123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207 |
- // Copyright 2010 The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- package math
- // The original C code, the long comment, and the constants
- // below are from FreeBSD's /usr/src/lib/msun/src/s_log1p.c
- // and came with this notice. The go code is a simplified
- // version of the original C.
- //
- // ====================================================
- // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- //
- // Developed at SunPro, a Sun Microsystems, Inc. business.
- // Permission to use, copy, modify, and distribute this
- // software is freely granted, provided that this notice
- // is preserved.
- // ====================================================
- //
- //
- // double log1p(double x)
- //
- // Method :
- // 1. Argument Reduction: find k and f such that
- // 1+x = 2**k * (1+f),
- // where sqrt(2)/2 < 1+f < sqrt(2) .
- //
- // Note. If k=0, then f=x is exact. However, if k!=0, then f
- // may not be representable exactly. In that case, a correction
- // term is need. Let u=1+x rounded. Let c = (1+x)-u, then
- // log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
- // and add back the correction term c/u.
- // (Note: when x > 2**53, one can simply return log(x))
- //
- // 2. Approximation of log1p(f).
- // Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
- // = 2s + 2/3 s**3 + 2/5 s**5 + .....,
- // = 2s + s*R
- // We use a special Reme algorithm on [0,0.1716] to generate
- // a polynomial of degree 14 to approximate R The maximum error
- // of this polynomial approximation is bounded by 2**-58.45. In
- // other words,
- // 2 4 6 8 10 12 14
- // R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s
- // (the values of Lp1 to Lp7 are listed in the program)
- // and
- // | 2 14 | -58.45
- // | Lp1*s +...+Lp7*s - R(z) | <= 2
- // | |
- // Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
- // In order to guarantee error in log below 1ulp, we compute log
- // by
- // log1p(f) = f - (hfsq - s*(hfsq+R)).
- //
- // 3. Finally, log1p(x) = k*ln2 + log1p(f).
- // = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
- // Here ln2 is split into two floating point number:
- // ln2_hi + ln2_lo,
- // where n*ln2_hi is always exact for |n| < 2000.
- //
- // Special cases:
- // log1p(x) is NaN with signal if x < -1 (including -INF) ;
- // log1p(+INF) is +INF; log1p(-1) is -INF with signal;
- // log1p(NaN) is that NaN with no signal.
- //
- // Accuracy:
- // according to an error analysis, the error is always less than
- // 1 ulp (unit in the last place).
- //
- // Constants:
- // The hexadecimal values are the intended ones for the following
- // constants. The decimal values may be used, provided that the
- // compiler will convert from decimal to binary accurately enough
- // to produce the hexadecimal values shown.
- //
- // Note: Assuming log() return accurate answer, the following
- // algorithm can be used to compute log1p(x) to within a few ULP:
- //
- // u = 1+x;
- // if(u==1.0) return x ; else
- // return log(u)*(x/(u-1.0));
- //
- // See HP-15C Advanced Functions Handbook, p.193.
- // Log1p returns the natural logarithm of 1 plus its argument x.
- // It is more accurate than Log(1 + x) when x is near zero.
- //
- // Special cases are:
- // Log1p(+Inf) = +Inf
- // Log1p(±0) = ±0
- // Log1p(-1) = -Inf
- // Log1p(x < -1) = NaN
- // Log1p(NaN) = NaN
- //extern log1p
- func libc_log1p(float64) float64
- func Log1p(x float64) float64 {
- return libc_log1p(x)
- }
- func log1p(x float64) float64 {
- const (
- Sqrt2M1 = 4.142135623730950488017e-01 // Sqrt(2)-1 = 0x3fda827999fcef34
- Sqrt2HalfM1 = -2.928932188134524755992e-01 // Sqrt(2)/2-1 = 0xbfd2bec333018866
- Small = 1.0 / (1 << 29) // 2**-29 = 0x3e20000000000000
- Tiny = 1.0 / (1 << 54) // 2**-54
- Two53 = 1 << 53 // 2**53
- Ln2Hi = 6.93147180369123816490e-01 // 3fe62e42fee00000
- Ln2Lo = 1.90821492927058770002e-10 // 3dea39ef35793c76
- Lp1 = 6.666666666666735130e-01 // 3FE5555555555593
- Lp2 = 3.999999999940941908e-01 // 3FD999999997FA04
- Lp3 = 2.857142874366239149e-01 // 3FD2492494229359
- Lp4 = 2.222219843214978396e-01 // 3FCC71C51D8E78AF
- Lp5 = 1.818357216161805012e-01 // 3FC7466496CB03DE
- Lp6 = 1.531383769920937332e-01 // 3FC39A09D078C69F
- Lp7 = 1.479819860511658591e-01 // 3FC2F112DF3E5244
- )
- // special cases
- switch {
- case x < -1 || IsNaN(x): // includes -Inf
- return NaN()
- case x == -1:
- return Inf(-1)
- case IsInf(x, 1):
- return Inf(1)
- }
- absx := x
- if absx < 0 {
- absx = -absx
- }
- var f float64
- var iu uint64
- k := 1
- if absx < Sqrt2M1 { // |x| < Sqrt(2)-1
- if absx < Small { // |x| < 2**-29
- if absx < Tiny { // |x| < 2**-54
- return x
- }
- return x - x*x*0.5
- }
- if x > Sqrt2HalfM1 { // Sqrt(2)/2-1 < x
- // (Sqrt(2)/2-1) < x < (Sqrt(2)-1)
- k = 0
- f = x
- iu = 1
- }
- }
- var c float64
- if k != 0 {
- var u float64
- if absx < Two53 { // 1<<53
- u = 1.0 + x
- iu = Float64bits(u)
- k = int((iu >> 52) - 1023)
- if k > 0 {
- c = 1.0 - (u - x)
- } else {
- c = x - (u - 1.0) // correction term
- c /= u
- }
- } else {
- u = x
- iu = Float64bits(u)
- k = int((iu >> 52) - 1023)
- c = 0
- }
- iu &= 0x000fffffffffffff
- if iu < 0x0006a09e667f3bcd { // mantissa of Sqrt(2)
- u = Float64frombits(iu | 0x3ff0000000000000) // normalize u
- } else {
- k += 1
- u = Float64frombits(iu | 0x3fe0000000000000) // normalize u/2
- iu = (0x0010000000000000 - iu) >> 2
- }
- f = u - 1.0 // Sqrt(2)/2 < u < Sqrt(2)
- }
- hfsq := 0.5 * f * f
- var s, R, z float64
- if iu == 0 { // |f| < 2**-20
- if f == 0 {
- if k == 0 {
- return 0
- } else {
- c += float64(k) * Ln2Lo
- return float64(k)*Ln2Hi + c
- }
- }
- R = hfsq * (1.0 - 0.66666666666666666*f) // avoid division
- if k == 0 {
- return f - R
- }
- return float64(k)*Ln2Hi - ((R - (float64(k)*Ln2Lo + c)) - f)
- }
- s = f / (2.0 + f)
- z = s * s
- R = z * (Lp1 + z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))))
- if k == 0 {
- return f - (hfsq - s*(hfsq+R))
- }
- return float64(k)*Ln2Hi - ((hfsq - (s*(hfsq+R) + (float64(k)*Ln2Lo + c))) - f)
- }
|