. */
- private static final int[] Te = new int[256];
- private static final int[] Td = new int[256];
- /**
- * KAT vector (from ecb_vk): I=87 KEY=00000000000000000000020000000000
- * CT=A9DF031B4E25E89F527EFFF89CB0BEBA
- */
- private static final byte[] KAT_KEY =
- Util.toBytesFromString("00000000000000000000020000000000");
- private static final byte[] KAT_CT =
- Util.toBytesFromString("A9DF031B4E25E89F527EFFF89CB0BEBA");
- /** caches the result of the correctness test, once executed. */
- private static Boolean valid;
- static
- {
- int i, j;
- // re-construct Se box values
- int limit = Sdata.length();
- char c1;
- for (i = 0, j = 0; i < limit; i++)
- {
- c1 = Sdata.charAt(i);
- Se[j++] = (byte)(c1 >>> 8);
- Se[j++] = (byte) c1;
- }
- // compute Sd box values
- for (i = 0; i < 256; i++)
- Sd[Se[i] & 0xFF] = (byte) i;
- // generate OFFSET values
- OFFSET[0] = 1;
- for (i = 1; i < ROUNDS; i++)
- {
- OFFSET[i] = mul(OFFSET[i - 1], 2);
- OFFSET[i - 1] <<= 24;
- }
- OFFSET[ROUNDS - 1] <<= 24;
- // generate Te and Td boxes if we're not reading their values
- // Notes:
- // (1) The function mul() computes the product of two elements of GF(2**8)
- // with ROOT as reduction polynomial.
- // (2) the values used in computing the Te and Td are the GF(2**8)
- // coefficients of the diffusion polynomial c(x) and its inverse
- // (modulo x**4 + 1) d(x), defined in sections 2.1 and 4 of the Square
- // paper.
- for (i = 0; i < 256; i++)
- {
- j = Se[i] & 0xFF;
- Te[i] = (Se[i & 3] == 0) ? 0
- : mul(j, 2) << 24
- | j << 16
- | j << 8
- | mul(j, 3);
- j = Sd[i] & 0xFF;
- Td[i] = (Sd[i & 3] == 0) ? 0
- : mul(j, 14) << 24
- | mul(j, 9) << 16
- | mul(j, 13) << 8
- | mul(j, 11);
- }
- }
- /** Trivial 0-arguments constructor. */
- public Square()
- {
- super(Registry.SQUARE_CIPHER, DEFAULT_BLOCK_SIZE, DEFAULT_KEY_SIZE);
- }
- private static void square(byte[] in, int i, byte[] out, int j, int[][] K,
- int[] T, byte[] S)
- {
- int a = ((in[i++]) << 24
- | (in[i++] & 0xFF) << 16
- | (in[i++] & 0xFF) << 8
- | (in[i++] & 0xFF) ) ^ K[0][0];
- int b = ((in[i++]) << 24
- | (in[i++] & 0xFF) << 16
- | (in[i++] & 0xFF) << 8
- | (in[i++] & 0xFF) ) ^ K[0][1];
- int c = ((in[i++]) << 24
- | (in[i++] & 0xFF) << 16
- | (in[i++] & 0xFF) << 8
- | (in[i++] & 0xFF) ) ^ K[0][2];
- int d = ((in[i++]) << 24
- | (in[i++] & 0xFF) << 16
- | (in[i++] & 0xFF) << 8
- | (in[i ] & 0xFF) ) ^ K[0][3];
- int r, aa, bb, cc, dd;
- for (r = 1; r < ROUNDS; r++)
- { // R - 1 full rounds
- aa = T[(a >>> 24) ]
- ^ rot32R(T[(b >>> 24) ], 8)
- ^ rot32R(T[(c >>> 24) ], 16)
- ^ rot32R(T[(d >>> 24) ], 24) ^ K[r][0];
- bb = T[(a >>> 16) & 0xFF]
- ^ rot32R(T[(b >>> 16) & 0xFF], 8)
- ^ rot32R(T[(c >>> 16) & 0xFF], 16)
- ^ rot32R(T[(d >>> 16) & 0xFF], 24) ^ K[r][1];
- cc = T[(a >>> 8) & 0xFF]
- ^ rot32R(T[(b >>> 8) & 0xFF], 8)
- ^ rot32R(T[(c >>> 8) & 0xFF], 16)
- ^ rot32R(T[(d >>> 8) & 0xFF], 24) ^ K[r][2];
- dd = T[ a & 0xFF]
- ^ rot32R(T[ b & 0xFF], 8)
- ^ rot32R(T[ c & 0xFF], 16)
- ^ rot32R(T[ d & 0xFF], 24) ^ K[r][3];
- a = aa;
- b = bb;
- c = cc;
- d = dd;
- }
- // last round (diffusion becomes only transposition)
- aa = ((S[(a >>> 24) ] ) << 24
- | (S[(b >>> 24) ] & 0xFF) << 16
- | (S[(c >>> 24) ] & 0xFF) << 8
- | (S[(d >>> 24) ] & 0xFF) ) ^ K[r][0];
- bb = ((S[(a >>> 16) & 0xFF] ) << 24
- | (S[(b >>> 16) & 0xFF] & 0xFF) << 16
- | (S[(c >>> 16) & 0xFF] & 0xFF) << 8
- | (S[(d >>> 16) & 0xFF] & 0xFF) ) ^ K[r][1];
- cc = ((S[(a >>> 8) & 0xFF] ) << 24
- | (S[(b >>> 8) & 0xFF] & 0xFF) << 16
- | (S[(c >>> 8) & 0xFF] & 0xFF) << 8
- | (S[(d >>> 8) & 0xFF] & 0xFF) ) ^ K[r][2];
- dd = ((S[ a & 0xFF] ) << 24
- | (S[ b & 0xFF] & 0xFF) << 16
- | (S[ c & 0xFF] & 0xFF) << 8
- | (S[ d & 0xFF] & 0xFF) ) ^ K[r][3];
- out[j++] = (byte)(aa >>> 24);
- out[j++] = (byte)(aa >>> 16);
- out[j++] = (byte)(aa >>> 8);
- out[j++] = (byte) aa;
- out[j++] = (byte)(bb >>> 24);
- out[j++] = (byte)(bb >>> 16);
- out[j++] = (byte)(bb >>> 8);
- out[j++] = (byte) bb;
- out[j++] = (byte)(cc >>> 24);
- out[j++] = (byte)(cc >>> 16);
- out[j++] = (byte)(cc >>> 8);
- out[j++] = (byte) cc;
- out[j++] = (byte)(dd >>> 24);
- out[j++] = (byte)(dd >>> 16);
- out[j++] = (byte)(dd >>> 8);
- out[j ] = (byte) dd;
- }
- /**
- * Applies the Theta function to an input <i>in</i> in order to produce in
- * <i>out</i> an internal session sub-key.
- * <p>
- * Both <i>in</i> and <i>out</i> are arrays of four ints.
- * <p>
- * Pseudo-code is:
- * <pre>
- * for (i = 0; i < 4; i++)
- * {
- * out[i] = 0;
- * for (j = 0, n = 24; j < 4; j++, n -= 8)
- * {
- * k = mul(in[i] >>> 24, G[0][j]) ˆ mul(in[i] >>> 16, G[1][j])
- * ˆ mul(in[i] >>> 8, G[2][j]) ˆ mul(in[i], G[3][j]);
- * out[i] ˆ= k << n;
- * }
- * }
- * </pre>
- */
- private static void transform(int[] in, int[] out)
- {
- int l3, l2, l1, l0, m;
- for (int i = 0; i < 4; i++)
- {
- l3 = in[i];
- l2 = l3 >>> 8;
- l1 = l3 >>> 16;
- l0 = l3 >>> 24;
- m = ((mul(l0, 2) ^ mul(l1, 3) ^ l2 ^ l3) & 0xFF) << 24;
- m ^= ((l0 ^ mul(l1, 2) ^ mul(l2, 3) ^ l3) & 0xFF) << 16;
- m ^= ((l0 ^ l1 ^ mul(l2, 2) ^ mul(l3, 3)) & 0xFF) << 8;
- m ^= ((mul(l0, 3) ^ l1 ^ l2 ^ mul(l3, 2)) & 0xFF);
- out[i] = m;
- }
- }
- /**
- * Left rotate a 32-bit chunk.
- *
- * @param x the 32-bit data to rotate
- * @param s number of places to left-rotate by
- * @return the newly permutated value.
- */
- private static int rot32L(int x, int s)
- {
- return x << s | x >>> (32 - s);
- }
- /**
- * Right rotate a 32-bit chunk.
- *
- * @param x the 32-bit data to rotate
- * @param s number of places to right-rotate by
- * @return the newly permutated value.
- */
- private static int rot32R(int x, int s)
- {
- return x >>> s | x << (32 - s);
- }
- /**
- * Returns the product of two binary numbers a and b, using the generator ROOT
- * as the modulus: p = (a * b) mod ROOT. ROOT Generates a suitable Galois
- * Field in GF(2**8).
- * <p>
- * For best performance call it with abs(b) < abs(a).
- *
- * @param a operand for multiply.
- * @param b operand for multiply.
- * @return the result of (a * b) % ROOT.
- */
- private static final int mul(int a, int b)
- {
- if (a == 0)
- return 0;
- a &= 0xFF;
- b &= 0xFF;
- int result = 0;
- while (b != 0)
- {
- if ((b & 0x01) != 0)
- result ^= a;
- b >>>= 1;
- a <<= 1;
- if (a > 0xFF)
- a ^= ROOT;
- }
- return result & 0xFF;
- }
- public Object clone()
- {
- Square result = new Square();
- result.currentBlockSize = this.currentBlockSize;
- return result;
- }
- public Iterator blockSizes()
- {
- ArrayList al = new ArrayList();
- al.add(Integer.valueOf(DEFAULT_BLOCK_SIZE));
- return Collections.unmodifiableList(al).iterator();
- }
- public Iterator keySizes()
- {
- ArrayList al = new ArrayList();
- al.add(Integer.valueOf(DEFAULT_KEY_SIZE));
- return Collections.unmodifiableList(al).iterator();
- }
- public Object makeKey(byte[] uk, int bs) throws InvalidKeyException
- {
- if (bs != DEFAULT_BLOCK_SIZE)
- throw new IllegalArgumentException();
- if (uk == null)
- throw new InvalidKeyException("Empty key");
- if (uk.length != DEFAULT_KEY_SIZE)
- throw new InvalidKeyException("Key is not 128-bit.");
- int[][] Ke = new int[ROUNDS + 1][4];
- int[][] Kd = new int[ROUNDS + 1][4];
- int[][] tK = new int[ROUNDS + 1][4];
- int i = 0;
- Ke[0][0] = (uk[i++] & 0xFF) << 24
- | (uk[i++] & 0xFF) << 16
- | (uk[i++] & 0xFF) << 8
- | (uk[i++] & 0xFF);
- tK[0][0] = Ke[0][0];
- Ke[0][1] = (uk[i++] & 0xFF) << 24
- | (uk[i++] & 0xFF) << 16
- | (uk[i++] & 0xFF) << 8
- | (uk[i++] & 0xFF);
- tK[0][1] = Ke[0][1];
- Ke[0][2] = (uk[i++] & 0xFF) << 24
- | (uk[i++] & 0xFF) << 16
- | (uk[i++] & 0xFF) << 8
- | (uk[i++] & 0xFF);
- tK[0][2] = Ke[0][2];
- Ke[0][3] = (uk[i++] & 0xFF) << 24
- | (uk[i++] & 0xFF) << 16
- | (uk[i++] & 0xFF) << 8
- | (uk[i ] & 0xFF);
- tK[0][3] = Ke[0][3];
- int j;
- for (i = 1, j = 0; i < ROUNDS + 1; i++, j++)
- {
- tK[i][0] = tK[j][0] ^ rot32L(tK[j][3], 8) ^ OFFSET[j];
- tK[i][1] = tK[j][1] ^ tK[i][0];
- tK[i][2] = tK[j][2] ^ tK[i][1];
- tK[i][3] = tK[j][3] ^ tK[i][2];
- System.arraycopy(tK[i], 0, Ke[i], 0, 4);
- transform(Ke[j], Ke[j]);
- }
- for (i = 0; i < ROUNDS; i++)
- System.arraycopy(tK[ROUNDS - i], 0, Kd[i], 0, 4);
- transform(tK[0], Kd[ROUNDS]);
- return new Object[] { Ke, Kd };
- }
- public void encrypt(byte[] in, int i, byte[] out, int j, Object k, int bs)
- {
- if (bs != DEFAULT_BLOCK_SIZE)
- throw new IllegalArgumentException();
- int[][] K = (int[][])((Object[]) k)[0];
- square(in, i, out, j, K, Te, Se);
- }
- public void decrypt(byte[] in, int i, byte[] out, int j, Object k, int bs)
- {
- if (bs != DEFAULT_BLOCK_SIZE)
- throw new IllegalArgumentException();
- int[][] K = (int[][])((Object[]) k)[1];
- square(in, i, out, j, K, Td, Sd);
- }
- public boolean selfTest()
- {
- if (valid == null)
- {
- boolean result = super.selfTest(); // do symmetry tests
- if (result)
- result = testKat(KAT_KEY, KAT_CT);
- valid = Boolean.valueOf(result);
- }
- return valid.booleanValue();
- }
- }
|