123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133 |
- // Copyright 2010 The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- package cmplx
- import "math"
- // The original C code, the long comment, and the constants
- // below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c.
- // The go code is a simplified version of the original C.
- //
- // Cephes Math Library Release 2.8: June, 2000
- // Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
- //
- // The readme file at http://netlib.sandia.gov/cephes/ says:
- // Some software in this archive may be from the book _Methods and
- // Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
- // International, 1989) or from the Cephes Mathematical Library, a
- // commercial product. In either event, it is copyrighted by the author.
- // What you see here may be used freely but it comes with no support or
- // guarantee.
- //
- // The two known misprints in the book are repaired here in the
- // source listings for the gamma function and the incomplete beta
- // integral.
- //
- // Stephen L. Moshier
- // moshier@na-net.ornl.gov
- // Complex circular sine
- //
- // DESCRIPTION:
- //
- // If
- // z = x + iy,
- //
- // then
- //
- // w = sin x cosh y + i cos x sinh y.
- //
- // csin(z) = -i csinh(iz).
- //
- // ACCURACY:
- //
- // Relative error:
- // arithmetic domain # trials peak rms
- // DEC -10,+10 8400 5.3e-17 1.3e-17
- // IEEE -10,+10 30000 3.8e-16 1.0e-16
- // Also tested by csin(casin(z)) = z.
- // Sin returns the sine of x.
- func Sin(x complex128) complex128 {
- s, c := math.Sincos(real(x))
- sh, ch := sinhcosh(imag(x))
- return complex(s*ch, c*sh)
- }
- // Complex hyperbolic sine
- //
- // DESCRIPTION:
- //
- // csinh z = (cexp(z) - cexp(-z))/2
- // = sinh x * cos y + i cosh x * sin y .
- //
- // ACCURACY:
- //
- // Relative error:
- // arithmetic domain # trials peak rms
- // IEEE -10,+10 30000 3.1e-16 8.2e-17
- // Sinh returns the hyperbolic sine of x.
- func Sinh(x complex128) complex128 {
- s, c := math.Sincos(imag(x))
- sh, ch := sinhcosh(real(x))
- return complex(c*sh, s*ch)
- }
- // Complex circular cosine
- //
- // DESCRIPTION:
- //
- // If
- // z = x + iy,
- //
- // then
- //
- // w = cos x cosh y - i sin x sinh y.
- //
- // ACCURACY:
- //
- // Relative error:
- // arithmetic domain # trials peak rms
- // DEC -10,+10 8400 4.5e-17 1.3e-17
- // IEEE -10,+10 30000 3.8e-16 1.0e-16
- // Cos returns the cosine of x.
- func Cos(x complex128) complex128 {
- s, c := math.Sincos(real(x))
- sh, ch := sinhcosh(imag(x))
- return complex(c*ch, -s*sh)
- }
- // Complex hyperbolic cosine
- //
- // DESCRIPTION:
- //
- // ccosh(z) = cosh x cos y + i sinh x sin y .
- //
- // ACCURACY:
- //
- // Relative error:
- // arithmetic domain # trials peak rms
- // IEEE -10,+10 30000 2.9e-16 8.1e-17
- // Cosh returns the hyperbolic cosine of x.
- func Cosh(x complex128) complex128 {
- s, c := math.Sincos(imag(x))
- sh, ch := sinhcosh(real(x))
- return complex(c*ch, s*sh)
- }
- // calculate sinh and cosh
- func sinhcosh(x float64) (sh, ch float64) {
- if math.Abs(x) <= 0.5 {
- return math.Sinh(x), math.Cosh(x)
- }
- e := math.Exp(x)
- ei := 0.5 / e
- e *= 0.5
- return e - ei, e + ei
- }
|