123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476 |
- // Copyright 2009 The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- // Binary to decimal floating point conversion.
- // Algorithm:
- // 1) store mantissa in multiprecision decimal
- // 2) shift decimal by exponent
- // 3) read digits out & format
- package strconv
- import "math"
- // TODO: move elsewhere?
- type floatInfo struct {
- mantbits uint
- expbits uint
- bias int
- }
- var float32info = floatInfo{23, 8, -127}
- var float64info = floatInfo{52, 11, -1023}
- // FormatFloat converts the floating-point number f to a string,
- // according to the format fmt and precision prec. It rounds the
- // result assuming that the original was obtained from a floating-point
- // value of bitSize bits (32 for float32, 64 for float64).
- //
- // The format fmt is one of
- // 'b' (-ddddp±ddd, a binary exponent),
- // 'e' (-d.dddde±dd, a decimal exponent),
- // 'E' (-d.ddddE±dd, a decimal exponent),
- // 'f' (-ddd.dddd, no exponent),
- // 'g' ('e' for large exponents, 'f' otherwise), or
- // 'G' ('E' for large exponents, 'f' otherwise).
- //
- // The precision prec controls the number of digits
- // (excluding the exponent) printed by the 'e', 'E', 'f', 'g', and 'G' formats.
- // For 'e', 'E', and 'f' it is the number of digits after the decimal point.
- // For 'g' and 'G' it is the total number of digits.
- // The special precision -1 uses the smallest number of digits
- // necessary such that ParseFloat will return f exactly.
- func FormatFloat(f float64, fmt byte, prec, bitSize int) string {
- return string(genericFtoa(make([]byte, 0, max(prec+4, 24)), f, fmt, prec, bitSize))
- }
- // AppendFloat appends the string form of the floating-point number f,
- // as generated by FormatFloat, to dst and returns the extended buffer.
- func AppendFloat(dst []byte, f float64, fmt byte, prec int, bitSize int) []byte {
- return genericFtoa(dst, f, fmt, prec, bitSize)
- }
- func genericFtoa(dst []byte, val float64, fmt byte, prec, bitSize int) []byte {
- var bits uint64
- var flt *floatInfo
- switch bitSize {
- case 32:
- bits = uint64(math.Float32bits(float32(val)))
- flt = &float32info
- case 64:
- bits = math.Float64bits(val)
- flt = &float64info
- default:
- panic("strconv: illegal AppendFloat/FormatFloat bitSize")
- }
- neg := bits>>(flt.expbits+flt.mantbits) != 0
- exp := int(bits>>flt.mantbits) & (1<<flt.expbits - 1)
- mant := bits & (uint64(1)<<flt.mantbits - 1)
- switch exp {
- case 1<<flt.expbits - 1:
- // Inf, NaN
- var s string
- switch {
- case mant != 0:
- s = "NaN"
- case neg:
- s = "-Inf"
- default:
- s = "+Inf"
- }
- return append(dst, s...)
- case 0:
- // denormalized
- exp++
- default:
- // add implicit top bit
- mant |= uint64(1) << flt.mantbits
- }
- exp += flt.bias
- // Pick off easy binary format.
- if fmt == 'b' {
- return fmtB(dst, neg, mant, exp, flt)
- }
- if !optimize {
- return bigFtoa(dst, prec, fmt, neg, mant, exp, flt)
- }
- var digs decimalSlice
- ok := false
- // Negative precision means "only as much as needed to be exact."
- shortest := prec < 0
- if shortest {
- // Try Grisu3 algorithm.
- f := new(extFloat)
- lower, upper := f.AssignComputeBounds(mant, exp, neg, flt)
- var buf [32]byte
- digs.d = buf[:]
- ok = f.ShortestDecimal(&digs, &lower, &upper)
- if !ok {
- return bigFtoa(dst, prec, fmt, neg, mant, exp, flt)
- }
- // Precision for shortest representation mode.
- switch fmt {
- case 'e', 'E':
- prec = digs.nd - 1
- case 'f':
- prec = max(digs.nd-digs.dp, 0)
- case 'g', 'G':
- prec = digs.nd
- }
- } else if fmt != 'f' {
- // Fixed number of digits.
- digits := prec
- switch fmt {
- case 'e', 'E':
- digits++
- case 'g', 'G':
- if prec == 0 {
- prec = 1
- }
- digits = prec
- }
- if digits <= 15 {
- // try fast algorithm when the number of digits is reasonable.
- var buf [24]byte
- digs.d = buf[:]
- f := extFloat{mant, exp - int(flt.mantbits), neg}
- ok = f.FixedDecimal(&digs, digits)
- }
- }
- if !ok {
- return bigFtoa(dst, prec, fmt, neg, mant, exp, flt)
- }
- return formatDigits(dst, shortest, neg, digs, prec, fmt)
- }
- // bigFtoa uses multiprecision computations to format a float.
- func bigFtoa(dst []byte, prec int, fmt byte, neg bool, mant uint64, exp int, flt *floatInfo) []byte {
- d := new(decimal)
- d.Assign(mant)
- d.Shift(exp - int(flt.mantbits))
- var digs decimalSlice
- shortest := prec < 0
- if shortest {
- roundShortest(d, mant, exp, flt)
- digs = decimalSlice{d: d.d[:], nd: d.nd, dp: d.dp}
- // Precision for shortest representation mode.
- switch fmt {
- case 'e', 'E':
- prec = digs.nd - 1
- case 'f':
- prec = max(digs.nd-digs.dp, 0)
- case 'g', 'G':
- prec = digs.nd
- }
- } else {
- // Round appropriately.
- switch fmt {
- case 'e', 'E':
- d.Round(prec + 1)
- case 'f':
- d.Round(d.dp + prec)
- case 'g', 'G':
- if prec == 0 {
- prec = 1
- }
- d.Round(prec)
- }
- digs = decimalSlice{d: d.d[:], nd: d.nd, dp: d.dp}
- }
- return formatDigits(dst, shortest, neg, digs, prec, fmt)
- }
- func formatDigits(dst []byte, shortest bool, neg bool, digs decimalSlice, prec int, fmt byte) []byte {
- switch fmt {
- case 'e', 'E':
- return fmtE(dst, neg, digs, prec, fmt)
- case 'f':
- return fmtF(dst, neg, digs, prec)
- case 'g', 'G':
- // trailing fractional zeros in 'e' form will be trimmed.
- eprec := prec
- if eprec > digs.nd && digs.nd >= digs.dp {
- eprec = digs.nd
- }
- // %e is used if the exponent from the conversion
- // is less than -4 or greater than or equal to the precision.
- // if precision was the shortest possible, use precision 6 for this decision.
- if shortest {
- eprec = 6
- }
- exp := digs.dp - 1
- if exp < -4 || exp >= eprec {
- if prec > digs.nd {
- prec = digs.nd
- }
- return fmtE(dst, neg, digs, prec-1, fmt+'e'-'g')
- }
- if prec > digs.dp {
- prec = digs.nd
- }
- return fmtF(dst, neg, digs, max(prec-digs.dp, 0))
- }
- // unknown format
- return append(dst, '%', fmt)
- }
- // Round d (= mant * 2^exp) to the shortest number of digits
- // that will let the original floating point value be precisely
- // reconstructed. Size is original floating point size (64 or 32).
- func roundShortest(d *decimal, mant uint64, exp int, flt *floatInfo) {
- // If mantissa is zero, the number is zero; stop now.
- if mant == 0 {
- d.nd = 0
- return
- }
- // Compute upper and lower such that any decimal number
- // between upper and lower (possibly inclusive)
- // will round to the original floating point number.
- // We may see at once that the number is already shortest.
- //
- // Suppose d is not denormal, so that 2^exp <= d < 10^dp.
- // The closest shorter number is at least 10^(dp-nd) away.
- // The lower/upper bounds computed below are at distance
- // at most 2^(exp-mantbits).
- //
- // So the number is already shortest if 10^(dp-nd) > 2^(exp-mantbits),
- // or equivalently log2(10)*(dp-nd) > exp-mantbits.
- // It is true if 332/100*(dp-nd) >= exp-mantbits (log2(10) > 3.32).
- minexp := flt.bias + 1 // minimum possible exponent
- if exp > minexp && 332*(d.dp-d.nd) >= 100*(exp-int(flt.mantbits)) {
- // The number is already shortest.
- return
- }
- // d = mant << (exp - mantbits)
- // Next highest floating point number is mant+1 << exp-mantbits.
- // Our upper bound is halfway between, mant*2+1 << exp-mantbits-1.
- upper := new(decimal)
- upper.Assign(mant*2 + 1)
- upper.Shift(exp - int(flt.mantbits) - 1)
- // d = mant << (exp - mantbits)
- // Next lowest floating point number is mant-1 << exp-mantbits,
- // unless mant-1 drops the significant bit and exp is not the minimum exp,
- // in which case the next lowest is mant*2-1 << exp-mantbits-1.
- // Either way, call it mantlo << explo-mantbits.
- // Our lower bound is halfway between, mantlo*2+1 << explo-mantbits-1.
- var mantlo uint64
- var explo int
- if mant > 1<<flt.mantbits || exp == minexp {
- mantlo = mant - 1
- explo = exp
- } else {
- mantlo = mant*2 - 1
- explo = exp - 1
- }
- lower := new(decimal)
- lower.Assign(mantlo*2 + 1)
- lower.Shift(explo - int(flt.mantbits) - 1)
- // The upper and lower bounds are possible outputs only if
- // the original mantissa is even, so that IEEE round-to-even
- // would round to the original mantissa and not the neighbors.
- inclusive := mant%2 == 0
- // Now we can figure out the minimum number of digits required.
- // Walk along until d has distinguished itself from upper and lower.
- for i := 0; i < d.nd; i++ {
- var l, m, u byte // lower, middle, upper digits
- if i < lower.nd {
- l = lower.d[i]
- } else {
- l = '0'
- }
- m = d.d[i]
- if i < upper.nd {
- u = upper.d[i]
- } else {
- u = '0'
- }
- // Okay to round down (truncate) if lower has a different digit
- // or if lower is inclusive and is exactly the result of rounding down.
- okdown := l != m || (inclusive && l == m && i+1 == lower.nd)
- // Okay to round up if upper has a different digit and
- // either upper is inclusive or upper is bigger than the result of rounding up.
- okup := m != u && (inclusive || m+1 < u || i+1 < upper.nd)
- // If it's okay to do either, then round to the nearest one.
- // If it's okay to do only one, do it.
- switch {
- case okdown && okup:
- d.Round(i + 1)
- return
- case okdown:
- d.RoundDown(i + 1)
- return
- case okup:
- d.RoundUp(i + 1)
- return
- }
- }
- }
- type decimalSlice struct {
- d []byte
- nd, dp int
- neg bool
- }
- // %e: -d.ddddde±dd
- func fmtE(dst []byte, neg bool, d decimalSlice, prec int, fmt byte) []byte {
- // sign
- if neg {
- dst = append(dst, '-')
- }
- // first digit
- ch := byte('0')
- if d.nd != 0 {
- ch = d.d[0]
- }
- dst = append(dst, ch)
- // .moredigits
- if prec > 0 {
- dst = append(dst, '.')
- i := 1
- m := d.nd + prec + 1 - max(d.nd, prec+1)
- for i < m {
- dst = append(dst, d.d[i])
- i++
- }
- for i <= prec {
- dst = append(dst, '0')
- i++
- }
- }
- // e±
- dst = append(dst, fmt)
- exp := d.dp - 1
- if d.nd == 0 { // special case: 0 has exponent 0
- exp = 0
- }
- if exp < 0 {
- ch = '-'
- exp = -exp
- } else {
- ch = '+'
- }
- dst = append(dst, ch)
- // dddd
- var buf [3]byte
- i := len(buf)
- for exp >= 10 {
- i--
- buf[i] = byte(exp%10 + '0')
- exp /= 10
- }
- // exp < 10
- i--
- buf[i] = byte(exp + '0')
- switch i {
- case 0:
- dst = append(dst, buf[0], buf[1], buf[2])
- case 1:
- dst = append(dst, buf[1], buf[2])
- case 2:
- // leading zeroes
- dst = append(dst, '0', buf[2])
- }
- return dst
- }
- // %f: -ddddddd.ddddd
- func fmtF(dst []byte, neg bool, d decimalSlice, prec int) []byte {
- // sign
- if neg {
- dst = append(dst, '-')
- }
- // integer, padded with zeros as needed.
- if d.dp > 0 {
- var i int
- for i = 0; i < d.dp && i < d.nd; i++ {
- dst = append(dst, d.d[i])
- }
- for ; i < d.dp; i++ {
- dst = append(dst, '0')
- }
- } else {
- dst = append(dst, '0')
- }
- // fraction
- if prec > 0 {
- dst = append(dst, '.')
- for i := 0; i < prec; i++ {
- ch := byte('0')
- if j := d.dp + i; 0 <= j && j < d.nd {
- ch = d.d[j]
- }
- dst = append(dst, ch)
- }
- }
- return dst
- }
- // %b: -ddddddddp+ddd
- func fmtB(dst []byte, neg bool, mant uint64, exp int, flt *floatInfo) []byte {
- var buf [50]byte
- w := len(buf)
- exp -= int(flt.mantbits)
- esign := byte('+')
- if exp < 0 {
- esign = '-'
- exp = -exp
- }
- n := 0
- for exp > 0 || n < 1 {
- n++
- w--
- buf[w] = byte(exp%10 + '0')
- exp /= 10
- }
- w--
- buf[w] = esign
- w--
- buf[w] = 'p'
- n = 0
- for mant > 0 || n < 1 {
- n++
- w--
- buf[w] = byte(mant%10 + '0')
- mant /= 10
- }
- if neg {
- w--
- buf[w] = '-'
- }
- return append(dst, buf[w:]...)
- }
- func max(a, b int) int {
- if a > b {
- return a
- }
- return b
- }
|